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Abstract

This paper considers the existence and uniqueness of an asymptotic solution of a monotone semilinear parabolic system in divergence form
with measure data. The proof of the main result is probabilistic, which are those of stochastic analysis, Markov process and primarily
Backward Stochastic Differential Equations (BSDEs). The probabilistic solution to the system is considered as some generalization of
the notion of renormalized (or entropy) solution. It is shown for a Cauchy-Dirichlet problem of a monotone semilinear parabolic system
in divergence form with measure data, there exists a unique probabilistic solution of the system under a mild integrability condition on the data.

Keywords: Asymptotic Solution; BSDEs; Measure data; Parabolic; Semilinear

2010 Mathematics Subject Classification: 35A01, 35A02, 35K41, 35K58, 35R60, 60H15, 60J25

1. Introduction

The study of the existence of the solution of a semilinear parabolic equation is of great interest in the mathematical society due to several
problems that appear in the physical sciences, chemical sciences, biology, engineering and applied mathematics which leads to mathematical
models described by semilinear parabolic equations. Noticeable among these models are the Brusselator model describing some chemical
reaction with two components; the Lokka-Volterra system, a competition model for two species; the Field-Noyes equation used to model the
famous Belousou-Zhabotinsky reaction in chemical kinetics; the flame propagation model; model equations describing the morphogenesis of
pattern. others are the Schnakenberg system; Fitz-Hugh-Nagumo equations; Hodgkin-Huxley equations.
Asymptotic analysis has been discussed in many types of problems, including the difference equations, singular differential equations,
integral equations and special functions [1, 2, 3, 4, 5, 6, 7, 8]. It is noted that many of these differential equations and difference equations
whose exact solutions are now known but can be approached via asymptotic analysis. Series solutions of the problems are mostly divergent,
and therefore asymptotic analysis techniques are needed to evaluate the divergent representations of these problems.
Suppose E ⊂Rd , d ≥ 2 is an open bounded domain, the Cauchy-Dirichlet problem for a monotone semilinear uniformly elliptic second-order
parabolic system in divergence form with measure data is of the following form:

∂uk

∂ t
−Ltuk = f k(t,x,u)+µ

k in ET k=1,...,N

u|∂E(t, .) = 0 t ∈ [0,T )

u(0, .) = ϕ on E

(1.1)

Where ET ≡ [0,T ]×E and µk,k = 1, ...,N are bounded soft measures on R+×E i.e bounded Borel measures absolutely continuous with
respect to the parabolic capacity determined by the operator:

Lt =
1
2

d

∑
i, j=1

∂

∂x j

(
ai, j(t,x)

∂

∂xi

)
(1.2)

Its coefficient a : ET → Rd ⊗Rd is a measurable symmetric matrix-valued function such that for some γ ≥ 1

γ
−1|ξ |2 ≤

d

∑
i, j=1

ai, j(t,x)ξiξ j ≤ γ|ξ |2, ξ ∈ Rd (1.3)
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f : ET ×RN → RN is a continuous monotone vector field. In the case of (1.1) being a scalar, results in an equation with a local operator of
the form:

L =
1
2

d

∑
i, j=1

∂

∂x j

(
ai, j

∂

∂xi

)
(1.4)

The above system (1.1) is an evolution equation describing a reaction-diffusion problem that arises naturally in systems consisting of many
interacting components and is widely used to describe pattern-formation phenomena in varieties of biological, chemical and physical systems.
One of the major problems one faces when dealing with a system of (1.1) is to give a proper definition of a solution that guarantees the
existence of only one solution. One possible attempt made, was to define a solution by a limit of approximation. The existence of a
distributional solution so-called solution obtained by the limit of approximation (SOLA)was proved in [9]. [9] constructed an example of a
discontinuous coefficient ai j and u is the distributional solution with data µ = 0 and f = 0 and u having the property that u ∈W 1,q

0 (E) for
every q < d/d−1. Since it was known that in general, one cannot expect that the solution belongs to the space W 1,q

0 (E) with q > d/d−1,
the problem of the definition of a solution to (1.1) ensuring uniqueness arose.
However, [10] provided a solution to the problem by defining the solution in a duality sense in the case of a linear operator. Since his
intervention, the theory of scalar equation with measure data and local operators (linear and nonlinear of Leray-Lion type) has attracted
considerable attention for a result of an equation with measure data. According to [11], u ∈ L1(ET ) is a duality solution of the scalar form of
(1.1) if

−
∫

E
ϕw(0)dx+

∫
ET

ugdxdt =
∫

ET

wdµ (1.5)

for every g ∈ L∞(ET ) and w is the solution to the backward problem
−wt −div(a∗(t,x)∇w) = g in (0,T )×E = ET

w(T,x) = 0 t ∈ E

w(t,x) = 0 on (0,T )×∂E

(1.6)

where a∗(t,x) is the transpose of a(t,x). If f ∈ L1(ET ) then there exists a unique duality solution.
But for the nonlinear operator (L = ∆α with α ∈ (0,1])of the scalar form of (1.1), the existence of a distributional solution so-called solution
obtained by the limit of approximation (SOLA) was proved in [12, 13, 14]. [12] examined the Dirichlet problem so that a function u has the

property that u ∈ Lq(0,T,W 1,q
0 (E)) for every q <

p(N +1)−N
N +1

with f ∈M (ET ),ϕ ∈M (E) and showed that u ∈C([0,T ];H−s(E)) for s

large enough is a distributional solution of Dirichlet scalar form of (1.1) with a being a non-linear monotone operator of the form a(t,x,∇u).
Also, [13] presented existence result of a distributional formulation of a scalar form of (1.1) with f = 0 for which ϕ and µ are bounded
measures on ET by approximating the equation with problems having regular data and using a compactness argument, so that a function
u ∈ L1(0,T ;W 1,1

0 (E)) is a weak solution if a(t,x,u,∇u) ∈ L1(ET )
N and

−
∫

ET

u
∂φ

∂ t
dxdt +

∫
ET

a(t,x,u,∇u) . . .∇φdxdt =
∫

ET

φdµ (1.7)

for every φ ∈ C∞(ĒT ). In [14], uniqueness result of the existed result presented in [13] in the case where µ is a function in L1 were
shown. But this distributional formulation (SOLA) is not enough to ensure uniqueness due to the lack of regularity of the solution when
the coefficient of the matrix is discontinuous as cited in [9], hence the problem of the definition of a solution to (1.1) ensuring uniqueness
emerged. Nevertheless, the notion of the renormalized solution was first introduced in [15] for the study of the Boltzmann equation
and was later adapted to the study of some nonlinear problems which guaranteed uniqueness. [16] proved existence and uniqueness
result of the renormalized solution. A measurable u defined on ET is a renormalized solution if Tk(u) ∈ L2(0,T ;H1

0 (E)), for any k > 0,
u ∈ L∞(0,T ;L1(E))∫
{(x,t):n≤|u(x,t)|≤n+1}

|∇u|2dxdt→ 0 as n→ ∞ (1.8)

and if for any s ∈C∞(R) such that S′ ∈C∞
0 (R) (i.e S′ has a compact support), then

∂S(u)
∂ t
−div[S′(u)A∇u]+ s

′′
(u)A∇u+dw[S′(u)φ(u)]−S

′′
(u)φ(u)∇u = f S′ in D′(ET ) (1.9)

and

S(u)(t = 0) = S(u0) in E (1.10)

where D′(ET ) is the derivative of an L∞(ET ) function. Also, in [17], the existence and uniqueness of a renormalized solution for which the
data f ,g and ϕ respectively belong to L1(ET ),(Lp1

(ET ))
N and L1(E) was proved. Furthermore, the definition of a renormalized solution

involving a more general nonlinear operator Lt of Leray-Lions type but with f not depending on u has been introduced in [18] for which
ϕ ∈ L1(E) and µ ∈M0(ET ) for every µ which does not charge the set of zero capacity such that there exists a unique renormalized solution.
[19] thereafter extended the notion of renormalized solution for general measure data µ and gave a definition of renormalized solution
that does not depend on the decomposition of the regular part of µ under a certain assumption and proved the uniqueness of the solution.
Likewise, in [20, 21, 22, 23] the framework of a renormalized solution is used.
Concurrently, the notion of entropy solutions has been proposed by [24] for the nonlinear elliptic problems. They introduced the concept
of entropy solution, derived the basic apriori estimates on the measure of their level set and established the existence and uniqueness of
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entropy solution for the Dirichlet elliptic problem. [25], thereafter, extended the notion of an entropy solution to a parabolic equation and
then established the existence and uniqueness of the entropy solution. u ∈C([0, t];L1(E)) is an entropy solution for the scalar form of (1.1)
with µ = 0 such that for all k > 0,Tk(u) ∈ Lp(E;W 1,p

0 (E)) and∫ T

0

∫
E

Tk(u−φ)(T )−
∫

E
Tk(ϕ−φ(0))+

∫ T

0
〈φE ,Tk(u−φ)〉+

∫ T

0

∫
E

a(t,x)∇Tk(u−φ)≤
∫ T

0

∫
E

f Tk(u−φ) (1.11)

∀Lp(E : W 1,p
0 (E))∩L∞(ET )∩C([0,T ];L1(E)) such that φt ∈ LP′(E;W−1,p′) so that if f ∈ L1(ET ) and ϕ ∈ L1(E) then, there exists a unique

entropy solution.
The notion of renormalized solution and entropy solution for the parabolic problem (1.1) in scalar form turns out to be equivalent as proved
in [26]. The main tool of the uniqueness proof in the case of entropy and the renormalized solution was the fact that the truncates of the
solutions belong to the energy space W 1,p

