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Abstract

In this study S-manifolds admitting a quarter-symmetric metric connection naturally related with the S-structure
are considered and some general results concerning the curvature of such a connection is given. In addition,
we prove that an S-manifold has constant f-sectional curvature with respect to this quarter-symmetric metric
connection if and only if has the same constant f-sectional curvature with respect to the Riemannian connection.
In particular, the conditions of semi-symmetry, Ricci semi-symmetry, and projective semi-symmetry of this
quarter-symmetric metric connection are investigated.
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1. Introduction

The idea of metric connection with torsion tensor in a Riemannian manifold was introduced by Hayden [8]. Later, Yano
[17] studied some properties of semi symmetric metric connection on a Riemannian manifold. The semi-symmetric metric
connection has important physical application such as the displacement on the earth surface following a fixed point is metric
and semi-symmetric. Golab [5] defined semi-symmetric non-metric connections on a Riemannian manifold (M, g) and studied
some of its properties. More precisely, if V is a linear connection in a differentiable manifold M, the torsion tensor 7 of V is
given by T(Z,W) = VW — VyZ — [Z,W], for any vector fields Z and W on M. The connection V is said to be symmetric if the
torsion tensor T vanishes, otherwise it is said to be non-symmetric. In this case, V is said to be a semi-symmetric connection if
its torsion tensor T is of the form T(Z,W) = n(W)Z —n(Z)W, for any Z,W, where 7 is a 1-form on M. Moreover, V is called
a metric connection if Vg = 0, otherwise it is called non-metric. It is well known that the Riemannian connection is the unique
metric and symmetric linear connection on a Riemannian manifold. In [12] and [13] some kinds of quarter symmetric metric
connection were studied. On the other hand, given a Riemannian manifold (M, g) of dimension n > 3 endowed with a linear
connection V whose curvature tensor field is denoted by R, for any (0, k)-tensor field W on M, k > 1, the (0,k +2)-tensor field
R.W is defined by

=

RW)(Zy....24,2,Y) =~y W(Z\,...,Zi 1,R(Z,Y)Z;,Zi+1,. .., Z%), (1)

1

Il
—_

forany Z,Y,Z;,...,Z; € 2 (M). In this context, M is called semi-symmetric respect to V if R.R = 0 and Ricci semi-symmetric
if R.S =0, where § is denoting the Ricci tensor field of V. Moreover, M is said to be projectively semi-symmetric if R.P = 0,
being P the Weyl projective curvature tensor field of V, defined by

P(V,U)Z:R(V,U)Z—ni—l{S(U,Z)V—S(V,Z)U} 2)
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(alternatively, P(V,U,Z,W) = g(P(V,U)Z,W)), for any U, V, Z,W € 2 (M). For the Riemannian connection it is known
that the semi-symmetry implies the Ricci semi-symmetry (for more details, [4, 14] and references therein can be consulted;
specifically, for the contact geometry case we recommend the papers [9, 11, 15]).

In 1963, Yano [16] introduced the notion of f-structure on a C* m-dimensional manifold M, as a non-vanishing tensor field
@ of type (1,1) on M which satisfies ¢ + ¢ = 0 and has constant rank r. It is known that r is even, say r = 2n. Moreover,
T M splits into two complementary subbundles Im¢ and ker ¢ and the restriction of ¢ to Im¢ determines a complex structure
on such subbundle. It is also known that the existence of an f-structure on M is equivalent to a reduction of the structure
group to U(n) x O(s) [1], where s = m — 2n. In 1970, Goldberg and Yano [6] introduced globally frame f-manifolds (also
called metric f- manifolds and f.pk-manifolds). A wide class of globally frame f-manifolds was introduced in [1] by Blair
according to the following definition: a metric f-structure is said to be a K-structure if the fundamental 2-form &, defined
usually as ®(X,Y) = g(X, @Y), for any vector fields X and ¥ on M, is closed and the normality condition holds, that is,
[0, 0] +2Y5,dn' @& =0, where [@, @] denotes the Nijenhuis torsion of ¢. A K-manifold is called an S-manifold if dn* = @,
forall k=1,...,s. The S-manifolds have been studied by several authors (see, for instance, [2, 3, 7, 10]).

