Karaelmas Fen ve Mih. Derg. 7(2):586-589, 2017

Karaelmas Fen ve Mithendislik Dergisi
Journal home page: http://fbd.beun.edu.tr

Research Article

Received / Gelig tarihi  :20.04.2016
Accepted / Kabul tarihi :01.02.2017

On Some Congruences with the Terms of Second Order Sequence and Harmonic

Numbers

Tkinci Mertebeden Dizinin Terimlerini ve Harmonik Sayilar: Ireren Baz: Kongriianslar

Nege Omiir ®, Sibel Koparal* @

Kocaeli University, Faculty of Arts and Sciences, Department of Mathematics, Kocaeli, Turkey

Abstract

In this paper, we give the generalization of the congruences in (1.2) and (1.3). For example, for bEZ\{0}, we have

”z’i Up.e(1,0%)

B H, = 0(modp)
k=0

where p is a prime such that pt4A, A = 1-44* and € = (1 —(%))/2
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Oz

Bu makalede, (1.2) ve (1.3) deki kongriianslarin genellemesi verildi. Ornegin bEZ\{0} i¢in ptdA olacak sekilde p asal sayisi, A = 1-44

UL (1B
ve € = <1 —(%))/2 olmak tizere ZWHk = 0(modp)
k=0

Anahtar Kelimeler: Kongriians, Harmonik saylar, Tkinci mertebeden diziler

1. Introduction

The second order sequences {U (4,B)} and {V (4,B)} are
defined for 7>0 by

U (4,B) = AU (4,B) - BU_(4,B)

and

V. (A4B)=AV (A4B) - BV (AB)

in which U (4,B) =0, U(4,B) =1 and V(4,B) = 2,V (4,B) =
A, respectively, where 4 and B are arbitrary integers.

The Binet formulae of sequences {U (4,B)} and {V (4,B)}

are

U(4B)= GG wd V. (AB) = + B

respectively, where a,B = (A +/A*—4B)/2.1f A=1and B
= -1, then U(1,-1) = F, (nth Fibonacci number) and ¥V (1,
-1) = L (nth Lucas number).

For n € N ={1,2,...}, harmonic numbers are those rational
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numbers given by
Hy=0, H=X1.
k=1
Wolstenholme proved that if p > 3 is a prime, then

I—Ip—l = 0(mod p?) (1.1)

(Wolstenholme 1862). For an odd prime p and an integer 4,
(%) denotes the Legendre symbol given by
0 if p|a,
(%) =4 1 if aisaquadratic residue modulo p,
—1if a is a quadratic nonresidue modulo p.

Sun showed the congruences involving harmonic numbers
and Lucas sequences (Sun 2012). For example, let p > 3 be a
prime. For A,B € Z with p+ A,

= V(A B

ngl(cA; )Hk = 0(mod p),

k=1

L U(AB) . 22 U(AB)

~ kAk Hk: p; kAk (mOdp)7

and for a prime p > 5,if (%) =1,

“U(1,4

Z%Hk = 0(mod p), (1.2)
k=1
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(P
1f<ﬁ>:_1’
LU (1,4
5 “2(k )
k=1

The author clearly gave that for any odd prime p and
ke{1,2,..p—1}

(PN T P\_q_ :
(P )_£H1—7):1 pH, (mod p?).
In this paper, we give the generalization of the congruences
in (1.2) and (1.3). For example, for b € Z \{0},

& Ui (1,07
L (1,5
k=0 b

where p is a prime such that ptbA/A=1—4b" and
—(1-(A
e—(l (p>>/2.

2.Some Congruences Involving Harmonic Numbers

H, = 0(mod p). (1.3)

(1.4)

H, = 0(mod p),

In this section, we will give the congruences involving
harmonic numbers and the terms of the second order
sequences {U (4,B)} and {V (4,B)}. For this, we remember
the following Lemma given by (Sun 2003).

Lemmal. Let A B€Z and p be an odd prime with

(%) = 1. For m € Z with m* = B(mod p),
~ 0 (mod p), if<A2;4B>= L,

Uy-np(A,B) = i(A_2m>( dp). i (/12;43>__1

m P mod p), if D =—1,
and

(*A_zm)(modp) if<A2_4B>:17
Uien2(A,B) = P AQ—szB

1 0(mod p), if( D )Z—l-

Firstly, we state the following theorem.

Theorem1. For b € Z\ {0}, then

U,(1,°)— b (%) = L b0 0,2)(1,6%) (mod p),

(2.1)
where p is a prime such that p + bA and A =1—4b°.
Proof.

It is known that

8:1+JZ 1—-y/A

2 and'Y: 2

are the roots of the characteristic equation &? - x + 4*= 0.
Using Binet formula of the sequence {U (1,/*)} and with
help of the congruence (8”—7v*)=(d—7) (mod p), we
have
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AU, (LK) = (= YU, (1,57) = (5= )" = 17)
=(3—v)" = A" (mod p).

Hence, for p t A, we write

U,(1,b))= A" V2 = (%)(mod p).

Similarly, we get

V,(1,6)=8"+v"=(d+7v) = 1(mod p).

It is clearly given that for any prime number p,
U,(1,6°)+V,(1,b°) = 2U,.. (1,b%). (2.2)

For <A> =1 and ptb, using recurrence relation of the

sequence {U (1,4%)} and (2.2), we have
pU, (1,0 =U, (1,0~ U, (1,67
= U, (1L0) =5 (U, (1b)+ V,(1,0%)

(5)-

9 =0(mod p)

— %(Up(l,bi’)— V,(1,6%) =

and by the little Fermat Theorem, we get
V,(1,°) =20,(1,b°) = U, (1,b%)

=2=2b""(mod p).
Since the congruence
(Vo (1,6) = 20" )V, (1,6%) +2b771)
= (& 4y (37
= (3" =y = AU, (1,b%) = 0(mod p*).
we have V,-,(1,b*) = 2b" ' (mod p*). Thus
2U,(1,6*) =U,- (1,b*)+ V,-, (1,b%)
=U,-(1,b))+2b" ' (mod p?).

