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Abstract
In this study S-manifolds admitting a quarter-symmetric metric connection naturally related with the S-structure
are considered and some general results concerning the curvature of such a connection is given. In addition,
we prove that an S-manifold has constant f -sectional curvature with respect to this quarter-symmetric metric
connection if and only if has the same constant f -sectional curvature with respect to the Riemannian connection.
In particular, the conditions of semi-symmetry, Ricci semi-symmetry, and projective semi-symmetry of this
quarter-symmetric metric connection are investigated.
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1. Introduction
The idea of metric connection with torsion tensor in a Riemannian manifold was introduced by Hayden [8]. Later, Yano
[17] studied some properties of semi symmetric metric connection on a Riemannian manifold. The semi-symmetric metric
connection has important physical application such as the displacement on the earth surface following a fixed point is metric
and semi-symmetric. Golab [5] defined semi-symmetric non-metric connections on a Riemannian manifold (M,g) and studied
some of its properties. More precisely, if ∇ is a linear connection in a differentiable manifold M, the torsion tensor T of ∇ is
given by T (Z,W ) = ∇ZW −∇W Z− [Z,W ], for any vector fields Z and W on M. The connection ∇ is said to be symmetric if the
torsion tensor T vanishes, otherwise it is said to be non-symmetric. In this case, ∇ is said to be a semi-symmetric connection if
its torsion tensor T is of the form T (Z,W ) = η(W )Z−η(Z)W , for any Z,W , where η is a 1-form on M. Moreover, ∇ is called
a metric connection if ∇g = 0, otherwise it is called non-metric. It is well known that the Riemannian connection is the unique
metric and symmetric linear connection on a Riemannian manifold. In [12] and [13] some kinds of quarter symmetric metric
connection were studied. On the other hand, given a Riemannian manifold (M,g) of dimension n≥ 3 endowed with a linear
connection ∇ whose curvature tensor field is denoted by R, for any (0,k)-tensor field W̃ on M, k ≥ 1, the (0,k+2)-tensor field
R.W̃ is defined by

(R.W̃ )(Z1 . . . ,Zk,Z,Y ) =−
k

∑
i=1

W̃ (Z1, . . . ,Zi−1,R(Z,Y )Zi,Zi+1, . . . ,Zk), (1)

for any Z,Y,Z1, . . . ,Zk ∈X (M). In this context, M is called semi-symmetric respect to ∇ if R.R = 0 and Ricci semi-symmetric
if R.S = 0, where S is denoting the Ricci tensor field of ∇. Moreover, M is said to be projectively semi-symmetric if R.P = 0,
being P the Weyl projective curvature tensor field of ∇, defined by

P(V,U)Z = R(V,U)Z− 1
n−1

{S(U,Z)V −S(V,Z)U} (2)
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(alternatively, P(V,U,Z,W ) = g(P(V,U)Z,W )), for any U, V, Z,W ∈X (M). For the Riemannian connection it is known
that the semi-symmetry implies the Ricci semi-symmetry (for more details, [4, 14] and references therein can be consulted;
specifically, for the contact geometry case we recommend the papers [9, 11, 15]).

In 1963, Yano [16] introduced the notion of f -structure on a C∞ m-dimensional manifold M, as a non-vanishing tensor field
ϕ of type (1,1) on M which satisfies ϕ3 +ϕ = 0 and has constant rank r. It is known that r is even, say r = 2n. Moreover,
T M splits into two complementary subbundles Imϕ and kerϕ and the restriction of ϕ to Imϕ determines a complex structure
on such subbundle. It is also known that the existence of an f -structure on M is equivalent to a reduction of the structure
group to U(n)×O(s) [1], where s = m−2n. In 1970, Goldberg and Yano [6] introduced globally frame f -manifolds (also
called metric f - manifolds and f .pk-manifolds). A wide class of globally frame f -manifolds was introduced in [1] by Blair
according to the following definition: a metric f -structure is said to be a K-structure if the fundamental 2-form Φ, defined
usually as Φ(X ,Y ) = g(X ,ϕY ), for any vector fields X and Y on M, is closed and the normality condition holds, that is,
[ϕ,ϕ]+2∑

s
i=1 dη i⊗ξi = 0, where [ϕ,ϕ] denotes the Nijenhuis torsion of ϕ . A K-manifold is called an S-manifold if dηk = Φ,

for all k = 1, . . . ,s. The S-manifolds have been studied by several authors (see, for instance, [2, 3, 7, 10]).
The purpose of this paper is to link the three notions commented above by investigating semi-symmetry properties of