0 (E) as well as an estimate∫
E
|∇Tk(u)|2 ≤ k‖µ‖M(E)

on the decay of the energy of the solution on the sets where the solution is large which is true only if the datum µ belongs to L1(E)+W−1,p′(E)
To cover a larger class of operators, another possible attempt made was to define a solution via a non-linear Feynman-Kac formula. This
stochastic approach to the scalar form of (1.1) has been developed in [27] which was defined as: a quasi-continuous function u : E→ R such
that

u(x) = Ex

(∫
ζ

0
f (Xt ,u(Xt))dt +

∫
ζ

0
dAµ

t

)
(1.12)

with X= (X ,Px) being a time-space Markov process with lifetime ζ ,Ex denotes the expectation with respect to Px and Aµ is the additive
functional of X associated with µ in the Revuz sense. It was proved in [27, 28, 29, 30, 31] that under mild integrability assumptions on the
data, there exists a unique probabilistic solution of (1.1) when N = 1. The stochastic approach is simpler to investigate than the distributional
formulation because the direct analysis of the distributional equation would generate many technical difficulties in using the fine topology
while the stochastic approach avoids them. However, in [32], it was shown that the renormalized definition of the solution is equivalent to the
probabilistic definition considered in [33] and shows that under mild integrability assumption on the data with f satisfying monotonicity
condition, a quasi-continuous function u is a renormalized solution if and only if u can be represented by a suitable nonlinear Feynman-Kac
formula.
When studying system (1.1) with f satisfying monotonicity condition〈

f (t,x,y)− f (t,x,y′),y− y′
〉
≤ α|y− y′|2 (1.13)

and the growth condition

f (., .,0) ∈ L1(ET ), ∀r>0,y∈RN R0,T

(
sup
|y|≤r
| f (., .,y)|

)
< ∞ m1-almost surely (in short a.s) (1.14)

there’s difficulty because showing that fu ≡ f (t,x,u) belong to L1(ET ) under growth condition is, in general, complicated and u ∈ T 0,1
2 is

not certain which has to do with the weaker regularity of the solution of (1.1) and u, in general, does not admit the representation

u(s,x) = E ′s,x

∫
ζτ

0
dAθ (1.15)

for some Addictive Functional (AF) of X′, which implies that the integral on the right-hand side of (1.16) does not exist.

u(s,x) = Es,x

(
1{ζ s>T}ϕ(XT )+

∫ T∧ζ s

s
fu(θ ,Xθ )dθ +

∫ T∧ζ s

s
dAµ

θ

)
(1.16)

The above comment shows that for systems, neither the distributional definition nor the probabilistic via nonlinear Feynman-Kac formula is
applicable. For these reasons in [34], more general than in [27, 28], a probabilistic definition of a solution of the elliptic form of (1.1) is
adopted. It uses the representation of u in terms of some backward stochastic differential equation (BSDE)

Y s,x
t = 1{ζ>Tτ}ϕ(XTτ

)+
∫

ζτ

t
f (Xθ ,Y

s,x
θ

,Zs,x
θ
)dθ +

∫
ζτ

t
dAµ

θ
−
∫

ζτ

t
Zs,x

θ
dBθ (1.17)

In the case f is integrable, the representation reduces to (1.16).
The stochastic approach using BSDE (1.17) only requires quasi-integrability of f (., .,u) by making essential use of the Markov process X
associated with Lt and therefore called stochastic Sobolev space (some space wider than T 0,1

2 ).

The manuscript is organized as follows: In section 2, a semilinear parabolic equation is introduced including notations, definitions, useful
results and useful tools employed in the course of this work. Section 3 comprises some qualitative properties of the solution of the system
in the stochastic Sobolev space using the theory of backward stochastic differential equations (BSDEs). And ends with section 4 of the
conclusion
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2. Preliminary Results and Mathematical background

2.1. Notations

The following notations used in this work are as follows:

(Ω,F ,P) the probability space
Ft filtration
B standard d-dimensional Ft -Brownian motion
A the set of all Ft progressively measurable real-valued processes
V the subspace of A consisting of all increasing càdlàg processes Y such that Y0 = 0
Vc the subspace of A consisting of all increasing continuous processes Y such that Y0 = 0

M the space of all processes Z ∈A such that P
(∫ T

0
|Zt |2dt < ∞

)p/2
= 1

D the space of all càdlàg processes in A
S the space of all continuous processes in A

D p, p > 0 the space of all processes Y ∈D such that E sup
t≥0
|Yt |p < ∞

S p, p > 0 the space of all processes Y ∈S such that E sup
t≥0
|Yt |p < ∞

T the set of all finite Ft -stopping time
∆Yt càdlàg process Y such that ∆Yt = Yt −Yt−, Yt− = lim

s↗t
Ys

|A| trace AA∗, where A is an N×d dimensional real matrix
x̂ sĝn(x) = 1{x 6=0}

x
|x|

, x ∈ RN

Dq⊗M q the tensor product of Dq and M q

H1
0 (H

−1) Hilbert space (dual of Hilbert space)
R+ [0,∞)

Ω =C(R+;Rd) the space of continuous Rd-valued function R+

X the canonical process on Ω

F 0
s,t σ(Xu,u ∈ (s, t))

Fs,∞ the completion of F 0
s,t with respect to P

P the family of Ps,µ : µ is a measure on B(Rd)

Ps,µ (·)
∫
Rd

Ps,x(·)µdx

Fs,t completion of F 0
s,t in Fs,∞ with respect to P

p the fundamental solution for the operator Lt
X time-inhomogeneous Markov process

X′ time-homogeneous Markov process with respect to the filtration F ′t associated with the operator
∂

∂ t
Ω′ R+×Ω

P′s,x(B) Ps,x({ω ∈Ω : (s,ω) ∈ B})
Xt(s,w) (s+ t,Xs+t(ω)) t ≥ 0

F ′t
0

σ(Xu,u < t)
F ′∞

0
σ(Xu,u < ∞)

F ′∞ completion of F ′∞
0 with respect to P ′

P ′ the family P′µ : µ is a probability measure on R+×Rd

F ′t completion of F ′t
0 in F ′∞ with respect to P ′

p′(t,(s,x),Γ) transition density
µ Radon measure on E

M0(E) the set of all measures on E
M0 the set of all measures on R+×E

M0,b(E) the set of all bounded measures on E
M0,b the set of all bounded measures on R+×E

W the space of all u ∈ L2(R+;H1
0 (E)) such that

∂u
∂ t
∈ H−1(E))

Es,x(E ′s,x) expectation with respect to Ps,x(P′s,x)
m1 Lebesgue measure on R+×Rd

ζ s inf{t ≥ s,Xt ∈ ∂E}, the first exist of (X ,Ps,x) from E
p′E transition density of the process X′ killed on existing R+×E
Ex expectation with respect to Px
Aµ additive functional corresponding to a positive bounded soft measure µ

pE transition density of the process X killed on existing E
GE(x,y) the Green function for E
|E| Lebesgue measure on E
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W 1,p(E), 1≤ p≤ ∞Sobolev spaces
W 0,1(XET ) stochastic Sobolev space of functions depending on time

Lq the dual space of Lp space
Tk(u) truncator operator
∂E the boundary of E

τk inf
{

t ≥ 0 :
∫ t

0
|Zs|2ds≥ k

}
∇Xu the stochastic gradient of u
a∨b max{a,b}
a∧b min{a,b}
a+ max{0,a}
a− max{0,−a}
N set of natural numbers
N∗ N\{0}
R set of real numbers

C∞
c (Rd) space of functions f : Rd → R of class C∞ with compact support.

Cc(Rd) space of continuous functions f : Rd → R with compact support.

2.2. Basic Tools

This section consists of some important lemma, and definitions, used mainly for the proof of qualitative properties of the solution in the next
section.

2.2.1. Itô Tanaka Formula

The following multidimensional version of the Itô Tanaka formula will be frequently used, which serves as our basic tool in this work.

Lemma 2.1 ([35]). Let {Kt}t∈[0,T ] and {Ht}t∈[0,T ] be two progressively measurable processes with values respectively in Rk and Rk×d such

that P-a.s
∫ t

0

(
|Ks|+ |Hs|2

)
ds <+∞. Let X be a progressively measurable process such that Xt = X0 +

∫ t

0
Ksds+

∫ t

0
HsdBs

Then, for any p≥ 1, gives

|Xt |p = |X0|p + p
∫ t

0
|Xs|p−1 〈X̂s,Ks

〉
ds+ p

∫ t

0
|Xs|p−1 〈X̂s,HsdBs

〉
+

p
2

∫ t

0
|Xs|p−21Xs 6=0

{
(2− p)

(
|Hs|2−

〈
X̂s,HsH∗s X̂s

〉)
+(p−1)|Hs|2

}
+1p=1At

(2.1)

where {At}t∈[0,T ] is a continuous increasing process with A0 = 0 which increases only on the boundary of the random set {t ∈ [0,T ],Xt = 0}

Corollary 2.2 ([35]). Under the assumption of Lemma (2.1) for every 0 < t ≤ T and p≥ 1 then

|Xt |p + c(p)
∫ T

t
|Xs|p−21{Xs 6=0}|Hs|2 = |XT |p + p

∫ T

t
|Xs|p−1 〈X̂s,Ks

〉
ds− p

∫ T

t
|Xs|p−1 〈X̂s,HsdBs

〉
(2.2)

where c(p) = p[(p−1)∧1]/2

2.3. Basic Definitions

The following definitions are important and serve as basic tools in this work.

Definition 2.3. A measurable function u is a quasi-continuous if the process t→ u(Xt) is continuous on [0,ζτ ],P′s,x-almost surely (a.s for

short) for quasi-every (q.e for short) (s,x) ∈ ET .

Definition 2.4. A measurable function u is a quasi-càdàg if the process t→ u(Xt) is càdàg on [0,ζτ ],P′s,x-a.s for q.e (s,x) ∈ ET .

Definition 2.5. A Borel measurable function F on E is quasi-integrable if for q.e (s,x) ∈ F

Ps,x

(∫
ζ∧T

0
| f (Xθ |dθ < ∞, T > 0)

)
= 1 (2.3)

By qL1, it denotes the set of all quasi-integrable functions on E.

Definition 2.6. We say that a process Y is of class (D) if Y ∈A and the family {Yτ ,τ ∈ T } where T is the set of all finite Ft -stopping

times, are uniformly integrable.

Definition 2.7. A measurable function u on ET is of class (RD) if for q.e (s,x) ∈ ET , the process u(X) on [0,ζτ ] is of class (D) under the

measure P′s,x.



16 Konuralp Journal of Mathematics

Definition 2.8. A Borel measurable function u on ET is of class (RB) if for q.e

(s,x) ∈ ET , P′s,x

(
ess sup

θ∈[0,ζτ ]

|u(Xθ )|< ∞

)
= 1 (2.4)

which implies that every quasi-cadlag function belongs to the class (RB).

Definition 2.9. A Borel measurable function u on ET is of class (RM) if for q.e (s,x) ∈ ET , P′s,x

(∫
ζτ

0
|u(Xθ )|< ∞

)
= 1.

