On the Quadra Lucas-Jacobsthal Numbers

Quadra Lucas-Jacobsthal Sayıları Üzerine

Can Kızılateş* ©

Bülent Ecevit University, Department of Mathematics, Zonguldak Turkey

Abstract

In this paper, we define the Quadra Lucas-Jacobsthal numbers and then, we give some properties of this sequences. Moreover, we obtain spectral norms of circulant matrices with Quadra Lucas-Jacobsthal numbers.

2010 AMS-Mathematical Subject Classification Number: 11B39, 05A19, 15A60
Keywords: Binet's formula, Circulant matrix, Jacobsthal numbers, Lucas numbers
\ddot{O}_{z}
Bu makalede, Quadra Lucas-Jacobsthal sayıları tanımlanmış ve bu dizilerin çeşitli özellikleri verilmiştir. Dahası elamanları Quadra Lucas-Jacobsthal sayıları olan sirkülant matrislerin spektral normları elde edilmiştir.

2010 AMS-Konu Sınfflandırılmas: 11B39, 05A19, 15A60
Anahtar Kelimeler: Binet formülü, Sirkülant matris, Jacobsthal sayiları, Lucas sayiları

1. Introduction

Let p and q be non-zero integers. The second order linear recurrences of the Fibonacci and Lucas types are defined as follows:
$U_{n}=p U_{n-1}+q U_{n-2}$,
$V_{n}=p V_{n-1}+q V_{n-2}$
where $U_{0}=0, U_{1}=1$ and $V_{0}=2, V_{1}=\mathrm{p}$.
Fibonacci,Lucas,Pell,Pell-Lucas,Jacobsthal and JacobsthalLucas numbers can be derived from (1) and (2). For $p=q=$ $1, U_{n}=F_{n}$ where F_{n} is the n-th Fibonacci number. For $p=2$, $q=1, U_{n}=P_{n}$ where P_{n} is the n-th Pell number. Similarly, p $=1$ and $q=2, U_{n}=J_{n}$ where J_{n} is the n-th Jacobsthal number. On the other hand, for $p=q=1, V_{n}=L_{n}$ where L_{n} is the n-th Lucas number. For $p=2$ and $q=1, V_{n}=Q_{n}$ where Q_{n} is the n-th Pell-Lucas number. Similarly, for $p=1$ and $q=2, V_{n}=$ j_{n} where j_{n} is the n-th Jacobsthal-Lucas number.
The characteristic equation of U_{n} and V_{n} is $x^{2}-p x-q=0$ and the roots are

[^0]$x_{1}=\frac{p+\sqrt{p^{2}+4 q}}{2}, x_{2}=\frac{p-\sqrt{p^{2}+4 q}}{2}$.
The generating functions of U_{n} and V_{n} are
$U(x)=\frac{x}{1-p x-q x^{2}}, V(x)=\frac{2-p x}{1-p x-q x^{2}}$.
Some authors have studied certain integer sequences. For example in [5], Taşcı defined Quadrapell numbers by the following recurrence relation for $n \geq 4$,
$D_{n}=D_{n-2}+2 D_{n-3}+\mathrm{D}_{n-4}$
with the initial values $D_{0}=D_{1}=D_{2}=1$ and $D_{3}=2$. Then the author gave some algebraic identities for the Quadrapell numbers. In [4], Özkoç defined a Quadra Fibona-Pell numbers by the following recurrence relation for $n \geq 4$,
$W_{n}=3 W_{n-1}-3 W_{n-3}-\mathrm{W}_{n-4}$
with the initial values $W_{0}=W_{1}=0, W_{2}=1, W_{3}=3$. Then the author gave some properties of Quadra Fibona-Pell sequences. In [6], the authors studied the integer sequence
$T_{n}=-5 T_{n-1}-5 T_{n-2}+2 T_{n-3}+2 T_{n-4}$
with the initial values $T_{0}=T_{1}=0, T_{2}=-3$ and $T_{3}=12$.

In this paper, we define a similar sequence related to Lucas and Jacobsthal numbers. Then we give some properties for these numbers.

