The Monoid Rank and Monoid Presentation of Order-Preserving and Order-Decreasing Full Contraction Mappings

Kemal Toker*

Abstract

Let $n \in \mathbb{Z}^{+}$and $X_{n}=\{1,2, \ldots, n\}$ be a finite set. Let $\mathcal{O} D C T_{n}$ be the order-preserving and orderdecreasing full contraction mappings on X_{n}. It is well known that $\mathcal{O} D C T_{n}$ is a monoid. In this paper, we have found the monoid rank and monoid presentation of $\mathcal{O} D C T_{n}$. In particular, we have proved that monoid rank of $\mathcal{O} D C T_{n}$ is $n-1$ for $n \in \mathbb{Z}^{+}$and $<a_{1}, a_{2}, \ldots, a_{n-1} \mid a_{i} a_{n-1}=a_{i}(1 \leq i \leq n-1), a_{i} a_{j}=$ $a_{j+1} a_{i}(1 \leq i \leq j \leq n-2)>$ is a monoid presentation of $\mathcal{O} D C T_{n}$ for $n \geq 3$.

Keywords: Contraction mappings; Generating set; Monoid presentation.
AMS Subject Classification (2020): 20M20.
*Corresponding author

1. Introduction

Let X be a non-empty set and let \mathcal{T}_{X} be the full transformation semigroup on X. Every semigroup is isomorphic to a subsemigroup of full transformation semigroup [7]. So, the full transformation semigroup is ubiquitous in the semigroup theory. Let $n \in \mathbb{Z}^{+}$and $X_{n}=\{1,2, \ldots, n\}$ be a finite set. We use \mathcal{T}_{n} instead of $\mathcal{T}_{X_{n}}$ for convenience.

Let M be a monoid and A be any subset of M. Then the submonoid of M by generated A (which is the smallest submonoid of M containing A) is denoted by $<A>$. If $<A>=M$ while the cardinality of A is a finite number, then M is called finitely generated monoid. With a similar idea, by replacing M by a semigroup S, one may define finitely generated semigroup as well.

The monoid rank of finitely generated monoid M is defined by

$$
\operatorname{rank}_{M}(M)=\min \{|A|:<A>=M\}
$$

Let $\mathcal{C} T_{n}$ be the full contraction transformations on X_{n}, it is defined by

$$
\mathcal{C} T_{n}=\left\{\alpha \in \mathcal{T}_{n}\left|\left(\forall x, y \in X_{n}\right)\right| x \alpha-y \alpha \mid \leq x-y\right\}
$$

and $\mathcal{C} T_{n}$ is a submonoid of \mathcal{T}_{n}. Let \mathcal{O}_{n} be the order-preserving full transformations on X_{n} and it is defined by

$$
\mathcal{O}_{n}=\left\{\alpha \in \mathcal{T}_{n} \mid\left(\forall x, y \in X_{n}\right) x \leq y \Longrightarrow x \alpha \leq y \alpha\right\}
$$

Let \mathcal{S}_{n} be the symmetric group on X_{n}. Gomes and Howie have found the semigroup rank of $\mathcal{O}_{n} \backslash \mathcal{S}_{n}=\mathcal{O}_{n} \backslash\left\{1_{S}\right\}$ where 1_{S} is the identity mapping of \mathcal{S}_{n} [5]. Let \mathcal{C}_{n} be the order-preserving and order-decreasing transformations on X_{n}, it is called Catalan monoid on X_{n} and it is defined by

$$
\mathcal{C}_{n}=\left\{\alpha \in \mathcal{O}_{n} \mid\left(\forall x \in X_{n}\right) x \alpha \leq x\right\} .
$$