The purpose of this paper is to link the three notions commented above by investigating semi-symmetry properties of
S-manifolds endowed with certain quarter-symmetric metric connection naturally related with the S-structure. To this end, in
Section 2 we give a brief introduction about S-manifolds. Section 3 is devoted to obtaining results on the curvature properties
of S-manifold with Riemannian connection. In Section 4 we define a quarter-symmetric metric connection on an S-manifold,
obtaining some general results and, in Section 5, we investigate the curvature and the Ricci tensor fields of such connection.
Specially, we prove that an S-manifold has constant f-sectional curvature with respect to this quarter-symmetric metric
connection if and only if has the same constant f-sectional curvature with respect to the Riemannian connection. Consequently,
the curvature of the quarter-symmetric metric connection is completely determined by its f-sectional curvature. Finally, in
Section 6 we present the results concerning the semi-symmetry properties of the quarter-symmetric metric connection.

2. Preliminaries

A (2n+ 5)— dimensional differentiable manifold M is called a metric f-manifold if there exist an (1,1) type tensor field ¢, s

vector fields &;,...,&;, s 1-forms 1',...,n° and a Riemannian metric g on M such that
PP =—I+Yn'®& n'(&) =5, 3)
i=1
g(oU,oV) =g(U,V) =Y n'(UN'(V) )

i=1

forany U,V € 2" (M), i,j € {l,...,s}. In addition we have:

9&i=0,n"0p =0, n'(U) =3(U.&). )
Then, a 2-form @ is defined by ®(U,V) = g(U, @V ) for any U,V € 2 (M) called the fundamental 2-form. In what follows,
we denote by . the distribution spanned by the structure vector fields &, ..., & and by .Z its orthogonal complementary

distribution. Then, 2" (M) = £ & .#. If U € .# we have U =0 and if U € ¥ we have n(U) =0, forany i € {1,...,s},
that is, U = —U.
Moreover, a metric f-manifold is normal if

(@, 0] +2) dn'®&=0
i=1

where [, ¢] is denoting the Nijenhuis tensor field associated to ¢. A metric f-manifold is said to be an S-manifold if it is
normal and

n'A- AN A (AN £O0and D =dn', 1 <i<s.
Examples of S-manifolds can be found in [1, 2, 7].

Theorem 1. An S—manifold (M, p,&;,m',g) satisfies the condition
(Vi) =Y {s(eU,oV)&+n'(V)p*U} ©)
i=1

SJorallU,V € Z (M), where V* denotes the Riemannian connection with respect to g [2].
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From (6), we have

Vi&i=—oU )
foranyU € Z°(M),ie{1,...,s}.
Theorem 2. Let (M, @,&,1',g) be a (2n+ s)-dimensional S—manifold. Then

UV = Z{n )@V —1/(V)9*U}, (8)

R*(U,&)V Z{g oU,9V)Ej+n/ (V)9*U} )

forallU,V € Z (M), i€ {1,...,s}, where R* denotes the curvature of the Riemannian connection [3].

Corollary 3. Let (M,¢,&,n',g) be a (2n+ s)-dimensional S-manifold. Then

K*(&,U) =g(oU,9U), (11)
"(U.&) 2nZn (12)

forallU,V € Z' (M), i,j€{l,...,s}, where K* and S* denote respectively the sectional curvature and the Ricci tensor field of
the Riemannian connection [3].