Definition 2.10. Stochastic Sobolev space of functions depending on time (W 0,1(XET )) denote the set of all u ∈ RM for which there exists

a sequence {un} ⊂C∞
c (ET ) such that for q.e (s,x) ∈ ET ,

∫
ζτ

0
|(un−u)(Xt) |2dt→ 0 in probability P′s,x as n→ ∞ (2.5)

and∫
ζτ

0
|∇(un−um)(Xt) |2dt→ 0 in probability P′s,x as n,m→ ∞ (2.6)

Definition 2.11. Let un,u ∈W 0,1(XET ).un→ u in W 0,1(XET ) if un→ u in RM and ∇Xun→ ∇Xu in RM.

Definition 2.12. The parabolic capacity of an open set u⊂R+×E denoted as cap(u) define as cap(u) = inf{‖u‖W : u ∈W, u≥ 1u in R+×
E}.

Definition 2.13. The parabolic capacity of an open set u ⊂ E denoted as capN(u) define as capN(u) = inf{‖u‖H1
0 (E)

: u ∈ H1
0 (E), u ≥

1 on u almost everywhere (a.e for short) in E}.

Definition 2.14. Some properties are satisfied for quasi-every (q.e for short) x ∈ E (respectively, (s,x) ∈ R+×E) if it is satisfied except for

some Borel subset of E (respectively, R+×E) of capN (respectively, cap) capacity zero.

Definition 2.15. Let µ be a Radon measure on E (respectively, R+×E), a measure µ is soft if µ charge no set of capN (respectively, cap)

capacity zero.

Definition 2.16. A pair (Y s,x,Zs,x) consisting of an RN valued process Y s,x and Rd×RN -valued process Zs,x is a solution of BSDEs,x(ϕ,E, f +

dµ) if Y s,x,Zs,x are {F ′t } progressively measurable, Y s,x is càdlàg,

t 7→ f (Xt ,Y
s,x

t ,Zs,x
t ) ∈ L1(0,ζτ ),P′s,x-a.s, P′s,x

(∫
ζτ

t
|Zs,x

θ
|2dθ < ∞

)
= 1

and

Y s,x
t = 1{ζ>Tτ}ϕ(XTτ

)+
∫

ζτ

t
f (Xθ ,Y

s,x
θ

,Zs,x
θ
)dθ +

∫
ζτ

t
dAµ

θ
−
∫

ζτ

t
Zs,x

θ
dBθ , t ∈ [0,ζτ ], P′s,x-a.s (2.7)

Definition 2.17. Consider the following systems:
∂uk

∂ t
−Ltuk = f k(x,u)+µ

k in ET k=1,...,N

u|∂E(t, .) = 0 t ∈ [0,T )

u(0, .) = ϕ on E

(2.8)

and
∂uk

∂ t
+Ltuk =− f k(x,u)−µ

k in ET k=1,...,N

u|∂E(t, .) = 0 t ∈ [0,T )

u(T, .) = ϕ on E

(2.9)

(1) A measurable function u : ET → RN is a solution of (2.9) if

(a) (t,x) 7−→ f (t,x,u(t,x)) ∈ qL1(ET ),u ∈W 0,1(XET )

(b) u is of class (RD)

(c) For q.e (s,x) ∈ ET ,

u(Xt) = 1{ζ>Tτ}ϕ(XTτ
)+

∫
ζτ

t
f (Xθ ,u(Xθ ))dθ +

∫
ζτ

t
dAµ

θ
−
∫

ζτ

t
σ∇Xu(Xθ )dBθ t ∈ [0,ζτ ], P′s,x-a.s (2.10)
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(2) A measurable function u : ET → RN is a solution of system (2.8) on [0,T ], if ū(t,x) = u(T − t,x),(s,x) ∈ ET is a solution of (2.9)

with fu replaced by f̄u, and µ replaced by µ̄ for which µ ∈M0,b(ET ) such that
∫

ET

η̄dµ =
∫

ET

ηdµ, η ∈ Bb(ET ) i.e.
∂ ūk

∂ t
+LT−t ūk =− f̄ k(t,x, ū)− µ̄

k ◦ ι
−1
T in ET k=1,...,N

ū|∂E(t, .) = 0 t ∈ [0,T )

ū(T, .) = ϕ on E

(2.11)

where ιT : ET → ET , ιT (t,x) = (T − t,x)

Remark 2.18. We have the following remarks:

(1) The integral equation (2.10) is the transformation of the partial differential equation (2.9).

(2) From Definition 2.16 and Definition 2.17, it follows that if u is a solution of (2.9) then for q.e (s.x) ∈ ET , the solution of the Backward

Differential Equation (BSDE) (Y s,x,Zs,x) = (u(Xt),σ∇X(Xt)), t ∈ [0,ζτ ] is a solution of (2.9).

2.3.1. Basic Assumptions

The following hypotheses are considered in this work and are classified into parts as follows:

(A1) E
(
|ξ |p +

(∫
σ

0
| f (t,0)|dt

)p
+ |A|pσ

)
<+∞

(A2) There is µ ∈ R such that < y− y′, f (t,y)− f (t,y′)>≤ µ|y− y′|2 for every t ≥ 0, y,y′ ∈ RN and a.e (t,x) ∈ ET

(A3) For every t ≥ 0, y 7−→ f (t,y) is continuous

(A4) For every r > 0, E
∫

σ

0
sup
|y|≤r
| f (t,y)|dt < ∞

(B1) f (· , · ,y) is measurable for every y ∈ RN and f (t,x, ·) is continuousfor a.e(t,x) ∈ ET

(B2) There is α ∈ R such that < f (t,x,y)− f (t,x,y′),y− y′ >≤ α|y− y′|2 for every y,y′ ∈ RN and a.e (t,x) ∈ ET

(B3) f (· , · ,0) ∈ L1(ET ),µ ∈M0,b(ET ),ϕ ∈ L1(E)

(B4) ∀r > 0,y ∈ RN , R0,T

(
sup
|y|≤r
| f (· , ·y)|

)
< ∞,m1- a.e.

Remark 2.19. f satisfying (B2) is the monotonicity condition while f satisfying (B3) and (B4) is the growth condition of f .

2.3.2. Backward Stochastic Differential Equations

The theory of nonlinear backward stochastic differential equations (BSDEs for short) was developed by [36] from which there exist a unique
and adapted square integrable solution to a BSDE of the type

yt = ξ +
∫

σ

t
f (s,ys,zs)−

∫
σ

t
zsdBs, t ∈ [0, t] (2.12)

provided the function f (called the generator) is Lipchitz in both variables y and z, ξ and ( f (t,0,0))0≤t≤T are square integrable.
The theory of BSDEs is very important because of its connection with mathematical finance, stochastic control, partial differential equation,
stochastic geometry etc.
Some useful results from [29] that will be helpful in the proof of the existence of a solution for BSDE. Before starting them, The following
hypothesis is needed for the next three results.

(A) There is µ ∈ R and a nonnegative progressively measurable process { ft , t ≥ 0} such that 〈ŷ, f (t,y)〉 ≤ ft +µ‖y‖, ∀(t,y) ∈ R+×RN

Result 2.20. Assume (A). Let (Y,Z) be a solution of BSDEs,x(ξ ,σ , f +dA)

Yt = ξ +
∫

σ

t
f (s,Ys)ds+

∫
σ

t
dAs−

∫
σ

t
ZsdBs, 0≤ t ≤ σ P-a.s (2.13)

If Y ∈D p and
(∫

σ

0
ftdt
)p

+E|A|pσ < ∞ for some p > 0, then Z ∈M p and there exist Cp depending only on p such that for every a≥ µ

E
(∫

σ

0
e2at |Zt |2dt

)p/2
≤CpE

(
sup

0≤t≤σ

eapt |Yt |p +
(∫

σ

0
eat ftdt

)p
+

(∫
σ

0
eatd|A|t

)p
)

(2.14)

Result 2.21. Assume (A). Let (Y,Z) be a solution of BSDE (2.13), If Y ∈D p and
(∫

σ

0
ftdt
)p

+E|A|pσ < ∞ for some p > 1, then Z ∈M p

and there exist Cp depending only on p such that for every a≥ µ

E

(
sup

0≤t≤σ

eapt |Yt |p +
(∫

σ

0
e2at |Zt |2dt

)p/2
)
≤CpE

(
eapσ |ξ |p +

(∫
σ

0
eat ftdt

)p
+

(∫
σ

0
eatd|A|t

)p)
(2.15)
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Result 2.22. Assume that 〈 f (t,y),y〉 ≤ c|y|2,y ∈ RN , t ≥ 0 for some c ≥ 0 and ‖ξ‖∞ + c+ ‖|A|σ‖∞ ≤ r < ∞. If (Y,Z) is a solution of

BSDE (2.13) such that Y is of class (D), then ‖Y‖∞ ≤ r.

Result 2.23. Assume that (B1)-(B4) are satisfied with α ≤ 0. Let n < m and δYt = Y m
t −Y n

t , δZt = Zm
t −Zn

t . Then for every q ∈ (0,1),

E ′s,x sup
t≥0
|δYt |q + εE ′s,x

(∫
ζ

0
|δZθ |2dθ

)q/2

≤ (1−q)−1(1+2εCq)E ′s,x
(
|ϕ(Xn−s)|q1{ζ>n−s}+ |ϕ(Xm−s)|q1{ζ>m−s}

+

(∫
ζ

n
d|Aµ |θ

)q

+

(∫
ζ

n
| f (Xθ ,0)|dθ

)q) (2.16)

for ε = 0,1 where Cq depend only on q

2.3.3. Stochastic Sobolev Space

Stochastic Sobolev space has been introduced in [34] which makes essential use of the Markov process X associated with operator L defined
by

L =
d

∑
i, j=1

∂

∂x j

(
ai j

∂

∂xi

)
(2.17)

in considering an elliptic system with measure data, there was a problem encountered as to whether the solution or its gradient belongs to
W 1,q

0 (E) for q≥ 1 which is related to the lack of integrability stochastic Sobolev space was then introduced to overcome this difficulty.
This subsection covers some basic results attributed to stochastic Sobolev space, which will be referred to in the next section.
In [34], it is proved that every u ∈W 0,1 (XET

)
, there exists a unique a.e function v ∈B(ET ) such that for every {un} ⊂C∞

c (ET ) satisfying
(2.5) and (2.6),∫

ζτ

0
‖∇un(Xt)− v(Xt)‖2dt→ 0 in probability P′s,x as n→ ∞ (2.18)

for q.e (s,x) ∈ ET . Given u ∈W 0,1(XET ), ∇Xu is the unique function v satisfying (2.5). From the construction of ∇Xu, it follows that
∇Xu = ∇u a.e if u ∈ L2(0,T ;H1

0 (E)), un→ u in RM if (2.5) holds for q.e (s,x) ∈ ET , Tk(u)→ u in RM.