There are some papers about \mathcal{C}_{n}, in the literature such as [2, 6]. Adeshola and Umar defined a semigroup which is $\mathcal{O}_{n} \cap \mathcal{C} T_{n}$ and they used $\mathcal{O} C T_{n}$ instead of $\mathcal{O}_{n} \cap \mathcal{C} T_{n}$. The cardinalities of some equivalences on $\mathcal{O} C T_{n}$ has been investigated by Adeshola and Umar [1]. Let

$$
\mathcal{D}_{n}=\left\{\alpha \in \mathcal{T}_{n} \mid\left(\forall x \in X_{n}\right) \quad x \alpha \leq x\right\}
$$

be the subsemigroup of \mathcal{T}_{n} consisting of all order-decreasing transformations of X_{n}. Moreover, Adeshola and Umar defined a semigroup which is $\mathcal{O} C T_{n} \cap \mathcal{D}_{n}$ and they used $\mathcal{O} D C T_{n}$ instead of $\mathcal{O} C T_{n} \cap \mathcal{D}_{n}$ [1]. $\mathcal{O} D C T_{n}$ is called order-preserving and order-decreasing full contraction mappings. Also, $\mathcal{O} D C T_{n}=\mathcal{C} T_{n} \cap \mathcal{C}_{n}$ thus $\mathcal{O} D C T_{n}$ is a submonoid of $\mathcal{O} C T_{n}$ and submonoid of \mathcal{C}_{n}.

Let A be a set, then we denote by A^{*} the free monoid on A. Let $R \subseteq A^{*} \times A^{*}$ is a set of pairs of words. An element (r, s) of R is called a relation, and is usually written $r=s$ instead of (r, s). Monoid presentation is an ordered pair $<A \mid R>$ which is the quotient monoid $A^{*} / R^{\#}$ where $R^{\#}$ is the smallest congruence on A^{*} containing R. Let M be the monoid defined by $<A \mid R>$. Let $w_{1}, w_{2} \in A^{*}$, if w_{1} and w_{2} are identical words on A^{*} then we write $w_{1} \equiv w_{2}$, and we write $w_{1}=w_{2}$ if they represent the same element of the monoid M, that is $\left(w_{1}, w_{2}\right) \in R^{\#}$. If $u_{1} \equiv x r y$ and $u_{2} \equiv x s y$ where $x, y \in A^{*}$ and $(r, s) \in R$ or $(s, r) \in R$ then, we say u_{2} is obtained from u_{1} by an application of one relation from R. We say that $w_{1}=w_{2}$ is a consequence of R, if w_{1} and w_{2} are identical words or if there exists a sequence $w_{1} \equiv u_{1} \rightarrow u_{2} \rightarrow \ldots \rightarrow u_{k} \equiv w_{2}$ where each u_{i+1} is obtained from $u_{i}(1 \leq i \leq k-1)$ by an application of one relation from R. Let T be any monoid, let B be a generating set for T, and let $\phi: A \rightarrow B$ be an onto mapping. ϕ can be extended in a unique way $\bar{\phi}: A^{*} \rightarrow T$. The monoid T is said to satisfy relations R if for each $(u, v) \in R$ we have $u \bar{\phi}=v \bar{\phi}$. We refer the readers to two theses about semigroup and monoid presentations [3, 8].

2. Preliminaries

Let $\alpha \in \mathcal{T}_{n}$, then the kernel and image of α are defined by

$$
\begin{aligned}
& \operatorname{ker}(\alpha)=\left\{(x, y) \in X_{n} \times X_{n} \mid x \alpha=y \alpha\right\} \\
& \operatorname{im}(\alpha)=\left\{x \alpha \mid x \in X_{n}\right\} .
\end{aligned}
$$

Moreover, it is well known that if $\alpha, \beta \in \mathcal{T}_{n}$ then $\operatorname{im}(\alpha \beta) \subseteq \operatorname{im}(\beta)$ and $\operatorname{ker}(\alpha \beta) \supseteq \operatorname{ker}(\alpha)$.
Definition 2.1. Let A be a non-empty subset of X_{n}. If $x, y \in A$ and $x \leq z \leq y \Longrightarrow z \in A$ for all $x, y \in A$, then A is called a convex subset of X_{n}.

If $\alpha \in \mathcal{T}_{n}$ is a contraction mapping then $\operatorname{im}(\alpha)$ is a convex subset of X_{n} [4]. Thus if $\alpha \in \mathcal{O} D C T_{n}$ then $\operatorname{im}(\alpha)$ is a convex subset of X_{n}. Moreover, from the definition of $\mathcal{O} D C T_{n}$ it is easy to see that if $\alpha \in \mathcal{O} D C T_{n}$ then $\operatorname{im}(\alpha)=\{1,2, \ldots, r\}$ for $1 \leq r \leq n$ and each equivalence kernel classes of α are convex subsets of X_{n}. Thus if $\alpha \in \mathcal{O} D C T_{n}$ then

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \ldots & A_{r} \\
1 & 2 & \ldots & r
\end{array}\right)
$$

for $1 \leq r \leq n$. Moreover, we have $x \geq i$ for $\forall x \in A_{i}$ and $\left\{A_{1}, A_{2}, \ldots A_{r}\right\}$ is a partition of X_{n}, if $a \in A_{i}$ and $b \in A_{j}$ for $1 \leq i<j \leq n$ then $a<b$.