S-manifolds endowed with certain quarter-symmetric metric connection naturally related with the S-structure. To this end, in
Section 2 we give a brief introduction about S-manifolds. Section 3 is devoted to obtaining results on the curvature properties
of S-manifold with Riemannian connection. In Section 4 we define a quarter-symmetric metric connection on an S-manifold,
obtaining some general results and, in Section 5, we investigate the curvature and the Ricci tensor fields of such connection.
Specially, we prove that an S-manifold has constant f -sectional curvature with respect to this quarter-symmetric metric
connection if and only if has the same constant f -sectional curvature with respect to the Riemannian connection. Consequently,
the curvature of the quarter-symmetric metric connection is completely determined by its f -sectional curvature. Finally, in
Section 6 we present the results concerning the semi-symmetry properties of the quarter-symmetric metric connection.

2. Preliminaries
A (2n+ s)− dimensional differentiable manifold M is called a metric f -manifold if there exist an (1,1) type tensor field ϕ , s
vector fields ξ1, . . . ,ξs, s 1-forms η1, . . . ,ηs and a Riemannian metric g on M such that

ϕ
2 =−I +

s

∑
i=1

η
i⊗ξi, η

i(ξ j) = δi j, (3)

g(ϕU,ϕV ) = g(U,V )−
s

∑
i=1

η
i(U)η i(V ) (4)

for any U,V ∈X (M), i, j ∈ {1, . . . ,s}. In addition we have:

ϕξi = 0, η
i ◦ϕ = 0, η

i(U) = g(U,ξi). (5)

Then, a 2-form Φ is defined by Φ(U,V ) = g(U,ϕV ) for any U,V ∈X (M) called the fundamental 2-form. In what follows,
we denote by M the distribution spanned by the structure vector fields ξ1, . . . ,ξs and by L its orthogonal complementary
distribution. Then, X (M) = L ⊕M . If U ∈M we have ϕU = 0 and if U ∈L we have η i(U) = 0, for any i ∈ {1, . . . ,s},
that is, ϕ2U =−U .

Moreover, a metric f -manifold is normal if

[ϕ,ϕ]+2
s

∑
i=1

dη
i⊗ξi = 0

where [ϕ,ϕ] is denoting the Nijenhuis tensor field associated to ϕ . A metric f -manifold is said to be an S-manifold if it is
normal and

η
1∧·· ·∧η

s∧ (dη
i)n 6= 0 and Φ = dη

i, 1≤ i≤ s.

Examples of S-manifolds can be found in [1, 2, 7].

Theorem 1. An S−manifold (M,ϕ,ξi,η
i,g) satisfies the condition

(∇∗U ϕ)V =
s

∑
i=1
{g(ϕU,ϕV )ξi +η

i(V )ϕ2U} (6)

for all U,V ∈X (M), where ∇∗ denotes the Riemannian connection with respect to g [2].
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From (6), we have

∇
∗
U ξi =−ϕU (7)

for any U ∈X (M), i ∈ {1, . . . ,s}.

Theorem 2. Let (M,ϕ,ξi,η
i,g) be a (2n+ s)-dimensional S−manifold. Then

R∗(U,V )ξi =
s

∑
j=1
{η j(U)ϕ2V −η

j(V )ϕ2U}, (8)

R∗(U,ξi)V =−
s

∑
j=1
{g(ϕU,ϕV )ξ j +η

j(V )ϕ2U} (9)

for all U,V ∈X (M), i ∈ {1, . . . ,s}, where R∗ denotes the curvature of the Riemannian connection [3].