Since, from (11), we have that K*(&;,&;) =0, for any i,j € {1,...,s}, an S-manifold can not have constant sectional
curvature. For this reason, it is necessary to introduce a more restrictive curvature. In general, a plane section 7 on a metric
f-manifold (M, @,&,n',g) is said to be an f-section if it is determined by a unit vector U, normal to the structure vector fields
and @U. The sectional curvature of 7 is called an f-sectional curvature. An S-manifold is said to be an S-space-form if it has
constant f-sectional curvature ¢ and then, it is denoted by M(c). In such case, the curvature tensor field R* of M(c) satisfies
[10]:

RUVKL =Y {g(oU. oLy (V)n)(K) - g(pU. oK) (V)ni (L) (13)
ij=1

+2(oV, oK)n'(U)n’ (L) — g(@V,@L)n'(U)n’ (K)}

2 a0, oL)s(9V. 0K) — 20U, 9Kzl 9V, 0L}

+%{¢(U ,L)®(V,K) —D(U,K)D(V,L) —2&(U,V)P(K,L)}
forany U,V,K,L € 2 (M).

3. Semi-Symmetry Properties of S-Manifolds Respect to the Riemannian Connection
With respect to the Riemannian connection V* of an S-manifold (M, @, &;,n',g), we can prove:
Theorem 4. Any semi-symmetric S-manifold (M, ¢,&;,n',g) is an S-space-form of constant f-sectional curvature equal to s.
Proof. LetU € & be a unit vector field. Since (M, ¢,&;, 1, g) is semi-symmetric, then,
(R*.R")(U,&,U,@U,0U,Ej) =0

for any i,j € {1,...,s}. Expanding this formula from (1) and taking into account (9), we get R*(U, oU, oU,U) = s, which
completes the proof. |
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Observe that, in the case s = 1, by using (10) we obtain that a semi-symmetric Sasakian manifold is of constant curvature
equal to 1. This result was firstly proved by Takahashi (see [15]).

Theorem 5. Let (M, ,&:,n',g) be a Ricci semi-symmetric S-manifold. Then, its Ricci tensor field S* respect the Riemannian
connection satisfies

SU.Y) = 2{sg(oU. V) + Ym0 (V)} (14)
ij=1

foranyU,V € Z'(M).
Proof. Since (M, ¢,&;,n',g) is Ricci semi-symmetric, then, by using (1),
S*(RY(U,8)&;,V) +57(6, R (U, 6)V) =0

forany U,V € 2" (M) and i,j € {l1,...,s}. Now, from (9) and (12) we get the desired result. |

Corollary 6. Any Ricci semi-symmetric Sasakian manifold is an Einstein manifold.

Proof. Considering s = 1 in (14), we deduce $*(U,V) =2ng(oU,oV)+nU)n(V) =2ng(U,V) forany U,V € Z°(M). W
For the Weyl projective curvature tensor field, we have the following theorem:

Theorem 7. Any projectively semi-symmetric S-manifold (M, 9,&;,n',g) is an S-space-form of constant f-sectional curvature
equal to s.

Proof. Let U € £ a unit vector field. Then, from (2) and taking into account (9) and (10), we have
(R*.P*)(U,&,U, U, U, é}) = (R".R")(U,&,U, U, U, é}) =s—R'(U,9U,9U,U)

forany i, j = 1,...,s and this completes the proof. |

4. A Quarter-Symmetric Metric Connection on S-Manifolds

From now on, let M denote a (21 + s)-dimensional manifold (M, @,&;,n’,g). We define a new connection on M given by
s .
VuV =vVyv =Y 0/ U)oV (15)

forany U,V € 2 (M). It is easy to show that V is a linear connection on M. Moreover, we can prove:

Theorem 8. Let M be an S-manifold. The linear connection V defined in (15) is a quarter-symmetric metric connection on M.
Using (15) and taking into account that the Riemannian connection is free-torsion, the torsion tensor 7' of the connection V

is given by

T(U,V) Z V)oU —n’(U)epV} (16)

for any U,V € 2 (M). Moreover, by using (15) again, we have, for all U,V,Z € 2" (M) and since V* is a metric connection,
that:

s

(Vug)(V,2) = Z U){g(9V,2)+g(V,0Z)}. (17)