3. The Monoid Rank of $O D C T_{n}$

In this section, we have found a minimal generating set of $\mathcal{O} D C T_{n}$ and we obtained the monoid rank of $\mathcal{O} D C T_{n}$. It is clear that $\left.\mathcal{O} D C T_{1}=\left\{\binom{1}{1}\right\}\right\}$ which is a clearly generated by empty set as a monoid and $\mathcal{O} D C T_{2}=$ $\left\{\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right)\right\}$ which is clearly generated by the element $\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$ as a monoid. Let $n \geq 3$ and $\mathcal{F}_{r}=$ $\left\{\alpha \in \mathcal{O} D C T_{n}:|\operatorname{im}(\alpha)|=r\right\}$ for $1 \leq r \leq n$. Notice that $\mathcal{F}_{n}=\left\{\epsilon=\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ 1 & 2 & \ldots & n\end{array}\right)\right\}$ where ϵ is the identity element of $\mathcal{O} D C T_{n}$.

Lemma 3.1. Let $n \geq 3$. If $\alpha \in \mathcal{F}_{r}$ then $\alpha \in<\mathcal{F}_{r+1}>$ for $1 \leq r \leq n-2$.
Proof. Let $n \geq 3$ and $\alpha \in \mathcal{F}_{r}$ for $1 \leq r \leq n-2$. Then we have

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \ldots & A_{r} \\
1 & 2 & \ldots & r
\end{array}\right)
$$

where $1 \leq r \leq n-2$, so there exists i such that $\left|A_{i}\right| \geq 2$ for $1 \leq i \leq r$. Let x_{i} be the maximum element in A_{i}. Let β be a mapping such that

$$
\beta=\left(\begin{array}{cccccccc}
A_{1} & \ldots & A_{i-1} & A_{i} \backslash\left\{x_{i}\right\} & \left\{x_{i}\right\} & A_{i+1} & \ldots & A_{r} \\
1 & \ldots & i-1 & i & i+1 & i+2 & \ldots & r+1
\end{array}\right)
$$

for $i>1$ and

$$
\beta=\left(\begin{array}{ccccc}
A_{1} \backslash\left\{x_{1}\right\} & \left\{x_{1}\right\} & A_{2} & \ldots & A_{r} \\
1 & 2 & 3 & \ldots & r+1
\end{array}\right)
$$

for $i=1$. Then it is clear that $\beta \in \mathcal{F}_{r+1}$. Let γ be the mapping defined as

$$
j \gamma=\left\{\begin{array}{ll}
j & \text { if } 1 \leq j \leq i \\
i & \text { if } j=i+1 \\
j-1 & \text { if } i+2 \leq j \leq r+1 \\
r+1 & \text { if } j>r+1
\end{array}\right\}
$$

then it is clear that $\gamma \in \mathcal{F}_{r+1}$ and $\alpha=\beta \gamma$, so $\alpha \in<\mathcal{F}_{r+1}>$.
Corollary 3.1. $\mathcal{F}_{r} \subseteq<\mathcal{F}_{r+1}>$ for each $1 \leq r \leq n-2$.
Corollary 3.2. Since \mathcal{F}_{n} is the set that has only the identity mapping of $\mathcal{O} D C T_{n}$ then we have $<\mathcal{F}_{n-1}>=\mathcal{O} D C T_{n}$ for $n \geq 3$.

Corollary 3.3 ([1]). $\left|\mathcal{F}_{r}\right|=\binom{n-1}{r-1}$ for $1 \leq r \leq n$.
Corollary 3.4. $\operatorname{rank}_{M}\left(\mathcal{O} D C T_{n}\right) \leq n-1$ for $n \in \mathbb{Z}^{+}$since $\left|\mathcal{F}_{n-1}\right|=n-1$.