Corollary 3. Let (M,ϕ,ξi,η
i,g) be a (2n+ s)-dimensional S-manifold. Then

R∗(ξi,U,ξ j,V ) =−g(ϕU,ϕV ), (10)

K∗(ξi,U) = g(ϕU,ϕU), (11)

S∗(U,ξi) = 2n
s

∑
i=1

η
i(U) (12)

for all U,V ∈X (M), i, j ∈ {1, . . . ,s}, where K∗ and S∗ denote respectively the sectional curvature and the Ricci tensor field of
the Riemannian connection [3].

Since, from (11), we have that K∗(ξi,ξ j) = 0, for any i, j ∈ {1, . . . ,s}, an S-manifold can not have constant sectional
curvature. For this reason, it is necessary to introduce a more restrictive curvature. In general, a plane section π on a metric
f -manifold (M,ϕ,ξi,η

i,g) is said to be an f -section if it is determined by a unit vector U , normal to the structure vector fields
and ϕU . The sectional curvature of π is called an f -sectional curvature. An S-manifold is said to be an S-space-form if it has
constant f -sectional curvature c and then, it is denoted by M(c). In such case, the curvature tensor field R∗ of M(c) satisfies
[10]:

R∗(U,V,K,L) =
s

∑
i, j=1
{g(ϕU,ϕL)η i(V )η j(K)−g(ϕU,ϕK)η i(V )η j(L) (13)

+g(ϕV,ϕK)η i(U)η j(L)−g(ϕV,ϕL)η i(U)η j(K)}

+
c+3s

4
{g(ϕU,ϕL)g(ϕV,ϕK)−g(ϕU,ϕK)g(ϕV,ϕL)}

+
c− s

4
{Φ(U,L)Φ(V,K)−Φ(U,K)Φ(V,L)−2Φ(U,V )Φ(K,L)}

for any U,V,K,L ∈X (M).

3. Semi-Symmetry Properties of S-Manifolds Respect to the Riemannian Connection

With respect to the Riemannian connection ∇∗ of an S-manifold (M,ϕ,ξi,η
i,g), we can prove:

Theorem 4. Any semi-symmetric S-manifold (M,ϕ,ξi,η
i,g) is an S-space-form of constant f -sectional curvature equal to s.

Proof. Let U ∈L be a unit vector field. Since (M,ϕ,ξi,η
i,g) is semi-symmetric, then,

(R∗.R∗)(U,ξi,U,ϕU,ϕU,ξ j) = 0

for any i, j ∈ {1, . . . ,s}. Expanding this formula from (1) and taking into account (9), we get R∗(U,ϕU,ϕU,U) = s, which
completes the proof. �
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Observe that, in the case s = 1, by using (10) we obtain that a semi-symmetric Sasakian manifold is of constant curvature
equal to 1. This result was firstly proved by Takahashi (see [15]).

Theorem 5. Let (M,ϕ,ξi,η
i,g) be a Ricci semi-symmetric S-manifold. Then, its Ricci tensor field S∗ respect the Riemannian

connection satisfies

S∗(U,V ) = 2n{sg(ϕU,ϕV )+
s

∑
i, j=1

η
i(U)η j(V )} (14)

for any U,V ∈X (M).

Proof. Since (M,ϕ,ξi,η
i,g) is Ricci semi-symmetric, then, by using (1),

S∗(R∗(U,ξi)ξ j,V )+S∗(ξ j,R∗(U,ξi)V ) = 0

for any U,V ∈X (M) and i, j ∈ {1, . . . ,s}. Now, from (9) and (12) we get the desired result. �

Corollary 6. Any Ricci semi-symmetric Sasakian manifold is an Einstein manifold.

Proof. Considering s = 1 in (14), we deduce S∗(U,V ) = 2ng(ϕU,ϕV )+η(U)η(V ) = 2ng(U,V ) for any U,V ∈X (M). �

For the Weyl projective curvature tensor field, we have the following theorem:

Theorem 7. Any projectively semi-symmetric S-manifold (M,ϕ,ξi,η
i,g) is an S-space-form of constant f -sectional curvature

equal to s.