Proof. From (16) and (17) we conclude that the linear connection V is a quarter-symmetric metric connection on M. [ |
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Example 9. Let us consider R*" with its standard S-structure given by [7]

a_l o:_n i 7.0 _ i
nt=3 dz ;ydx ,éa—ZaZa,

g= t T]“@na-i-% (i(dxi®dxi+dyi®dyi)> ,
o=1 i=1

n 8 n a
¢(2< KSERNS P aCa ) S X L0

1 a Z a=1li=

where (x',y' ,2%),i=1,....,nand o =1,...,s, are the cartesian coordinates. It is known that, with this structure, R¥"*5 s an
S-space-form of constant f-sectional curvature c = —3s. If, following [7], we denote

1 1 1 1 2n+s
(s Xy Y, L) = (T
the Christoffel symbols of the quarter-symmetric metric connection defined in (15) are given by

1 L1
I =T — Esy,ﬁab; I, =T+ §5ab

foranya,be {1,...2n+s}, i€ {l,...,n} and o € {1,...,s}, where T*? and b, are denoting the Christoffel symbols of the
Riemannian connection of R and the not-written symbols are the same as the Riemannian connection ones (see [7] for the
details concerning them).

Corollary 10. Let M be an S-manifold. Then we have

Vuéi=—oU (18)

(Vun')W = g(U, W) = ®(U, W)
foranyUW e Z'(M), i€ {l,...,s}.

19)

Proof. First, taking W = &; in (15), from (7) we have
Vu&i=Vy&i— ZTI )o&i =

Now, by using (5), (7) and (15) again:

(Von )W) = Un'(W)—n'(VuW) '
= g(vz(fwv él) +g(W, szél) - nl(VUW)
= glew,U).

Theorem 11. Let M be an S—manifold. Then, we have

(Vuo)V Z{g oU,@V)E+n'(V)9*U} (20)
i=1

forallU,V € Z'(M).

Proof. From (15), we get:
(Vue)V = (Vyo)V Zn
Therefore, we obtain the result from (6).
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By using (3) and (20), we easily prove:

Corollary 12. Let M be an S-manifold. Then we have

(Vu@)éi = —9Vyé& = @, Q1)

Ve oU = @V U (22)

SforallU e ' (M), ie{l,...,s}.

5. The Curvature of V

Let M be an S-manifold endowed with the quarter-symmetric metric connection V defined in (15). From the Formula (3.2) in
[1], denoting by R and R* the curvature tensor fields of V and V*, respectively, we have that

N

RU,LW = RULW+Y n' ) {(Veo)W} =Y n'(L){(Vuo)W} (23)
i=1 i=1
+2sg(U, L)W
forall U,L,W € 2 (M). From (8), (9) and (23), we get:

Corollary 13. Let M be an S-manifold. Then we have

RUV)E = 2;{17"(U)<P2V —n/(V)9U} = 2R (U.V)E, (1)
R(U,&)V = —2; (80U, oV)E + 1(V)9?U} = —2R* (U, &)V. (5)
R(U.&))E = R'(U,&)E — 92U = —29°0, 06)
R(ELE)U = R (£, &)U =0 @n
R(E.E)E =0, (8)

forallUV € Z' (M), i,j,ke{l,... s}

Corollary 14. Let M be an S-manifold. Then

R(vaaLaK) = 7R<V7UaL7K)7
R(vavLaK) = _R(U’V5K7L)7
R(U,V,LLK) = R(LK,U,V)

foranyU,V,K.L € 2 (M).
Corollary 15. Let M be an S-manifold. Then
R(@U,9V, oL, K) = R*(U,V,L,K) +2sg(9U,V)g(L, pK) (29)

forany U,V.LLW € Z.
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Proof. Tt is a direct computation from (23) taking into account that [2]
R*(@U,9V,0L,0K) = R*(U,V,L,K)
forany U,V,L,K € Z. |