Theorem 3.1. $\operatorname{rank}_{M}\left(\mathcal{O} D C T_{n}\right)=n-1$ for $n \in \mathbb{Z}^{+}$.
Proof. If $n=1$ or $n=2$ then result is clear, let $n \geq 3$. We have $\operatorname{rank}_{M}\left(\mathcal{O} D C T_{n}\right) \leq n-1$ from Corollary 3.4. Let

$$
\mathcal{O} D C T_{(n, r)}=\left\{\alpha \in \mathcal{O} D C T_{n}:|\operatorname{im}(\alpha)| \leq r\right\}
$$

for $1 \leq r \leq n-1$. It is clear that $\mathcal{O} D C T_{(n, r)}$ is an ideal of $\mathcal{O} D C T_{n}$. In particular, $\mathcal{O} D C T_{(n, n-2)}$ is an ideal of $\mathcal{O} D C T_{n}$. Moreover, there are $n-1$ different kernel classes in \mathcal{F}_{n-1} and we have $\mathcal{F}_{n}=\{\epsilon\}$, so $\operatorname{rank}_{M}\left(\mathcal{O} D C T_{n}\right) \geq n-1$. Thus we have concluded that $\operatorname{rank}_{M}\left(\mathcal{O} D C T_{n}\right)=n-1$ for $n \in \mathbb{Z}^{+}$.

4. The Monoid Presentation of $O D C T_{n}$

In this section, we have found a monoid presentation of $\mathcal{O} D C T_{n}$ for $n \geq 3$.
Proposition 4.1 ([8]). Let A be a set and let M be any monoid. Then any mapping $\phi: A \rightarrow M$ can be extended in a unique way to a homomorphism $\bar{\phi}: A^{*} \rightarrow M$.
Definition 4.1. Let M be any monoid, let B be a generating set of M, and let $\phi: A \rightarrow B$ be an onto mapping. By Proposition 4.1 the mapping ϕ can be extended in a unique way to an epimorphism $\bar{\phi}: A^{*} \rightarrow M_{\underline{L}}$ Let $\underline{R} \subseteq A^{*} \times A^{*}$ be a set of relations. The monoid M is said to satisfy relations R if for each $(u, v) \in R$ we have $u \bar{\phi}=v \bar{\phi}$.

Let M be a finite monoid, $A \subseteq M$ and $<A>=M$. Let $R \subseteq A^{*} \times A^{*}$ be a set of relations, and let $W \subseteq A^{*}$. It is well known that if
(i) the generators A of M satisfy all the relations from R
(ii) for each word $w \in A^{*}$ there exists a word $\bar{w} \in W$ such that $w=\bar{w}$ is a consequence of R
(iii) $|W| \leq|M|$
then $<A \mid R>$ is a monoid presentation of M.
Let $n \geq 3$ and α_{i} be the mapping defined as

$$
\alpha_{i}=\left(\begin{array}{cccccccc}
1 & \ldots & i-1 & i & i+1 & i+2 & \ldots & n \\
1 & \ldots & i-1 & i & i & i+1 & \ldots & n-1
\end{array}\right)
$$

for $2 \leq i \leq n-1$ and

$$
\alpha_{1}=\left(\begin{array}{ccccc}
1 & 2 & 3 & \ldots & n \\
1 & 1 & 2 & \ldots & n-1
\end{array}\right)
$$

then it is clear that $\mathcal{F}_{n-1}=\left\{\alpha_{i} \mid 1 \leq i \leq n-1\right\}$.
Lemma 4.1. Let $n \geq 3$ and α_{i} be defined as above then $\alpha_{i} \alpha_{n-1}=\alpha_{i}$ for $1 \leq i \leq n-1$. In particular, $\left(\alpha_{n-1}\right)^{2}=\alpha_{n-1}$.
Proof. Let $n \geq 3$ and α_{i} be defined as above, then

$$
\alpha_{n-1}=\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
1 & 2 & \ldots & n-1 & n-1
\end{array}\right) .
$$

$1\left(\alpha_{i} \alpha_{n-1}\right)=1$ and $n\left(\alpha_{i} \alpha_{n-1}\right)=n-1$, we have $\operatorname{im}\left(\alpha_{i} \alpha_{n-1}\right)=\{1,2, \ldots, n-1\}$ from the definition of $\mathcal{O} D C T_{n}$. Moreover, $i\left(\alpha_{i} \alpha_{n-1}\right)=i$ and $(i+1)\left(\alpha_{i} \alpha_{n-1}\right)=i$, so $\alpha_{i} \alpha_{n-1}=\alpha_{i}$ for $1 \leq i \leq n-1$.