Result 2.24. If u ∈W 0,1(XET ),r ∈C1(R) and there is c > 0 such that ‖r′(t)‖ ≤ c for t ∈R, then r(u) ∈W 0,1(XET ) and ∇X(r(u)) = r′∇Xu

Result 2.25. Let k ∈ R and u ∈W 0,1(XET ). Then, u∧ k,u∨ k ∈W 0,1(XET ) and

∇X(u∧ k) = 1(−∞,k)(u)∇Xu = 1(−k,k](u)∇Xu a.e

∇X(u∨ k) = 1(k,∞)(u)∇Xu = 1[k,∞)(u)∇Xu a.e
(2.19)

Result 2.26. If u ∈RB and Tk(u) ∈W 0,1(XET ) for every k ≥ 0, then u ∈W 0,1(XET ).

Result 2.27. If u ∈T 0,1 and u ∈RB, then u ∈W 0,1(XET )

Result 2.28. If u ∈W 0,1(XET ) then, u is of class (RD).

2.3.4. Potential and Markov Processes

A family A = {As,t ,0≤ s≤ t ≤ T} of random variables is an additive function (AF) of X if As,· is a ({Fs,t},Ps,x)-measurable càdlàg process
and Ps,x(Ast = As,u +Au,t ,s≤ u≤ t ≤ T ) = 1 for q.e (s,x) ∈ ET . For a given additive functional A of X, its energy is given by

e(A) = lim
t↘0

1
2t

EmA2
t (2.20)

wherever the limit exists. If N is an AF such that for q.e (s,x) ∈ ET has Ps,x almost all continuous trajectories, it is called continuous AF
(CAF). If M is an AF such that for q.e (s,x) ∈ ET , Es,x|Ms,t |2 < ∞ and Es,xMs,t = 0 for t ∈ [s,T ) it is called martingale AF (MAF). A CAF

A of finite variation is square integrable if
∫ T

0
Es,x|As,·|2T ds < ∞.

It is known from [37], that for a time-inhomogeneous Markov process X associated with the operator Lt defined in (1.2), the functional
At ≡ u(Xt)−u(X0) admit the so-called Fukushima decomposition i.e for q.e (s,x) ∈ R+×Rd

u(Xt)−u(Xs) = Ns,t +Ms,t s≤ t, Ps,x-a.s (2.21)

where N is a two-parameter continuous additive functional (MAF) of X of finite energy. Moreover〈
Mi

s,·,M
j
s,·
〉

t
=
∫ t

s
ai j(θ ,Xθ )dθ , s≤ t (2.22)

which implies the process

Bs,t =
∫ t

s
σ
−1(θ ,Xθ )dMs,θ , t ≥ s (2.23)
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where σ ·σT = a is a Brownian motion under Ps,x. It is also known from [38] that Bs,· is an {Fs,t}t≥s-Brownian motion.

Also, it is known that for a time-homogeneous Markov process X′ associated with the operator
∂

∂ t
+Lt ,X′ admit the strict Fukushima

decomposition

u(Xt) = u(X0)+Nt +Mt (2.24)

where N is a CAF of X′ of zero energy and M is a MAF of X′ of finite energy. In [32],

p(Nt)(ω
′) = Ns,s+t(ω), p(Mt)(ω

′) = Ms,s+t(ω), t ≥ 0 (2.25)

for (ω ′ = (s,ω)) where p : R+×Rd → Rd is the orthogonal projection.
Set Nt = p(Nt) and Mt = p(Mt), t ≥ 0, then

Nt(ω
′) = Ns,s+t(ω), Mt(ω

′) = Ms,s+t(ω) for ω
′ = (s,ω) t ≥ 0 (2.26)

and for t ≥ 0, τ(t) : ω ′→ R+ by putting

τ(t)(ω ′) = s+ t = τ(0)(ω)+ t for ω
′ = (s,w) (2.27)

If ξ is a random variable on Ω then ξ (ω ′) = ξ (ω) for ω ′ = s,ω ∈Ω′ with Xt = (τ(t),Xτ(t)), t ≥ 0 and

ζ = inf{t ≥ 0;Xt /∈ R+×E}, ζτ = ζ ∧Tτ , Tτ = T − τ(0)

Moreover,〈
Mi,M j

〉
t
=
∫ t

0
ai j(Xθ )dθ , t ≥ 0, P′s,x-a.s (2.28)

for every (s,x) ∈ R+×Rd , which implies the process

Bt =
∫ t

0
σ
−1(Xθ )dMθ , t ≥ 0 (2.29)

where σ ·σT = a is a Brownian motion under Ps,x and also an {F ′t }t≥0-Brownian motion.
Let X′ = ({Xs,t , t ≥ s},{Ps,x,(s,x) ∈ R+×E},{Ft , t ≥ 0},ζ ) be a diffusion process such that for every t ≥ 0, then the transition operator

(Ps,t f )(x) = Es,x f (Xt) (2.30)

A positive AF A of X′ and a positive measure µ on R+×E are in the Revuz correspondence if

〈µ, f 〉=
∫

∞

0

∫
E

f dµ = lim
α→∞

α

∫
∞

0

∫
E

(
E ′s,x

∫
ζ s

0
e−αt f (Xt)dAt

)
dm1(s,x) (2.31)

for every f ∈B′(R+×E). If 〈µ,1〉< ∞, then A is called integrable under (2.31), the family of all integrable positive additive functionals of
X′ and the family of all bounded positive soft measures on R+×E are in one-to-one correspondence. The additive functional corresponding
to a positive bounded soft measure µ,Aµ corresponds to µ if and only if for q.e (s,x) ∈ R+×E

E ′s,x

∫
ζ s

0
f (Xt)dAµ

t =
∫

∞

0

(∫
∞

0

∫
E

f (z)p′E(t,(s,x),z)dµ(z)
)

dt (2.32)

for every f ∈B+(R+×E).
The potential operator associated with X′ is given as

R0,T
µ(s,x) =

∫
∞

0

(∫ T

0

∫
E
(t,(s,x),z)dµ(z)

)
dt (2.33)

so that (2.32) becomes

E ′s,x

∫
ζ s

0
f (Xt)dAµ

t = R0,T
µ(s,x) f (z) (2.34)

hence

R0,T
µ(s,x) = E ′s,x

∫
ζ s

0
dAµ

t (2.35)

Result 2.29. Let µ ∈M0,b(ET ). Then there exists a positive AF Aµ of X such that for every (s,x) ∈ ET , if R0,T µ(s,x)< ∞ then

E ′s,x

∫
ζ s

0
η(Xt)dAµ

t =
∫

ET

η(θ ,y)pE(s,x, t,y)dµ(t,y)

for every bounded η ∈B(ET )
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Suppose the coefficient of the operator (1.2) does not depend on time i.e ai, j(t,x) = ai, j(x) for (t,x) ∈ ET , yields (2.17). The fundamental
solution of A has the property that

p(s,x, t,y) = p(t− s,x,y) for any t > s,x 6= y (2.36)

Let X= ({Xt , t ≥ 0},{Px,x ∈ E},{Ft , t ≥ 0},ζ ) be a diffusion process, the transition operator is given as

(Pt f )(x) = Ex f (Xt) (2.37)

In the homogeneous case, a positive AF A of X(X = {(X ,Px) : x ∈ R}) where Px = P′0,x is a time-homogeneous Markov process with
transition density p(t,x,y) = p(0,x, t,y) and a positive measure µ on E are in the Revuz correspondence if

〈µ, f 〉= lim
α→∞

α

∫
∞

0

∫
E

(
Ex

∫
ζ 0

0
e−αt f (Xt)dAt

)
dm(x) (2.38)

for every f ∈B(E). If 〈µ,1〉< ∞, then A is called integrable. The family of all integrable positive continuous additive functionals of X and
the family of all bounded positive soft measures on E are in one-to-one correspondence via (2.38). Aµ corresponds to µ if and only if for q.e
x ∈ E

Ex

∫
ζ 0

0
f (Xt)dAµ

t =
∫

∞

0

∫
E

f (y)pE(t,(s,x,y)dµ(y)dt (2.39)

GE(x,y) =
∫

∞

0 pE(t,x,y)dt is the green function on E. Then from (2.39),

Ex

∫
ζ 0

0
f (Xt)dAµ

t }=
∫

E
f (y)GE(x,y)dµ(y)dt (2.40)

The potential operator associated with X is

Rµ(x) =
∫

E
G(x,y)dµ(y)dt (2.41)

hence,

Rµ(x) = Ex

∫
ζ 0

0
dAµ

t (2.42)

and by Result 2.29 Rµ(x)< ∞, for a fixed Borel positive measure on E.

Result 2.30. Let µ ∈M0,b(ET ) do not depend on time. Then, Aµ is continuous, for every s ∈ [0,T ], R0,T µ(s,x)< ∞ for q.e x ∈ E and

Aµ

t (0,ω) = Aµ̄

t (ω) for Px-a.eω ∈Ω. (2.43)

Furthermore, from [39], there is c depending on d,∧ such that

p(t,x,y)≤ ct−d/2 for t > 0 x,y ∈ Rd (2.44)

Therefore, there is c depending only on d,∧ such that

sup
x∈Rd

Exζ
0 ≤ c|E|d/2 (2.45)

where |E| denotes the Lebesgue measure of E. Also, there exists a constant a < 0, b > 0 depending only on d,∧, |E| such that for every t > 0

sup
x∈Rd

Px(ζ
0 > t)≤ ae−bt . (2.46)

3. Qualitative Properties of the Solution

This section covers some qualitative properties of the solution of the system which include regularity of the solution, the existence of the
solution, the uniqueness of the solution and large-time behaviour of the solution. For necessity, the following are shown: (Y s,x,Zs,x) ∈
Dq⊗M q, Y is of class (D); the regularity of ET 3 t 7→ u(s,x) = E ′s,xY

s,x
0 ; the existence and uniqueness of the solution (Y s,x = u(Xt),Zs,x =

σ∇Xu(X)); the gradient of the solution in Lq
loc(ET ) and lastly, the asymptotic behaviour of the solution as t becomes large.
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3.1. Existence and Uniqueness of BSDE

We shall make use of the basic assumptions in subsection 2.3.1. To start with, consider the following proposition.