Proof. Let U ∈L a unit vector field. Then, from (2) and taking into account (9) and (10), we have

(R∗.P∗)(U,ξi,U,ϕU,ϕU,ξ j) = (R∗.R∗)(U,ξi,U,ϕU,ϕU,ξ j) = s−R∗(U,ϕU,ϕU,U)

for any i, j = 1, . . . ,s and this completes the proof. �

4. A Quarter-Symmetric Metric Connection on S-Manifolds

From now on, let M denote a (2n+ s)-dimensional manifold (M,ϕ,ξi,η
i,g). We define a new connection on M given by

∇UV = ∇
∗
UV −

s

∑
j=1

η
j(U)ϕV (15)

for any U,V ∈X (M). It is easy to show that ∇ is a linear connection on M. Moreover, we can prove:

Theorem 8. Let M be an S-manifold. The linear connection ∇ defined in (15) is a quarter-symmetric metric connection on M.

Using (15) and taking into account that the Riemannian connection is free-torsion, the torsion tensor T of the connection ∇

is given by

T (U,V ) =
s

∑
j=1
{η j(V )ϕU−η

j(U)ϕV} (16)

for any U,V ∈X (M). Moreover, by using (15) again, we have, for all U,V,Z ∈X (M) and since ∇∗ is a metric connection,
that:

(∇U g)(V,Z) =
s

∑
j=1

η
j(U){g(ϕV,Z)+g(V,ϕZ)}. (17)

Proof. From (16) and (17) we conclude that the linear connection ∇ is a quarter-symmetric metric connection on M. �
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Example 9. Let us consider R2n+s with its standard S-structure given by [7]

η
α =

1
2

(
dzα −

n

∑
i=1

yidxi

)
, ξα = 2

∂

∂ zα
,

g =
s

∑
α=1

η
α ⊗η

α +
1
4

(
n

∑
i=1

(dxi⊗dxi +dyi⊗dyi)

)
,

ϕ

(
n

∑
i=1

(Xi
∂

∂xi +Yi
∂

∂yi )+∑
α

Zα

∂

∂ zα

)
=

n

∑
i=1

(Yi
∂

∂xi −Xi
∂

∂yi )+
s

∑
α=1

n

∑
i=1

Yiyi ∂

∂ zα

where (xi,yi,zα), i = 1, . . . ,n and α = 1, . . . ,s, are the cartesian coordinates. It is known that, with this structure, R2n+s is an
S-space-form of constant f -sectional curvature c =−3s. If, following [7], we denote

(x1, . . . ,xn,y1, . . . ,yn,z1, . . . ,zs) = (x1, . . . ,x2n+s)

the Christoffel symbols of the quarter-symmetric metric connection defined in (15) are given by

Γ
b
ai = Γ

∗b
ai −

1
2

syiδab; Γ
b
aα = Γ

∗b
aα +

1
2

δab

for any a,b ∈ {1, . . . ,2n+ s}, i ∈ {1, . . . ,n} and α ∈ {1, . . . ,s}, where Γ∗bai and Γ∗baα are denoting the Christoffel symbols of the
Riemannian connection of R2n+s and the not-written symbols are the same as the Riemannian connection ones (see [7] for the
details concerning them).

Corollary 10. Let M be an S-manifold. Then we have

∇U ξi =−ϕU (18)

(∇U η
i)W = g(U,ϕW ) = Φ(U,W ) (19)

for any U,W ∈X (M), i ∈ {1, . . . ,s}.

Proof. First, taking W = ξi in (15), from (7) we have

∇U ξi = ∇
∗
U ξi−

s

∑
j=1

η
j(U)ϕξi =−ϕU.

Now, by using (5), (7) and (15) again:

(∇U η
i)(W ) = Uη

i(W )−η
i(∇UW )

= g(∇∗UW,ξi)+g(W,∇∗U ξi)−η
i(∇UW )

= g(ϕW,U).