Lemma 4.2. Let $n \geq 3$ and α_{i} be defined as above then $\alpha_{i} \alpha_{j}=\alpha_{j+1} \alpha_{i}$ for $1 \leq i \leq j \leq n-2$.
Proof. Let $n \geq 3, \alpha_{i}$ be defined as above and $1 \leq i \leq j \leq n-2$. It is clear that $1\left(\alpha_{i} \alpha_{j}\right)=1$ and $n\left(\alpha_{i} \alpha_{j}\right)=n-1\left(\alpha_{j}\right)=$ $n-2$ since $1 \leq i \leq j \leq n-2$. Thus $\operatorname{im}\left(\alpha_{i} \alpha_{j}\right)=\{1,2, \ldots, n-2\}$ from the definition of $\mathcal{O} D C T_{n}$. Moreover we have

$$
\begin{gathered}
i\left(\alpha_{i} \alpha_{j}\right)=i \alpha_{j}=i \\
(i+1)\left(\alpha_{i} \alpha_{j}\right)=i \alpha_{j}=i \\
(j+1)\left(\alpha_{i} \alpha_{j}\right)=j \alpha_{j}=j \\
(j+2)\left(\alpha_{i} \alpha_{j}\right)=(j+1) \alpha_{j}=j .
\end{gathered}
$$

Also, $1\left(\alpha_{j+1} \alpha_{i}\right)=1$ and $n\left(\alpha_{j+1} \alpha_{i}\right)=(n-1) \alpha_{i}=n-2$ thus $\operatorname{im}\left(\alpha_{j+1} \alpha_{i}\right)=\{1,2, \ldots, n-2\}$ from the definition of $\mathcal{O} D C T_{n}$. Moreover we have

$$
\begin{aligned}
i\left(\alpha_{j+1} \alpha_{i}\right) & =i \alpha_{i}=i \\
(i+1)\left(\alpha_{j+1} \alpha_{i}\right) & =(i+1) \alpha_{i}=i \\
(j+1)\left(\alpha_{j+1} \alpha_{i}\right) & =(j+1) \alpha_{i}=j \\
(j+2)\left(\alpha_{j+1} \alpha_{i}\right) & =(j+1) \alpha_{i}=j
\end{aligned}
$$

Therefore, $x\left(\alpha_{i} \alpha_{j}\right)=x\left(\alpha_{j+1} \alpha_{i}\right)$ for $\forall x \in X_{n}$. It follows that $\alpha_{i} \alpha_{j}=\alpha_{j+1} \alpha_{i}$ for $1 \leq i \leq j \leq n-2$.

Definition 4.2. Let A be a finite set and $w=a_{1} a_{2} \ldots a_{k}$ for $a_{i} \in A$ and $1 \leq i \leq k$. Length of w is defined as k and we write $l(w)=k$ and if w is empty word then the length of w is defined as 0 (zero) and we write $l(w)=0$.
Theorem 4.1. Let $n \geq 3$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n-1}\right\}$ and $R=\left\{a_{i} a_{n-1}=a_{i}(1 \leq i \leq n-1), a_{i} a_{j}=a_{j+1} a_{i} \quad(1 \leq i \leq\right.$ $j \leq n-2)\}$. Then $<A \mid R>$ is a monoid presentation of $\mathcal{O} D C T_{n}$ for $n \geq 3$.