Proposition 3.1. Assume (B1)-(B4). Let F be the set of those (s.x)∈ET for which the data ζτ , f (X, ., .)ϕ(XTτ
)1{ζ>Tτ

,Aµ satisfy assumptions

(A1)-(A4) under P′s,x. Then, cap(ET |F) = 0 and for every (s,x) ∈ F, there exists a unique solution (Y s,x,Zs,x) of BSDEs,x(ϕ,E, f +dµ) such

that (Y s,x,Zs,x) ∈ Dq⊗Mq for q ∈ (0,1) and Y s,x is of class(D).

Proof. The condition

ϕ(XTτ
)1{ζ>Tτ}+E ′s,x

∫
ζτ

t
f (Xθ , ·, ·)dθ +E ′s,x

∫
ζτ

t
dAµ

θ
(3.1)

is finite i.e

ϕ(XTτ
)1{ζ>Tτ}+E ′s,x

∫
ζτ

t
f (Xθ , ·, ·)dθ +E ′s,x

∫
ζτ

t
dAµ

θ
< ∞ (3.2)

is satisfied a.e (s,x) ∈ ET |F , then it is satisfied for q.e (s,x) ∈ F .

Assume,

w⊂ {(s,x) : ϕ(XTτ
)1{ζ>Tτ}+E ′s,x

∫
ζτ

t
f (Xθ , ·, ·)dθ +E ′s,x

∫
ζτ

t
dAµ

θ
< ∞} (3.3)

and ζτ = inf{t ≥ 0 : τ(t),Xτ(t) ∈ k}∧Tτ where k is a compact subset of w = ∞. Since (X,P′s,x)) is a Feller process, ζτ is a {F ′t }-stopping

time. By the strong Markov property with random shift

P′s,x(ζτ < Tτ )≤ P′s,x

(
E ′s,x

(
|ϕ(XTτ

)|1{ζ>Tτ}+
∫

ζτ

t
f (Xθ , ·, ·)dθ +

∫
ζτ

t
dAµ

θ

)
= ∞,ζτ < Tτ

)
= P′s,x

(
E ′s,x

(
|ϕ(XTτ

)|1{ζ>Tτ}+
∫

ζτ

t
f (Xθ , ·, ·)dθ +

∫
ζτ

t
dAµ

θ
|F ′t
)
= ∞,ζτ < Tτ

)
= P′s,x

(
ϕ(XTτ

)1{ζ>Tτ}+E ′s,x

∫
ζτ

t
f (Xθ , ·, ·)dθ |F ′t +E ′s,x

∫
ζτ

t
dAµ

θ
|F ′t = ∞,ζτ < Tτ

)
= Ps,x

(
ϕ(XTτ

)1{ζ s>Tτ}+Es,x

∫
ζ s

t
f (Xθ , ·, ·)dθ |Ft +Es,x

∫
ζ s

t
dAµ

θ
|Ft = ∞,ζ s < Tτ

)
which by assumption equals zero for a.e (s,x)∈ ET . Thus, cap(k) = 0 for any compact subset k of (w = ∞). Since cap is the choquet capacity,

it follows that cap({w = 0}) = 0 i.e cap(ET |F) = 0 which implies that in the case of Markov-type equations, (B1)-(B4) are analogous to

(A1)-(A4).

For the second assertion:

Assume that

r ≡ ‖ f (·,0)‖∞ +‖ξτ‖∞ +‖|A|σ‖∞ < ∞, where ξ and sup
t
| f (t,0)| are bounded random variables. Let θr, be a smooth function such that

0≤ θr ≤ 1, θr(y) = 1 for |y| ≤ r and θr(y) = 0 for |y| ≥ r+1.

For k ∈ N, let Tn(y) =
ny

n∨|y|
and

hn(t,y) = θr(y)( f (t,y)− f (t,0))
n

ψr+1(t)∨n
+ f (t,0),

ψr(t) := sup
|y|≤r
| f (t,y)− f (t,0)|.

This function still satisfies condition (A2) but with a positive constant.

Choosing y and y′ in Rd , if |y|> r+1 and |y′|> r+1, the inequality is trivially satisfied and reduces to the case where |y′| ≤ r+1. Thus,〈
y− y′,hn(t,y)−hn(t,y′)

〉
= θr(y)

n
ψr+1(t)∨n

〈
y− y′, f (t,y)− f (t,y′)

〉 n
ψr+1(t)∨n

(
θr(y)θr(y′)

)〈
y− y′, f (t,y)− f (t,0)

〉
(3.4)

The first term of the right-hand side of (3.4) is negative since the condition (A2) is in force for f with µ = 0. For the second term, one can

use the fact that θr is C(r) Lipschitz since |y′| ≤ r+1(
θr(y)−θr(y′)

)〈
y− y′, [ f (t,y)− f (t,0)]

〉
≤C(r)|y− y′|2| f (t,y′)− f (t,0)| ≤C(r)(λn +ψr+1(t))|y− y′|2 (3.5)

so that

n
ψr+1(t)∨n

(
θr(y)−θr(y′)

)〈
y− y′, [ f (t,y)− f (t,0)]

〉
≤C(r)(λ +1)n|y− y′|2 (3.6)
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Hence, for each n ∈ N, the BSDE associated with (ξ ,hn) has a unique solution (Y n,Zn) in the space D2⊗M 2. Since 〈y,hn(t,y)〉 ≤
|y|‖ f (t,0)‖∞ +λ |y| and ξ are bounded. Result 2.22 shows that the process satisfies the inequality

‖Y n‖∞ ≤ r (3.7)

In addition, from Result 2.21

‖Zn‖M 2 ≤ r′ (3.8)

where r′ is another constant. As a byproduct (Y n,Zn) is a solution to BSDE associated to (ξ n, fn +dAn) where ξ n = Tn(ξ ),

fn(t,y) = f (t,y)− f (t,0)+Tn( f (t,0)) and An
t =

∫ t

0
1{|A|s≤n}dAs

for this function (A2) is satisfied with µ = 0.

For i ∈ N, let Ȳ = Y n+i−Y n, Z̄ = Zn+i−Zn, Ā = An+i−An, using the assumption of (A2) and Lipschitz continuity on fn+i yields

e2λ 2t |Ȳt
2 +

∫
σ

t
e2λ 2s|Z̄s|2ds≤ 2

∫
σ

t
e2λ 2s

〈
Ȳs, fn+i(s,Y n+i

s )− fn(s,Y n
s )
〉

ds+2
∫

σ

t
e2λ 2s 〈Ȳs,dĀs

〉
−2

∫
σ

t
e2λ 2s 〈Ȳs, Z̄sdBs〉 (3.9)

But ‖Ȳ‖∞ ≤ 2r since ‖Y‖∞ ≤ r, so that

e2λ 2t |Ȳt
2 +

∫
σ

t
e2λ 2s|Z̄s|2ds≤ 4r

∫
σ

t
e2λ 2s| fn+i(s,Y n+i

s )− fn(s,Y n
s )|ds+2

∫
σ

t
e2λ 2s 〈Ȳs,dĀs

〉
−2

∫
σ

t
e2λ 2s 〈Ȳs, Z̄sdBs〉 (3.10)

Using Burkholder-Davis-Gundy inequality [41], hence for a constant cp

cpE
[∫

σ

t
〈Ȳs, Z̄sdBs〉

]
≤ dpE

[∫
σ

t
|Ȳs|‖Z̄s‖2ds

]
≤ dpE

[
sup

s∈[t,σ ]
Ȳt

(∫
σ

t
‖Z̄‖2ds

)]
and thus

cpE
[∫

σ

t
〈Ȳs, Z̄sdBs〉

]
≤

dp

2
E

[
sup

s∈[t,σ ]
Ȳt

]
+

dp

2
E
[∫

σ

t
‖Z̄‖2ds

]
(3.11)

where cp and dp are constants.

From conditioning of (3.10) and (3.11),

E

[
sup

s∈[t,σ ]
Ȳt

]
+E

[∫
σ

t
‖Z̄‖2ds

]
≤ 4rE

[∫
σ

t
| fn+i(s,Y n+i

s )− fn(s,Y n
s )|ds

]
+4rE

[∫
σ

t
dĀs

]
−2

(
dp

2
E

[
sup

s∈[t,σ ]
Ȳt

]
+

dp

2
E
[∫

σ

t
‖Z̄‖2ds

])
Further simplification yields

(1+dp)

(
E

[
sup

s∈[t,σ ]
Ȳt

]
+E

[∫
σ

t
‖Z̄‖2ds

])
≤ 4r

(
E
[∫

σ

t
| fn+i(s,Y n+i

s )− fn(s,Y n
s )|ds

]
+E

[∫
σ

t
dĀs

])
so that,

E

[
sup

s∈[t,σ ]
Ȳt

]
+E

[∫
σ

t
‖Z̄‖2ds

]
≤ 4

(1+dp)
r
(

E
[∫

σ

t
| fn+i(s,Y n+i

s )− fn(s,Y n
s )|ds

]
+E

[∫
σ

t
dĀs

])
and then,

E

[
sup

s∈[t,σ ]
Ȳt

]
+E

[∫
σ

t
‖Z̄‖2ds

]
≤Cr

(
E
[∫

σ

t
| fn+i(s,Y n+i

s )− fn(s,Y n
s )|ds

]
+E

[∫
σ

t
dĀs

])
(3.12)

where C =
4

(1+dp)
. The right-hand side of the inequality (3.12) tends to 0 as n→ ∞, hence, there is a Cauchy sequence in D2⊗M 2 and

the limit is a solution to the BSDE i.e Y n
t → Yt and

∫
σ

t
Zn

s dBs→
∫

σ

t
ZsdBs.

Next is to show that (Y,Z) ∈Dq⊗M q assuming µ ≤ 0. From the previous step, it is shown that the BSDE has a unique solution in the

space D2⊗M 2.