To consider the sectional curvature of the quarter-symmetric metric connection V has no sense because, from (24) we
have that R(§;,U,U, &) = g(R(&,U)U,&;) = 2, while from (26), R(U,&;,&,U) = g(R(U,&)&;,U) = 1, for any unit vector
field U € % and any i € {1,...,s}. However, the f-sectional curvature of V is well defined, since, by using (23), we obtain
that, for any unit vector field U € Z:

R(U,oU,oU,U) =R*(U,oU,pU,U) +2s[g(U,U)]>.

Consequently, taking into account (13), from (23) we prove the following theorem.

Theorem 16. Let M be an S-manifold. Then, the f-sectional curvature associated with the quarter-symmetric metric connection
V is constant if and only if the f-sectional curvature associated with the Riemannian connection is constant too. In this case,
both constants are the same and the curvature of V is given by

R(WU.V.ZW)= iji_l{g(&v,vv)n"w)nf (2) —g(@*U,W)n'(V)n’(2) (30)
+2g(@V, @Z)n'(U)n’ (W) —2g(oU, Z)n'(V)n’ (W)}
# X {sloV W W)n*2) - s(oU W) ()}
+;s;(U, oV)g(9Z,W)
+%3s{g(<pU ,OW)g(@V,9Z) — g(U, 9Z)g(oV, oW)}
U W)R(V,2) = DU, Z)B(V, W) = 20(U,V)D(Z,W)}
foranyU,V,Z,W € 2 (M).

With respect to the Ricci tensor field S of the connection V we know that it is a symmetric tensor field. In fact, since
dn' =@, forany i € {1,...,s}, from Formulas (3.4) and (3.14) in [1] we deduce that

S(K,L) = S(L,K) 31)

for any K,L € 2" (M), where dim(M) = 2n+s. Moreover,

2n
SWU,V)=8(U,V)+2s Y {s(oU,E)g(@V,Er)} +sg(9V,U) (32)
k=1

for any U,V € 2 (M). Therefore, by using (12):

Proposition 17. Let M be an S-manifold. Then, we have
S
S(U,&) =sn'(U) +2n ) n'(U) (33)
i=1

foranyU e Z'(M), i€ {1,...,s}.
Corollary 18. Let M be an S-manifold. Then we have
S(8j.6i) =s+2n (34)

Sforanyi,j=A{1,...,s}

Moreover, we can prove:
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Proposition 19. Let M be an S-manifold. Then
S(pU.9V) = S(U.V) ~4s L. 8(U, 9Es(V. )
i=
s s :
+2s;g(Ei, U)g(V,E;) —2n i,jZ:’1 n'Ww)n’(v)
foranyU,V € Z'(M).

Proof. Let{E|,...,E,,QE,...,0E,,&,...,&} be an f-basis. Then, since from (25),

R(Ej,@U,9V,E;) =R"(§;,0U, 9V, &;) +g(oU.9V)

forany j € {1,...,s}, then, by using (29), (14) and (32) taking into account that U,V € ., we deduce:

S

S(UoV) = LAR(E, @U,9V.E)+R(9E; U, ¢V, 9Ei)} + ), R(Ej. 0V, 9V.5;)

i=1 j=1

Il
™-

Il
—_

j=1
N

125 Y (g(EnU)(V.E) + g(0E. U)e(V.0E)} + Y s(0U. V)
i=1 =1

= S'(eU,9V) +2Si {g(Ei,U)g(V,Ei) + 8(@Ei,U)g(V, 9E;) } + sg(9U, 9V)

i=1
s

= S(U,V)—4sY g(U,0E)g(V,QE)) +2sig(Ei,U>g(v,Ei) —2n iln’w)nf(w
i=1 i=1 ij=

But, from (25) again,

R(&jv u,v, é]) = Z(VU(P)V

forany j € {1,...,s} and this completes the proof.