A _

For (;) =—1, by (2.2), we have
2U,..(1,6*)=U,(1,b°)+ V,(1,b*) = 0(mod p)

(2.3)

and with the help of recurrence relation of the sequence
{U (1,6}, the little Fermat Theorem and (2.2), we get

Vi (1,0%) = 2U,+,(1,6%) = U,.. (1,b%)
=—20"U,(1,6*)+ U,..(1,b%)
=2b"=2b""(mod p).

Considering the congruence

(V,ur (1,6%) = 20" ) (V1 (1,0%) + 207*1)

= (& "y =43y

=(d"" =Y = AU, (1,0%) = 0 (mod p?),
we have V., (1,b%) = 2b"*" (modp*). Hence
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20°U,(1,b%) = 2(U,+1 (1,b*) — U+ (1,b%))

=2U,..(1,6) = (U,.1 (1,6*) + V1 (1,6%))
U, (1,6°) =V, (1,0%)

=U,.. (1,6*)— 20" (mod p*).

(2.4)

Combining (2.3) and (2.4), the proof is completed.

Secondly, we give theorem involving the generalization of
the congruences in (1.2) and (1.3).

Theorem2. For b € Z/{0},

o U (1,0
5 U (1,5
k=0 b

where p is a prime such that p + bA and € = <1 —( A ))/2
Proof.

With the help of (1.4), we get

1Uk+5(1b) NUM(lb)(l_(_l)k(p;l))

H, = 0(mod p),

P

P (= Z (mod p),
k=0 0 p

where p + bA.

For € = 0,1, it is enough to show Theorem 2 that

D 0 U (1,0Y) = Z(p ; 1)(—b)P*HUM(1,b2)(mod ).
k=0 k=0

Using Binet formula of the sequence {Uc (1,0}, we write

8k+e _ ,ch+e
-+ O =1

rlkBHE_YHE - p—1 A 2
;b S—v —§< 1 >( b) 5= (mod p?).
Bythesums
Zxkypflfk — — d Z( ) p—l-k — (x_i_y)ﬁ*l’
k=0 k=0
we write

1 (xe®"=b" .Y b")

v L S S G o,
(B—by =y (y—b)y" ) '
5=+ (mod p*).

It is known that

(B=b)(y—b)=37Y—b(d+7Y)+b*=20"—0

and
(Y —b)(&"—b")— Y (d—b)(y"—b")
=B —=7)b" = bU,:c(1,*)+ b U,se 1 (1,0%)).

So the congruence in (2.6) can rewritten
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b7 — Uy (1,6%) 4+ bU e (1, b)
20—1
3 (B—b)y " =y (y— b)”’l(
S
By the equalities (8 —b)’
(y—by
3 (8—by '~
S—v
85((1 _ zb)s)p n/2 _ ,Ye ((1 _ 2b),Y)(p71)/2
d—v
_ (1 _ 2b)(10*1)/2 (8(1;—1)/2+5 _
= 8 'Y
2b)(p 1)/z /2(1 b )

Taking 4 =1 and B = /* in Lemma 1, we write
(»-(2) )2(1,0%) = 0(mod p),
1—=2b),((2)-1):
pr(8)) (1,0%) = < ? )b((l’) 2 (mod p).

For (5) =1,by (2.7) and (2.8), we have

mod p?).

=(1-2b)d and
=(1—2b)Y, we have

Y (y—=b)"

,Y(pfl)/ZJrE)

:(1

(2.7)
(2.8)

U(p—])/z(l,bQ) = 0(mod p)7
Vi1 (1,0%) = 22U (1,0%) = Upponp (1,0%) =
1—2b
2<T>(mod p)
and
U,- 1(1 bz) = U(p—l)/2(17b2)v<p—l)/2(17b2>
=2(L=2 )0, (1,0)
= 2(1—26)"""" U2 (1,0*) (mod p?).
For (%) =—1, by (2.7), we have
Ui (1,0%) = 0(mod p),
Vi (1,0%) = 22U (1,0%) = Ugyenyo (1,6°)
= Ui (1,6°) = 26* Uiy (1,0°)
1(1—2b 1—2b
o0 (152 ) == 2b(L52 Jmod p)
and
U,i1(1,0%) = Uppinye (1,6°) Vi (1,6%)
=—2(1=20 ), (1,1)
:—2b(1 2b)” VU1 (1,67) (mod p?).
Thus, the right-hand side of (2.6) is congruent to
Uy (5)(1,6)/(2( ) Nmod 7).
Thus (2.6) is equivalent to the congruence

b = Uy (L) + U, 1 (1,0°) _ Un(3)(1,07)
21 =" (=b)"

(2.9)

(mod p*)
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For (%) =1, from (2.1), we have € = 0, and (2.9) reduces

to the congruence
206" = U, (1,6) +bU,-,(1,6*) = (2b — 1)U,-, (1,b*) (mod p?).
For (%) =—1, from (2.1), we have € = 1, and (2.9) can be

rewritten as
—2b(b" — U, (1,6*)+bU,(1,6*) = (26— 1)U,+ (1,b%) (mod p?).

'Thus, we have completed the proof of Theorem 2.
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For example, if we take & = 2 in Theorem 2, we get the
congruences in (1.2) and (1.3).
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