For m > n, let δY = Y m−Y n,δZ = Zm−Zn,δξ = ξ m−ξ n and τk = inf
{

t ≥ 0;
∫ t

0
|δZs|2ds > k

}
.

By the Itô-Tanaka formula (Lemma 2.1), for t ≥ 0,

|δYt∧τk | ≤ |δYτk∧σ |+
∫

τk∧σ

t

〈
δŶs, fm(s,Y m

s )− fn(s,Y n
s )
〉

ds+
∫

τk∧σ

t

〈
δ ˆYs−,d(Am

s −An
s )
〉
+
∫

τk∧σ

t

〈
δŶs,δ ẐsdBs

〉
≤ |δYτk∧σ |+

∫
τk∧σ

t
| fm(s,Y m

s )− fn(s,Y n
s )|ds+

∫
τk∧σ

t
d|Am−An|s +

∫
τk∧σ

t

〈
δŶs,δ ẐsdBs

〉
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and conditioning with respect to Ft yields

|δYt∧τk | ≤ E
(

Yτk∧σ |+
∫

τk∧σ

t
| fm(s,Y m

s )− fn(s,Y n
s )|ds+

∫
τk∧σ

t
d|Am−An|s|Ft

)
(3.13)

The process δY is continuous and belongs to a class (D). It follows that Ps,x-a.s, δYτk = Yτk∧σ → Yσ = 0 as k→ ∞ and this convergence

holds in L1. As a byproduct, it is deduced that E(δYτk |Ft) converges to 0 in the ucp, so that (3.13) becomes

|δYt | ≤ E
(∫

τk∧σ

0
| fm(s,Y m

s )− fn(s,Y n
s )|ds|Ft

)
+E

(∫
τk∧σ

0
d|Am−An|s|Ft

)
(3.14)

from which the following inequality is derived

|δYt | ≤ E
(
|ξ |1{|ξ |>n}+

∫
σ

0
| f (s,0)|1{| f (s,0)|>n}ds+

∫
σ

0
1{|A|s>n}d|A|s|Ft

)
(3.15)

We have from Result 2.20 that

E

[
sup

s∈[t,σ ]
|δYt |q

]
≤ 1

1−q
E
[
|ξ |1{|ξ |>n}+

∫
σ

0
| f (s,0)|1{| f (s,0)|>n}ds+

∫
σ

0
1{|A|s>n}d|A|s

]q
(3.16)

Therefore, there exists Y of class(D) and belongs to Dq for each q ∈ (0,1).

Y n→ Y in the norm ‖ · ‖1 and in Dq for each q ∈ (0,1), thus (Y n)N is a Cauchy sequence.

Now, (δY,δZ) solves the following BSDE

δYt = ξ
m−ξ

n +
∫

σ

t
F(s,δYs)ds+

∫
σ

0
dAs−

∫
σ

0
dZsdBs (3.17)

where F stands for the random function

F(t,y) = fm(t,Y m
t )− fn(t,Y n

t ) (3.18)

since fm is monotone, F satisfy the inequality

〈y,F(t,y)〉 ≤ |y|| f (t,0)|1| f (t,0)|>n (3.19)

Thus, using Lebesgue Dominated convergence theorem, it can be deduced that for q ∈ (0,1)

E

[(∫
σ

0
|δZs|2ds

)q/2
]
≤CqE

[
sup

t
|δYt |q +

(∫
σ

0
| f (s,0)|1| f (s,0)|>nds

)q
+

(∫
σ

0
1{|A|s>n}d|A|s

)q]
(3.20)

It follows that for each q ∈ (0,1),(Zk)k is a Cauchy sequence in M q such that for every q ∈ (0,1) and t > 0

E
[∫

σ

0
(Zn

s −Zs)dBs

]q/2
→ 0 as n→ ∞ in ucp (3.21)

and since the map y 7→ f (t,y) is continuous, by taking a limit in ucp that (Y,Z) solves the correct BSDE.

Let us consider (Y,Z) and (Y ′,Z′) to be two solutions of BSDE(ξ ,σ , f +dA) such that Y,Y ′ are of class(D). Then (Ȳ , Z̄) = (Y −Y ′,Z−Z′)

is a solution of the BSDE

Ȳt =
∫

σ

t
( f (s,Ys)− f (s,Y ′s ))ds−

∫
σ

t
Z̄sdBs, t ≥ 0 (3.22)

Taking the conditional expectation of (3.10) and using (A2),

E

[
sup

s∈[t,σ ]
Ȳs

]
+

[∫
σ

t
‖Z̄s‖2ds

]
≤ 0 (3.23)

Thus, (Y,Z) = (Y ′,Z′).

Hence, it is shown that (Y,Z) is a unique solution to BSDE(ξ ,σ , f +dA)

Before the prove of the existence of solutions to the system (2.9), there is a need to address the regularity of the function ET such that
(s,x) ∈ ET 7→ u(s,x) = E ′s,xY

s,x
0 .
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3.2. Regularity of the Function ET

Proposition 3.2. Let F be a Borel subset of ET such that cap(ET |F) = 0. Assume that for every (s,x)∈ F, the real process Y s,x is continuous

semimartingale under P′s,x such that Y s,x
t∨ζ

= 0, t ≥ 0 and there exist a Borel function v on ET such that for every (s,x)∈ F and every t ∈ [0,Tτ ]

v(Xt) = Y s,x
t , P′s,x-a.s (3.24)

Thus, u(s,x) = E ′s,xY
s,x
0 is a quasi-continuous version of v and for every (s,x) ∈ F

u(Xt) = Y s,x
t , t ∈ [0,ζτ ], P′s,x-a.s (3.25)

Proof. let (s,x) ∈ F . Since Y s,x is a continuous semimartingale there exists a finite variation continuous processes Rs,x and Zs,x ∈M such

that

Y s,x
t = 1{ζ>Tτ}v(XTτ

)+
∫

ζτ

t
dRs,x

θ
−
∫

ζτ

t
Zs,x

θ
dBθ , t ∈ [0,ζτ ] P′s,x-a.s (3.26)

Let Ln = Y s,x− 1
n < Y s,x =U i.e Ln <U .

By comparison principle, as seen in Theorem 1.3 of [40],

Y n
t ≤ Y n+1

t , t ∈ [0,ζτ ], P′s,x-a.s for every n≥ 1, ζ n ≤ ζ n+1 P′s,x and f n(t,Y n
t ,Z

n
t )≤ f n+1(t,Y n+1

t ,Zn+1
t )dt⊗dP a.e. (3.27)

Therefore, Yt = supn≥1 Y n
t

which implies

Y n
t ↗ Yt , t ∈ [0,ζτ ], P′s,x-a.s (3.28)

Furthermore, if Y n
t = supl≤1 Y n,k

t then,

Y n,k
t ↗ Y n

t , t ∈ [0,ζτ ], P′s,x-a.s (3.29)

Note that fk(t,y) = k(y−Ln
t )
− is the generator of the BSDE for Y n,k

t

Let fk,l(t,y) = k(y−Ln
t )
−− l(y−Ut)

+ be the generator of the BSDE for Y n,k,l
t . Since Y s,x− 1

n
< Y s,x then fk,l(t,y)< fk(t,y),

so that Y n,k
t = inf

l≥1
Y n,k,l ,

Hence,

Y n,k,l
t ↘ Y n,k

t , t ∈ [0,ζτ ], P′s,x-a.s (3.30)

By (3.24)

fk,l(.y) = k
(

y− v(X)+
1
n

)−
− l(y− v(X))+, dt⊗P′s,x-a.e on [0,ζτ ]×Ω for every y ∈ R (3.31)

Let hk,l(t,x,y) = k
(
y− v(x)+ 1

n
)−− l(y− v(x))+. So that,Y n,k,l

t = hk,l(Xt), t ∈ [0,ζτ ], P′s,x-a.s, where hk,l is a quasi-continuous version of

the solution of PDE(0,hk,l).

Let h(s,x) = limsup
k→∞

liminf
l→∞

hk,l(s,x), (s,x) ∈ ET .

Then by (3.29) and (3.30),

Y n
t = h(Xt), t ∈ [0,ζτ ], P′s,x-a.s for every (s,x) ∈ F . (3.32)

In particular, since Y n ∈S 2, the function h is quasi-continuous. From what has already been proved it follows that for every n≥ 1, there

exists a quasi-continuous function un such that

Y n
t = un(Xt) t ∈ [0,ζτ ], P′s,x-a.s for every (s,x) ∈ F . (3.33)

Let

u(s,x) = limsup
n→∞

un(s,x), (s,x) ∈ ET (3.34)

Hence, Y n
t ↗ Yt which is the desired result (3.28).

Assuming that Y s,x is bounded. By the Itô-Tanaka formula (Lemma 2.1), Tk(Y ) is a semimartingale, so by the first part of the proof, the

function uk defined as uk(s,x) = E ′s,xTk(Y
s,x
0 ), (s,x) ∈ ET , is continuous and for k ∈ N

Tk(Y
s,x

t ) = uk(Xt), t ∈ [0,ζτ ], P′s,x-a.s for every (s,x) ∈ F . (3.35)
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But uk(s,x) = Es,xTk(Y
s,x
0 ) = Tk(Es,xY

s,x
0 ) and since Y s,x

0 is constant P′s,x-a.s. Therefore, letting k→ ∞ in (3.35), and using the fact that

Tk(Y
s,x

t )→ Y s,x
t in RM

result to

Y s,x
t = u(Xt) (3.36)

which is the desired result

Proposition 3.3. Let F be a Borel subset ET such that cap(ET |F) = 0 and let u : ET → R be a Borel function. If u(X) is a continuous

semimartingale under P′s,x on [0,ζτ ] for (s,x) ∈ F, then u ∈W 0,1(XET ) and there exists Continuous Additive Functional (CAF) of finite

variation such that

u(Xt) = u(s,x)+
∫ t

0
dAθ +

∫ t

0
σ∇Xu(Xθ )dBθ t ∈ [0,ζτ ], P′s,x-a.s (3.37)

for every (s,x) ∈ F

Proof. Assume u is bounded. By [34] and (3.33), it is known that

Y n
t = un(Xt), t ∈ [0,ζτ ], σ∇Xun(X) = Zn, dt⊗P′s,x-a.e (3.38)