Corollary 20. Let M be an S-manifold. Then we have

S(X.Y) = S(gX, @¥) +4nY 0 (X)ni(¥)
=1

forallU,V € Z'(M).

Proof. We can put
U=U+Y n'(U)&andV =Vo+ Y n/(V)§;
i=1 j=1
where Uy, Vy € .. Then, from (33) and (34):

S(ULY) = S(Un Vo) +4n Y. ' U)mi(V).
ij=1

Now, by using (35), S(Uop, Vo) = S(@Uy, ¢Vy) = S(@U, V) and the proof is completed.
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6. Semi-Symmetry Properties of an S-Manifold with Respect to V

For the quarter-symmetric metric connection defined in (15) on an S-manifold M we can prove:

Theorem 21. Let M be a (2n+ s)-dimensional S-manifold, n > 1.If M is semi-symmetric respect to the quarter-symmetric
metric connection V then

R(U,oU,oU,U) = —2s
for any U is unit vector field on M.

Proof. If R.R =0, then, from (1) we deduce that

JrR(U,(PU,R(U,éi)(PU,éj) JrR(U,(PU,(PU,R(U,éi)éj) =0

for any unit vector field U € 2 (M) and any i,j = 1,...,s. By using (25) and (26), a direct expansion of (38) gives
R(U,oU,oU,U) = —2s. |

Moreover, we have:

Theorem 22. Let M be a (2n+s)-dimensional S-manifold, n > 1. If M is Ricci semi-symmetric respect to the quarter-symmetric
metric connection V then

S(Y,V) = 2nsg(Y,@V) +4n Y n*(Y)nP(V)
a,f=1
forall Y,V € Z'(M).
Proof. We take X = &; and U = &;.. Then, from (1) we have that
R(§:,Y).S =S(R(&,Y)E;, V) +S(8,R(&.Y)V) (39)

for any unit vector field Y € 2° (M) and any i, j € {1,...,s}. Now, by using (26) and (33)

a 1

S(R(&:,Y)&;,V) = =28(Y,V) +4n Y n*(¥)nP (V) (40)
B=
forallV € 2°(M). Next, from (25) and (33) we have
S(Ej,R(&,Y)V) = dnsg(oY, V). (41)
The proof is completed. u

Due to the above results, it is natural to consider the Weyl projective curvature tensor field of V (see (2)). For this tensor
field we obtain the following theorem.

Theorem 23. Let M be a (2n+ s)-dimensional S-manifold M with n > 1. If M is projectively semi-symmetric respect to the
quarter-symmetric metric connection V then

S(Y,V) = 2nsg(¥, V) +4n ¥ n®(¥)nP(v)
a,f=1

forall Y,V € 2 (M).
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Proof. From (1) we have that
(P(X,Y).5)(U,V)=P(X,Y).S(U,V)-S(P(X,Y)U,V)-S(U,P(X,Y)V) (42)

If P(X,Y).S =0, then we have

S(P(X,Y)U,V)+S(U,P(X,Y)V) =0.

Therefore, if we calculate the latter equation we can obtain;

S(R(X,Y)U,V)+S(U,R(X,Y)V) =0.

The proof is completed from the Theorem 6.2. |

7. Conclusions

A quarter-symmetric metric connection is defined on S—manifolds. Some properties of the curvature and the Ricci tensor
fields of such connection are obtained. In addition, an S-manifold has constant f-sectional curvature with respect to this
quarter-symmetric metric connection if and only if has the same constant f-sectional curvature with respect to the Riemannian
connection. Consequently, the curvature of the quarter-symmetric metric connection is completely determined by its f-sectional
curvature. This topic is open and there are many issues to work on.
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