�

Theorem 11. Let M be an S−manifold. Then, we have

(∇U ϕ)V =
s

∑
i=1
{g(ϕU,ϕV )ξi +η

i(V )ϕ2U} (20)

for all U,V ∈X (M).

Proof. From (15), we get:

(∇U ϕ)V = (∇∗U ϕ)V −
s

∑
i=1

η
i(V )ϕU.

Therefore, we obtain the result from (6). �
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By using (3) and (20), we easily prove:

Corollary 12. Let M be an S-manifold. Then we have

(∇U ϕ)ξi =−ϕ∇U ξi = ϕ
2U, (21)

∇ξiϕU = ϕ∇ξiU (22)

for all U ∈X (M), i ∈ {1, . . . ,s}.

5. The Curvature of ∇

Let M be an S-manifold endowed with the quarter-symmetric metric connection ∇ defined in (15). From the Formula (3.2) in
[1], denoting by R and R∗ the curvature tensor fields of ∇ and ∇∗, respectively, we have that

R(U,L)W = R∗(U,L)W +
s

∑
i=1

η
i(U){(∇Lϕ)W}−

s

∑
i=1

η
i(L){(∇U ϕ)W} (23)

+2sg(U,ϕL)ϕW

for all U,L,W ∈X (M). From (8), (9) and (23), we get:

Corollary 13. Let M be an S-manifold. Then we have

R(U,V )ξi = 2
s

∑
j=1
{η j(U)ϕ2V −η

j(V )ϕ2U}= 2R∗(U,V )ξi, (24)

R(U,ξi)V =−2
s

∑
j=1

{
g(ϕU,ϕV )ξ j +η

j(V )ϕ2U
}
=−2R∗(U,ξi)V, (25)

R(U,ξ j)ξi = R∗(U,ξ j)ξi−ϕ
2U =−2ϕ

2U, (26)

R(ξi,ξ j)U = R∗(ξi,ξ j)U = 0 (27)

R(ξk,ξ j)ξi = 0, (28)

for all U,V ∈X (M), i, j,k ∈ {1, . . . ,s}.

Corollary 14. Let M be an S-manifold. Then

R(U,V,L,K) = −R(V,U,L,K),

R(U,V,L,K) = −R(U,V,K,L),

R(U,V,L,K) = R(L,K,U,V )

for any U,V,K.L ∈X (M).

Corollary 15. Let M be an S-manifold. Then

R(ϕU,ϕV,ϕL,ϕK) = R∗(U,V,L,K)+2sg(ϕU,V )g(L,ϕK) (29)

for any U,V,L,W ∈L .
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Proof. It is a direct computation from (23) taking into account that [2]

R∗(ϕU,ϕV,ϕL,ϕK) = R∗(U,V,L,K)

for any U,V,L,K ∈L . �

To consider the sectional curvature of the quarter-symmetric metric connection ∇ has no sense because, from (24) we
have that R(ξi,U,U,ξi) = g(R(ξi,U)U,ξi) = 2, while from (26), R(U,ξi,ξi,U) = g(R(U,ξi)ξi,U) = 1, for any unit vector
field U ∈L and any i ∈ {1, . . . ,s}. However, the f -sectional curvature of ∇ is well defined, since, by using (23), we obtain
that, for any unit vector field U ∈L :

R(U,ϕU,ϕU,U) = R∗(U,ϕU,ϕU,U)+2s[g(U,U)]2.

Consequently, taking into account (13), from (23) we prove the following theorem.