Since Y = u(X) is a continuous semimartingale and the basic filtration is Brownian, there exists a finite variation continuous process Rs,x and

process Zs,x ∈M such that

Yt = Y0 +
∫ t

0
dRs,x

θ
+
∫ t

0
Zs,x

θ
dBθ , t ∈ [0,ζτ ] (3.39)

Since the process Y is continuous from the proof of Proposition 3.2 and Dini’s theorem, it follows that

P′s,x

(
sup

t∈[0,ζτ ]

|Y n
t −Yt |2 > ε

)
→ 0 (3.40)

Moreover, following Proposition (6.1) in [34]

dRn,+ ≤ 1{Y n
t =Ln

t }dR+
t , dRn,− ≤ 1{Y n

t =Un
t }dR−t (3.41)

Therefore, there exists a sequence of stopping times {τk} such that τk ≤ τk+1, k ≥ 1, τk→ ζτ ,P′s,x-a.s for q.e (s,x) ∈ ET and for every k ≥ 1,

the sequence {Y n,τk}. Therefore,

P′s,x

(〈∫ t

0

(
Zn,s,x

θ
−Zs,x

θ

)
dBθ

〉
ζτ

)
> ε → 0 (3.42)

From (3.38)−(3.42), u ∈W 0,1(XET ) i.e Yt = u(Xt) and σ∇Xu(XET ) = Zs,x,dt⊗P′s,x-a.e

u(s,x) = E ′s,x putting

At = u(Xt)−u(s,x)−
∫ t

0
σ∇Xu(Xθ )dBθ (3.43)

as in (2.24). Then, (3.43) becomes

u(Xt) = u(s,x)+At +
∫ t

0
σ∇Xu(Xθ )dBθ

Since u ∈W 0,1(XET ), it implies that

Yt = Y0 +At +Zs,x
θ

dBθ , t ∈ [0,ζτ ] (3.44)

Comparing (3.39) and (3.44), A is a Continuous Additive Function (CAF) of finite variation and P′s,x(R
s,x
t = Lt , t ∈ [0,ζτ ]) = 1 which proves

the proposition in the case u is bounded. In the general case, (3.39) still holds.

By the Itô-Tanaka formula (Lemma 2.1), for every k > 0

Tk(u)(Xt) = Tk(u(s,x))+
∫ t

0
1(−k,k](u(Xθ ))dRs,x

θ
+
∫ t

0
1(−k,k](u(Xθ ))Z

s,x
θ

dBθ +
1
2

(
Lk

t −L−k
t

)
, t ∈ [0,ζτ ] (3.45)

where Lk (respectively, L−k) is the local time of the process u(X) at k (respectively,−k). Also, by (2.10)

Tk(u)(Xt) = Tk(u(s,x))+
∫ t

0
1(−k,k](u(Xθ ))dAs,x

θ
+
∫ t

0
1(−k,k]σ∇XTk(u(Xθ ))dBθ (3.46)
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Comparing (3.45) and (3.46), it is observed that

Zs,x1(−k,k](u(X)) = 1(−k,k]σ∇X(Tk(u))(X), dt⊗P′s,x− a.e (3.47)

Hence, by Result 2.25,

Zs,x1(−k,k](u(X)) = 1(−k,k](u(X))σ∇Xu(X), dt⊗P′s,x− a.e for every k ≥ 0, (3.48)

further simplification yields

Zs,x = σ∇Xu(X), dt⊗P′s,x− a.e (3.49)

Since, Tk(u) ∈W 0,1(XET ) for every k ≥ 0, u is quasi-continuous and u ∈RB, there is a need to show that u ∈W 0,1XET .

For q.e (s,x) ∈ ET and ε > 0,

P′s,x

(∫
ζτ

0
|Tk(u)−u|2(Xθ )dθ > ε

)
≤ P′s,x

(∫
ζτ

0
|u|21{|u|>k}dθ > ε

)
→ 0 (3.50)

which shows by that Tk(u)→ u in RM. By Result 2.25, for k < l,

P′s,x
(∫ ζτ

0 ∇X|Tk(u)−Tl(u)|2(Xθ )dθ > ε

)
= P′s,x

(∫
ζτ

0
∇X|Tk(Tl(u))−Tl(u)|2(Xθ )dθ > ε

)
= P′s,x

(∫
ζτ

0
∇X|Tl(u)1{|u|>k}−Tl(u)|2(Xθ )dθ > ε

)
= P′s,x

(∫
ζτ

0
∇X|Tl(u)|21{|u|>k}(Xθ )dθ > ε

)
≤ P′s,x

(
ess supθ∈[0,ζτ ]|u(Xθ )| ≥ k

)
(3.51)

By the assumption that u∈RB, the right-hand side of the above inequality (3.51) tend to zero as k→∞ which shows that ∇XTk(u)→∇XTl(u)

in RM as k, l→ ∞. Consequently, u ∈W 0,1XET

3.3. Existence and Uniqueness of Solution

This section considers the existence and the uniqueness of the system (2.9)

Theorem 3.4. Assume (B1)-(B4). Then, there exists a unique solution (2.9). Moreover, there exists a version of u (still denoted by u) such

that

u(Xt) = 1{ζ>Tτ}ϕ(XTτ
)+

∫
ζτ

t
f (Xθ ,u(Xθ ))dθ +

∫
ζτ

t
dAµ

θ
−
∫

ζτ

t
σ∇Xu(Xθ )dBθ , t ∈ [0,ζτ ], P′s,x-a.s (3.52)

is satisfied for every (s,x) ∈ F

Proof (Existence Result). By Proposition 3.1, for every (s,x ∈ F), there exists a solution (Y s,x,Zs,x) of BSDEs,x(ϕ,E, f +dµ) such that

(Y s,x,Zs,x) ∈ Dq⊗Mq for q ∈ (0,1) and Y s,x is of class (D).

Using Markov property,

u(Xt) = E ′τ,XTτ
Y s,x

0

= E ′s,x(Y
s,x

t ◦θt |Ft)

= Es,x(Y
s,x

t |Ft)

= Y s,x
t

so, u(Xt) = Y s,x
t ,P′s,x-a.s for every (s,x) ∈ F and every t ∈ [0, tτ ], where u(s,x) = E ′s,xY

s,x
0

Consider a solution (Y n,s,x,Zn,s,x)∈Dq⊗M q, q∈ (0,1) of the BSDEs,x(ϕ,E, f +dµ) such that Y n,s,x is of class (D) and un(s,x) =E ′s,xY
n,s,x
0

and for every (s,x) ∈ F ,

un(Xt) = Y n,s,x
t , t ∈ [0,ζτ ], P′s,x-a.s, σ∇un(X) = Zn,s,x dt⊗P′s,x-a.s (3.53)

Applying Proposition 3.2 to each coordinate of the process Y s,x−Y n,s,x, there is a quasi-continuous function v : ET →RN such that for every

(s,x) ∈ F

Y s,x
t −Y n,s,x

t = v(Xt) t ∈ [0,ζτ ],P′s,x-a.s (3.54)
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From (3.53) and (3.54),

Y s,x
t = un(Xt)+ v(Xt) t ∈ [0,ζτ ],P′s,x-a.s (3.55)

But

v(s,x) = E ′s,xY
s,x
0 −E ′s,xY

n,s,x
0 = u(s,x)−un(s,x) for q.e (s,x) ∈ ET .

Therefore from (3.55),

Y s,x
t = un(Xt)+u(Xt)−un(Xt) t ∈ [0,ζτ ],P′s,x-a.s

Hence,

Y s,x
t = u(Xt) t ∈ [0,ζτ ],P′s,x-a.s (3.56)

It follows that u is quasi-cádlág and belongs to RB.

Let ū(s,x) = lim
n→∞

un(s,x), (s,x) ∈ ET and

ū(Xt) = Ȳ s,x
t , t ∈ [0,ζτ ], P′s,x-a.s for q.e (s,x) ∈ ET . (3.57)

We have that ū is quasi-cádlág, such that ū belongs to T 0,1
2 i.e Tk(ū)→ ū in RM. Since ū is quasi-cádlág, it belongs to RB.

Following Result 2.27, ū ∈W 0,1(XET ) and u = ū q.e. Therefore, applying Proposition 3.3 to each coordinate of the function v, it follows that

u ∈W 0,1(XET ) and u(X) = Zs,x dt⊗P′s,x-a.s for every (s,x) ∈ F . Also from Result 2.28, u is of class (RD). Thus, u is a solution to (2.9).

Uniqueness Result. Assume that α ≤ 0. Let (Y s,x,Zs,x),(Ȳ s,x, Z̄s,x) be the solutions of BSDEs,x(ϕ,E, f +dµ) such that Y s,x and Ȳ s,x are

of class (D). Then (~Y s,x,~Zs,x) = (Y s,x− Ȳ s,x,Zs,x− Z̄s,x) is a solution of BSDE

~Y s,x
t =

∫
ζτ

t
( f (Xθ ,Y

s,x
θ

)− f (Xθ ,Ȳ
s,x
θ

))dθ −
∫

ζτ

t
~Zs,x

θ
hBθ , t ≥ 0 (3.58)

Assume, σk = inf{t ≥ 0;
∫

ζτ

t
|~Zs,x

θ
|2 ≥ k}, by the Itô-Meyer formula,

|~Y s,x
t | ≤ |~Y

s,x
σk∧ζτ

|+
∫

σk∧ζτ

t

〈
f (Xθ ,Y

s,x
θ

)− f (Xθ ,Ȳ
s,x
θ

),sĝn(~Y s,x
t )
〉
−
∫

σk∧ζτ

t

〈
sĝn(~Y s,x

θ
),~Zs,x

θ
dBθ

〉
(3.59)

By property B2 (under basic assumptions in subsection 2.3.1) and α ≤ 0∫
σk∧ζτ

t

〈
f (Xθ ,Y

s,x
θ

)− f (Xθ ,Ȳ
s,x
θ

),sĝn(~Y s,x
t )
〉
→ 0 (3.60)

Hence (3.59) becomes

|~Y s,x
t | ≤ −

∫
σk∧ζτ

t

〈
sĝn(~Y s,x

θ
),~Zs,xdBθ

〉
, t ≥ 0. (3.61)

Taking the conditional expectation with respect to Ft on both sides of (3.61)

|~Y s,x
t | ≤ E

(
−
∫

σk∧ζτ

t

〈
sĝn(~Y s,x

θ
),~Zs,xdBθ

〉
|Ft

)
(3.62)

and then letting k→ ∞ and using the fact that~Y s,x is of class (D), therefore,

|~Y s,x|= 0, t ≥ 0 which implies Y s,x
t = Ȳ s,x

t (3.63)

Next is to show that u has weak derivatives in Lq
loc(ET )

Proposition 3.5. Let u be a solution of the system (2.9). Then ∇Xu ∈ Lq
loc(ET ) for every q ∈ (0,1).