2. Quadra Lucas-Jacobsthal Numbers

Definition 2.1. The Quadra Lucas-Jacobsthal numbers S_{n} are defined by the following recurrence relation for $n \geq 4$,
$S_{n}=2 S_{n-1}+2 S_{n-2}-3 S_{n-3}-2 S_{n-4}$
with the initial values $S_{0}=S_{1}=2, S_{2}=4$ and $S_{3}=7$.
We note that the characteristic equation (4) is $x^{4}-2 x^{3}-2 x^{2}$
$+3 x+2=0$ and thus the roots of it are
$\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}, \gamma=2$ and $\delta=-1$
where α, β are the roots of the characteristic equation of Lucas numbers and γ, δ are the roots of the characteristic equation of Jacobsthal numbers. Now we give the generating function of S_{n}.

Theorem 2.1. The generating function for S_{n} is
$S(x)=\frac{x^{3}-4 x^{2}-2 x+2}{2 x^{4}+3 x^{3}-2 x^{2}-2 x+1}$.
Proof. The generating function $S(x)$ has the form
$S(x)=\sum_{n=0}^{\infty} S_{n} x^{n}=S_{0}+S_{1} x+S_{2} x^{2}+\cdots$.
Since the characteristic equation of (4) is $x^{4}-2 x^{3}-2 x^{2}+3 x+2=0$, we have
$\left(2 x^{4}+3 x^{3}-2 x^{2}-2 x+1\right) S(x)=\left(2 x^{4}+3 x^{3}-2 x^{2}-2 x+1\right)\left(S_{0}+\right.$ $\left.S_{1} x+S_{2} x^{2}+\ldots+S_{\mathrm{n}} x^{n}+\ldots\right)$
$\left(2 x^{4}+3 x^{3}-2 x^{2}-2 x+1\right) S(x)=S_{0}+\left(S_{1}-2 S_{0}\right) x+\ldots+\left(S_{\mathrm{n}}-\right.$ $\left.2 S_{\mathrm{n}-1}-2 S_{\mathrm{n}-2}+3 S_{\mathrm{n}-3}+2 S_{\mathrm{n}-4}\right) x^{n}+\ldots$
From the (4), we get
$\left(2 x^{4}+3 x^{3}-2 x^{2}-2 x+1\right) S(x)=x^{3}-4 x^{2}-2 x+2$.
So
$S(x)=\frac{x^{3}-4 x^{2}-2 x+2}{2 x^{4}+3 x^{3}-2 x^{2}-2 x+1}$.
which is desired result.
Theorem 2.2. Let S_{n} be n-th Quadra Lucas-Jacobsthal numbers. For $n \geq 0$, the Binet formula for S_{n} is
$S_{n}=\left(\alpha^{n}+\beta^{n}\right)+\left(\frac{\gamma^{n}-\delta^{n}}{\gamma-\delta}\right)$.
Proof. We can write $S(x)$ as
$S(x)=\frac{2-x}{1-x-x^{2}}+\frac{x}{1-x-2 x^{2}}$.
From (3), the generating function of Lucas and Jacobsthal numbers are
$L(x)=\frac{2-x}{1-x-x^{2}}, J(x)=\frac{x}{1-x-2 x^{2}}$
respectively. From (5) and (6), we have
$S(x)=L(x)+J(x)$.
Hence we have
$S_{n}=\left(\alpha^{n}+\beta^{n}\right)+\left(\frac{\gamma^{n}-\delta^{n}}{\gamma-\delta}\right)$.
Theorem 2.3. Let S_{n} denote the n-th numbers. Then the sum of first non-zero terms of S_{n} is
$\sum_{i=1}^{n} S_{i}=\frac{S_{n}+3 S_{n-1}+5 S_{n-2}+2 S_{n-3}-7}{2}$.
Proof. From the recurrence relation of S_{n}, we get
$2 S_{n-1}+2 S_{n-2}=3 S_{n-3}+2 S_{n-4}+S_{n}$.
Applying (7), we deduce that
$2 S_{3}+2 S_{2}=3 S_{1}+2 S_{0}+S_{4}$,
$2 S_{4}+2 S_{3}=3 S_{2}+2 S_{1}+S_{5}$,
$2 S_{5}+2 S_{4}=3 S_{3}+2 S_{2}+S_{6}$,
\vdots
$2 S_{n-1}+2 S_{n-2}=3 S_{n-3}+2 S_{n-4}+S_{n}$.
If we sum both sides of (8), then we have
$2 \sum_{i=1}^{n} S_{i}=S_{n}+3 S_{n-1}+5 S_{n-2}+2 S_{n-3}-2 S_{0}-3 S_{1}-S_{2}+S_{3}$.
Thus we get
$\sum_{i=1}^{n} S_{i}=\frac{S_{n}+3 S_{n-1}+5 S_{n-2}+2 S_{n-3}-7}{2}$.