Theorem 16. Let M be an S-manifold. Then, the f -sectional curvature associated with the quarter-symmetric metric connection
∇ is constant if and only if the f -sectional curvature associated with the Riemannian connection is constant too. In this case,
both constants are the same and the curvature of ∇ is given by

R(U,V,Z,W ) =
s

∑
i, j=1
{g(ϕ2V,W )η i(U)η j(Z)−g(ϕ2U,W )η i(V )η j(Z) (30)

+2g(ϕV,ϕZ)η i(U)η j(W )−2g(ϕU,ϕZ)η i(V )η j(W )}

+
s

∑
i,k=1
{g(ϕV,W )η i(U)ηk(Z)−g(ϕU,W )ηk(Z)η i(V )}

+2sg(U,ϕV )g(ϕZ,W )

+
c+3s

4
{g(ϕU,ϕW )g(ϕV,ϕZ)−g(ϕU,ϕZ)g(ϕV,ϕW )}

+
c− s

4
{Φ(U,W )Φ(V,Z)−Φ(U,Z)Φ(V,W )−2Φ(U,V )Φ(Z,W )}

for any U,V,Z,W ∈X (M).

With respect to the Ricci tensor field S of the connection ∇ we know that it is a symmetric tensor field. In fact, since
dη i = Φ, for any i ∈ {1, . . . ,s}, from Formulas (3.4) and (3.14) in [1] we deduce that

S(K,L) = S(L,K) (31)

for any K,L ∈X (M), where dim(M) = 2n+ s. Moreover,

S(U,V ) = S∗(U,V )+2s
2n

∑
k=1
{g(ϕU,Ek)g(ϕV,Ek)}+ sg(ϕV,ϕU) (32)

for any U,V ∈X (M). Therefore, by using (12):

Proposition 17. Let M be an S-manifold. Then, we have

S(U,ξi) = sη
i(U)+2n

s

∑
i=1

η
i(U) (33)

for any U ∈X (M), i ∈ {1, . . . ,s}.

Corollary 18. Let M be an S-manifold. Then we have

S(ξ j,ξi) = s+2n (34)

for any i, j = {1, . . . ,s}.

Moreover, we can prove:
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Proposition 19. Let M be an S-manifold. Then

S(ϕU,ϕV ) = S(U,V )−4s
s

∑
i=1

g(U,ϕEi)g(V,ϕEi) (35)

+2s
s

∑
i=1

g(Ei,U)g(V,Ei)−2n
s

∑
i, j=1

η
i(U)η j(V )

for any U,V ∈X (M).

Proof. Let {E1, . . . ,En,ϕE1, . . . ,ϕEn,ξ1, . . . ,ξs} be an f -basis. Then, since from (25),

R(ξ j,ϕU,ϕV,ξ j) = R∗(ξ j,ϕU,ϕV,ξ j)+g(ϕU,ϕV )

for any j ∈ {1, . . . ,s}, then, by using (29), (14) and (32) taking into account that U,V ∈L , we deduce:

S(ϕU,ϕV ) =
n

∑
i=1
{R(Ei,ϕU,ϕV,Ei)+R(ϕEi,ϕU,ϕV,ϕEi)}+

s

∑
j=1

R(ξ j,ϕU,ϕV,ξ j)

=
s

∑
i=1
{R∗(Ei,ϕU,ϕV,Ei)+R∗(ϕEi,ϕU,ϕV,ϕEi)}+

s

∑
j=1

R∗(ξ j,ϕU,ϕV,ξ j)

+2s
s

∑
i=1
{g(Ei,U)g(V,Ei)+g(ϕEi,U)g(V,ϕEi)}+

s

∑
j=1

g(ϕU,ϕV )

= S∗(ϕU,ϕV )+2s
s

∑
i=1
{g(Ei,U)g(V,Ei)+g(ϕEi,U)g(V,ϕEi)}+ sg(ϕU,ϕV )

= S(U,V )−4s
s

∑
i=1

g(U,ϕEi)g(V,ϕEi)+2s
s

∑
i=1

g(Ei,U)g(V,Ei)−2n
s

∑
i, j=1

η
i(U)η j(V ).

But, from (25) again,

R(ξ j,U,V,ξ j) = 2(∇U ϕ)V

for any j ∈ {1, . . . ,s} and this completes the proof. �

Corollary 20. Let M be an S-manifold. Then we have

S(X ,Y ) = S(ϕX ,ϕY )+4n
s

∑
i=1

η
i(X)η i(Y ) (36)

for all U,V ∈X (M).