Proof. Since u is of class (RD),u(X) is of class (D) on [0,ζτ ] under P′s,x for q.e (s,x) ∈ ET . Therefore, (u(X),σ∇Xu(X)) is a unique solution

of BSDEs,x(ϕ,E, f +dµ) and u ∈Dq and ∇Xu ∈M q for q ∈ (0,1). Applying the Itô-Tanaka (Lemma 2.1) to (3.52) and then apply (B2)

and the fact that u is of class (RD) yields

|u(Xt)| ≤ E ′s,x

(
|ϕ(XTτ

)|1{ζτ>Tτ}+
∫

ζτ

0
| f (Xθ ,0)|dθ +

∫
ζτ

0
d|Aµ |θ |F ′T

)
(3.64)
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By Burholder-Davis-Gundy inequality [41], it is obtained that for every q ∈ (0,1),

E ′s,x sup
0≤t≤ζτ

|u(Xt)|q ≤
1

1−q
E ′s,x

(
1+ |ϕ(XTτ

)|1{ζτ>Tτ}+
∫

ζτ

0
| f (Xθ ,0)|dθ +

∫
ζτ

0
d|Aµ |θ

)

E ′s,x sup
0≤t≤ζτ

|u(Xt)|q ≤ (1−q)−1E ′s,x

(
1+ |ϕ(XTτ

)|1{ζτ>Tτ}+
∫

ζτ

0
| f (Xθ ,0)|dθ +

∫
ζτ

0
d|Aµ |θ

)
(3.65)

By the above estimate and Result 2.20

E ′s,x

(∫
ζτ

t
|σ∇Xu(Xθ )|2dθ

)q/2

≤ c(q)E ′s,x

(
1+ |ϕ(XTτ

)|1{ζτ>Tτ}+
∫

ζτ

0
| f (Xθ ,0)|dθ +

∫
ζτ

0
d|Aµ |θ

)
(3.66)

for every q ∈ (0,1). Since q ∈ (0,1), it is obtained that

E ′s,x

(∫
ζτ

0
|σ∇Xu(Xθ )|2dθ

)q/2

≥ ∧−1E ′s,x

(∫
ζτ

0
|∇Xu(Xθ )|qdθ ·ζτ

q/2−1
)

≥ ∧−1T q/2−1E ′s,x

(∫
ζτ

0
|∇Xu(Xθ )|qdθ

)
= ∧−1T q/2−1

∫∫
ET

|∇Xu(θ ,y)|q pE(s,x,θ ,y)dθdy < ∞

for q.e (s,x) ∈ ET , where pE is the transition density of the process X killed on existing E. pE(s,x, ., .) is continuous and strictly positive on

(s,T ]×E [39], hence, ∇Xu ∈ Lq
loc(ET ).

Remark 3.6. From [31], it follows that if u is a probabilistic solution of (2.9) such that f (.,u)∈L1(ET ), then, u∈T 0,1
2 ,u∈Lq(0,T ;W 1,q

0 (E))

for q ∈
[
1, d+2

d+1

)
and u is a renormalized (entropy) solution of (2.9)

4. Conclusion

The existence of the solution of a semilinear parabolic system with measure data is considered in this paper. The methods of proof are those
of stochastic analysis, the Markov process and mainly Backward Stochastic Differential Equations (BSDEs). The proof of the main result on
existence and uniqueness of

u(Xt) = 1{ζ>Tτ}ϕ(XTτ
)+

∫
ζτ

t
f (Xθ ,u(Xθ ))dθ +

∫
ζτ

t
dAµ

θ
−
∫

ζτ

t
σ∇Xu(Xθ )dBθ (4.1)

is probabilistic. The approach made was to show that cap(ET \F) = 0 and for every (s,x) ∈ F , there exist {F ′t } progressively measurable
processes consisting of an RN -valued process Y s,x and an Rd ×RN -valued process Zs,x which are the solution of BSDE

Y s,x
t = 1{ζ>Tτ}ϕ(XTτ

)+
∫

ζτ

t
f (Xθ ,Y

s,x
θ

,Zs,x
θ
)dθ +

∫
ζτ

t
dAµ

θ
−
∫

ζτ

t
Zs,x

θ
dBθ , t ∈ [0,ζτ ],P′s,x-a.s (4.2)

such that (Y s,x,Zs,x ∈Dq⊗M q) and Y s,x is of class (D). Then u(s,x) = E ′s,xY
s,x
0 is set for (s,x) ∈ ET and show that u is quasi-continuous.

Using the Markov property, u(Xt) =Y s,x
t ,P′s,x-a.s for every (s,x)∈ F and t ∈ [0,Tτ ], where F is a Borel subset of ET such that cap(ET \F) = 0.

Lastly, it was shown that u is quasi-càdlàg, belongs to W 0,1(XET ) and the representation

Y s,x
t = u(Xt), t ∈ [0,ζτ ],P′s,x-a.s ,Zs,x

t = σ∇Xu(X) dt⊗P′s,x-a.s (4.3)

holds quasi-every (q.e for short) with u having weak derivatives in Lq
loc(ET ). The probabilistic solution u to the system is generally weak

and could be considered as some generalization of the notion of the renormalized solution because if fu ⊂ L1(ET ) then u ∈ T 0,1
2 ,u ∈

Lq(0,T ;W 1,q(E)) for q ∈
[
1, d+2

d+1

)
and u is a renormalized solution to the system as presented by [31]. The results were proved for systems

with f satisfying conditions for which the usual monotonicity methods do not apply, it only requires f to satisfy a mild integrability condition
and allow f to depend on x.
In the case of uniqueness, choosing any two solutions of Backward Stochastic Differential Equation (BSDE) which are of class (D), and
taking the conditional expectation with respect to Ft , letting k→ ∞, it was shown that the solution is unique.
Hence, for a Cauchy-Dirichlet problem of a monotone semilinear parabolic system in divergence form with measure data, there exists a
unique probabilistic solution of the system under a mild integrability condition on the data.
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[6] H. Poincaré, Sur les intégrales irrégulières. Acta math., 8(1)(1886), 295-344.
[7] J.P. Boyd, The devil’s invention: Asymptotic, superasymptotic and hyperasymptotic series. Acta Appl. Math., 56(1)(1999),1-98.
[8] F.W. Olver, D. W. Lozier, R.F. Boisvert, and C.W. Clark, NIST handbook of mathematical functions, Cambridge university press, New York 2010.
[9] J. Serrin, Pathological Solutions of Elliptic Differential Equations. Ann Scuola Norm-Sci, 18(3)(1964), 385-389.
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[24] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, and J. L. Vazquez, An L1- Theory of Existence and Uniqueness of Solutions of Nonlinear

Elliptic Equations. Ann Scuola Norm-Sci, 22(2)(1995), 241-273.
[25] A. Prignet, Existence and Uniqueness of ”Entropy’ Solutions of Parabolic Problems with L1 Data. Nonlinear Anal. Theory Methods Appl., 28(12)(1997),

1943-1954.
[26] J. Droniou, and A. Prignet, 2007, Equivalence Between Entropy and Renormalized Solution for Parabolic Equations with Smooth Measure Data.

Nonlinear Differ. Equ. Appl., 14(2007), 181- 205.
[27] T. Klimsiak, and A. Rozkosz, Dirichlet Forms and Semilinear Elliptic Equations with Measure Data. J Funct Anal, 265(6)(2013), 890-925.
[28] T. Klimsiak, and A. Rozkosz, Semilinear Elliptic Equation with Measure Data and Quasi-Regular Dirichlet Forms. Colloq. Math, 145(1)(2013), 35-67.
[29] T. Klimsiak, Existence and Large-time Asymptotic for Solutions of Semilinear Parabolic Systems with Measure Data. J. Evol. Equ., 14(2014), 913–947.
[30] T. Klimsiak, and A. Rozkosz, Obstacle Problem for Semilinear Parabolic Equation with Measure Data. J. Evol. Equ., 15(2015), 457-491.
[31] T. Klimsiak, and A. Rozkosz, Renormalised Solutions of Semilinear Equations Involving Measure Data and Operator Corresponding to Dirichlet Form.

Nonlinear Differ. Equ. Appl., 22(2015), 1911-1934.
[32] T. Klimsiak, Semi-Dirichlet Forms, Feynman-Kac Functionals and the Cauchy Problem for Semilinear Parabolic Equations. J Funct Anal, 268(5)(2015),

1205-1240.
[33] T. Klimsiak, Semilinear Elliptic Systems with Measure Data. Ann. Mat. Pura Appl., 194(1)(2015), 55-76.
[34] T. Klimsiak, Cauchy Problem for Semilinear Parabolic Equation with Time-Dependent Obstacle: A BSDEs Approach. Potential Anal, 39(2013), 99-140.
[35] P. Briand, B. Delyon, Y. Hu, E. Pardoux, and L. Stoica, Lp Solutions of Backward Stochastic Differential Equations. Stoch Process Their Appl,

108(2003), 109-129.
[36] E. Pardoux, and S. Peng, Adapted Solution of a Backward Stochastic Differential Equation. Syst Control Lett, 14(1)(1990), 55–61.
[37] A. Rozkosz, Backward SDEs and Cauchy Problem for Semilinear Equations in Divergence Form. Probab Theory Relat Fields, 125(3)(2003), 393-407.
[38] A. Lejay, A Probabilistic Representation of the Solution of some Quasi-Linear PDE with a Divergence Form Operator: Application to Existence of

Weak Solution of FBSDE. Stoch Process Their Appl, 110(1)(2004), 145-176.
[39] D. G. Aronson, Non-negative Solutions of Linear Parabolic Equations. Ann Scuola Norm-Sci, 22(4)(1968), 607-694.
[40] S. Hamadène, and M. Hassani, BSDEs with Two Reflecting Barriers: The General Result. Probab Theory Relat Fields, 132(2)(2005), 237-264.
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