3. An Application of Quadra Lucas-Jacobsthal Numbers in Matrices

In this section, we will give some applications on matrix norms of Quadra Lucas-Jacobsthal numbers. Let $A=\left(a_{i j}\right)$ be any $m \mathrm{x} n$ complex matrix. The spectral norm of the matrix A are
$\|A\|_{2}=\sqrt{\max _{l \leq i \leq n}\left|\lambda_{i}\left(A^{H} A\right)\right|,}$
where $\lambda_{\mathrm{i}}\left(A^{H} A\right)$ is an eigenvalue of $A^{H} A$ and A^{H} is the conjugate transpose of the matrix A.

By a circulant matrix of order n is meant a square matrix of the form
$C=\operatorname{Circ}\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n-1}\right)=\left[\begin{array}{ccccc}c_{0} & c_{1} & c_{2} & \cdots & c_{n-1} \\ c_{n-1} & c_{0} & c_{1} & \cdots & c_{n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{1} & c_{2} & c_{3} & \cdots & c_{0}\end{array}\right]$.
The eigenvalues of C are
$\underset{0 \leq j \leq n-1}{\lambda_{j}}=\sum_{k=0}^{n-1} c_{k} w^{-j k}$,
where $w=e^{\frac{2 \pi i}{n}}$ and $i=\sqrt{-1}$.
Lemma 3.1. ([1]) Let A be an $n \mathrm{x} n$ matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{n}}$. Then, A is a normal matrix if and only if the eigenvalues of $A^{H} A$ are $\left|\lambda_{1}\right|^{2},\left|\lambda_{2}\right|^{2}, \ldots,\left|\lambda_{n}\right|^{2}$.

Theorem 3.1. The spectral norm of $C=\operatorname{Circ}\left(S_{0}, S_{1}, S_{2}, \ldots\right.$ S_{n-1}) is
$\|C\|_{2}=\frac{S_{n-1}+3 S_{n-2}+5 S_{n-3}+2 S_{n-4}-3}{2}$.
Proof. Since C is circulant matrix, from (10), for all $\mathrm{t}=$ $0,1,2, \ldots, n-1$,
$\lambda_{t}(C)=\sum_{i=0}^{n-1} S_{i}\left(w^{-t}\right)^{i}$.
Then for $t=0$,
$\lambda_{0}(C)=\sum_{i=0}^{n-1} S_{i}$.
Hence, for $1 \leq m \leq n-1$, we have
$\lambda_{m}=\left|\sum_{i=0}^{n-1} S_{i}\left(w^{-m}\right)\right| \leq\left|\sum_{i=0}^{n-1} S_{i}\right|\left|\left(w^{-m}\right)^{i}\right| \leq\left|\sum_{i=0}^{n-1} S_{i}\right|$.
By using the Lemma 3.1 and the fact that the matrix C is a normal matrix, we have

$$
\begin{equation*}
\|C\|_{2}=\max _{0 \leq m \leq n-1}\left|\lambda_{m}\right|=\max \left(\left|\lambda_{0}\right|, \max _{1 \leq m \leq n-1}\left|\lambda_{m}\right|\right) . \tag{13}
\end{equation*}
$$

From (11), (12) and (13), we have

$$
\|C\|_{2}=\sum_{i=0}^{n-1} S_{i}=\frac{S_{n-1}+3 S_{n-2}+5 S_{n-3}+2 S_{n-4}-3}{2} .
$$

[^0]: *Corresponding Author: cankizilates@gmail.com
 Can Kızılateş © orcid.org/0000-0002-7958-4226