Proof. We can put

U =U0 +
s

∑
i=1

η
i(U)ξi and V =V0 +

s

∑
j=1

η
j(V )ξ j

where U0,V0 ∈L . Then, from (33) and (34):

S(U,V ) = S(U0,V0)+4n
s

∑
i, j=1

η
i(U)η j(V ). (37)

Now, by using (35), S(U0,V0) = S(ϕU0,ϕV0) = S(ϕU,ϕV ) and the proof is completed. �
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6. Semi-Symmetry Properties of an S-Manifold with Respect to ∇

For the quarter-symmetric metric connection defined in (15) on an S-manifold M we can prove:

Theorem 21. Let M be a (2n+ s)-dimensional S-manifold, n≥ 1.If M is semi-symmetric respect to the quarter-symmetric
metric connection ∇ then

R(U,ϕU,ϕU,U) =−2s

for any U is unit vector field on M.

Proof. If R.R = 0, then, from (1) we deduce that

R(R(U,ξi)U,ϕU,ϕU,ξ j)+R(U,R(U,ξi)ϕU,ϕU,ξ j) (38)

+R(U,ϕU,R(U,ξi)ϕU,ξ j)+R(U,ϕU,ϕU,R(U,ξi)ξ j) = 0

for any unit vector field U ∈ X (M) and any i, j = 1, . . . ,s. By using (25) and (26), a direct expansion of (38) gives
R(U,ϕU,ϕU,U) =−2s. �

Moreover, we have:

Theorem 22. Let M be a (2n+s)-dimensional S-manifold, n≥ 1. If M is Ricci semi-symmetric respect to the quarter-symmetric
metric connection ∇ then

S(Y,V ) = 2nsg(ϕY,ϕV )+4n
s

∑
α,β=1

η
α(Y )ηβ (V )

for all Y, V ∈X (M).

Proof. We take X = ξi and U = ξ j.. Then, from (1) we have that

R(ξi,Y ).S = S(R(ξi,Y )ξ j,V )+S(ξ j,R(ξi,Y )V ) (39)

for any unit vector field Y ∈X (M) and any i, j ∈ {1, . . . ,s}. Now, by using (26) and (33)

S(R(ξi,Y )ξ j,V ) =−2S(Y,V )+4n
s

∑
α,β=1

η
α(Y )ηβ (V ) (40)

for all V ∈X (M). Next, from (25) and (33) we have

S(ξ j,R(ξi,Y )V ) = 4nsg(ϕY,ϕV ). (41)

The proof is completed. �

Due to the above results, it is natural to consider the Weyl projective curvature tensor field of ∇ (see (2)). For this tensor
field we obtain the following theorem.

Theorem 23. Let M be a (2n+ s)-dimensional S-manifold M with n≥ 1. If M is projectively semi-symmetric respect to the
quarter-symmetric metric connection ∇ then

S(Y,V ) = 2nsg(ϕY,ϕV )+4n
s

∑
α,β=1

η
α(Y )ηβ (V )

for all Y, V ∈X (M).
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Proof. From (1) we have that

(P(X ,Y ).S)(U,V ) = P(X ,Y ).S(U,V )−S(P(X ,Y )U,V )−S(U,P(X ,Y )V ) (42)

If P(X ,Y ).S = 0, then we have

S(P(X ,Y )U,V )+S(U,P(X ,Y )V ) = 0.

Therefore, if we calculate the latter equation we can obtain;

S(R(X ,Y )U,V )+S(U,R(X ,Y )V ) = 0.

The proof is completed from the Theorem 6.2. �

7. Conclusions
A quarter-symmetric metric connection is defined on S−manifolds. Some properties of the curvature and the Ricci tensor
fields of such connection are obtained. In addition, an S-manifold has constant f -sectional curvature with respect to this
quarter-symmetric metric connection if and only if has the same constant f -sectional curvature with respect to the Riemannian
connection. Consequently, the curvature of the quarter-symmetric metric connection is completely determined by its f -sectional
curvature. This topic is open and there are many issues to work on.
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