Proof. Let $n \geq 3$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n-1}\right\}$ and $R=\left\{a_{i} a_{n-1}=a_{i}(1 \leq i \leq n-1), a_{i} a_{j}=a_{j+1} a_{i}(1 \leq i \leq j \leq\right.$ $n-2)\}$. Let $f: A \rightarrow \mathcal{F}_{n-1}$ be the mapping such that $a_{i} f=\alpha_{i}$. There exists a unique epimorpish $\bar{f}: A^{*} \rightarrow \mathcal{O} D C T_{n}$ extending the f. Thus $\mathcal{O} D C T_{n}$ satisfies all the relations from R since Lemma 4.1 and Lemma 4.2. Let ε is the empty word and

$$
W=\left\{a_{j_{k}} a_{j_{k-1}} \ldots a_{j_{1}} \mid n-1 \geq j_{k}>j_{k-1}>\ldots>j_{1} \geq 1\right\} \cup\{\varepsilon\}
$$

Thus it is clear that $W \subseteq A^{*}$ and $|W|=2^{n-1}$. Let $w \in A^{*}$ and $l(w)=m$. We will show that there exists $\bar{w} \in W$ such that $w=\bar{w}$ is a consequence of R. We use induction on m. If $m=0$ or $m=1$, then the result is clear. Let $m \geq 2$, then $w \equiv w_{1} w_{2}$ where $l\left(w_{1}\right)=m-1$ and $l\left(w_{2}\right)=1$. Thus $w_{2} \in A$, moreover we have $w_{1}=\overline{w_{1}}$ such that $\overline{w_{1}} \in W$ from the induction hypothesis. So $w=\overline{w_{1}} w_{2}$. If $\overline{w_{1}} \equiv \varepsilon$ then result is clear. Let $\overline{w_{1}} \not \equiv \varepsilon$. Then,

$$
\overline{w_{1}} \equiv a_{t_{p}} a_{t_{p-1}} \ldots a_{t_{1}}
$$

where $n-1 \geq t_{p}>t_{p-1}>\ldots>t_{1} \geq 1$ and $w=a_{t_{p}} a_{t_{p-1}} \ldots a_{t_{1}} w_{2}$. If $w_{2} \equiv a_{n-1}$ then

$$
\begin{gathered}
w=a_{t_{p}} a_{t_{p-1}} \ldots a_{t_{1}} a_{n-1} \\
w=a_{t_{p}} a_{t_{p-1}} \ldots a_{t_{1}}
\end{gathered}
$$

so in this case $w=\overline{w_{1}}$ and $\overline{w_{1}} \in W$. Let $w_{2} \equiv a_{i}$ where $1 \leq i \leq n-2$. Then

$$
w=a_{t_{p}} a_{t_{p-1}} \ldots a_{t_{1}} a_{i}
$$

if $t_{1}>i$ then we have $\bar{w} \equiv a_{t_{p}} a_{t_{p-1}} \ldots a_{t_{1}} a_{i}$ and $w=\bar{w}, \bar{w} \in W$. If $t_{1} \leq i$ then

$$
\begin{gathered}
w=a_{t_{p}} a_{t_{p-1}} \ldots a_{t_{2}} a_{t_{1}} a_{i} \\
w=a_{t_{p}} a_{t_{p-1}} \ldots a_{t_{2}} a_{i+1} a_{t_{1}} .
\end{gathered}
$$

If $p=1$ then result is clear, let $p \geq 2$. If $t_{2}>i+1$ then we have $\bar{w} \equiv a_{t_{p}} a_{t_{p-1}} \ldots a_{t_{2}} a_{i+1} a_{t_{1}}$ and $w=\bar{w}, \bar{w} \in W$. If $i+1=n-1$ then

$$
\begin{gathered}
w=a_{t_{p}} a_{t_{p-1}} \ldots a_{t_{2}} a_{i+1} a_{t_{1}} \\
w=a_{t_{p}} a_{t_{p-1}} \ldots a_{t_{2}} a_{n-1} a_{t_{1}} \\
w=a_{t_{p}} a_{t_{p-1}} \ldots a_{t_{2}} a_{t_{1}},
\end{gathered}
$$

so in this case $\bar{w} \equiv a_{t_{p}} a_{t_{p-1}} \ldots a_{t_{2}} a_{t_{1}}$ and $w=\bar{w}, \bar{w} \in W$. If $t_{2} \leq i+1<n-1$ then we have

$$
\begin{aligned}
w & =a_{t_{p}} a_{t_{p-1}} \ldots a_{t_{2}} a_{i+1} a_{t_{1}} \\
w & =a_{t_{p}} a_{t_{p-1}} \ldots a_{i+2} a_{t_{2}} a_{t_{1}}
\end{aligned}
$$

If we use the same algorithm, it is clear that finally we conclude that there exists a word $\bar{w} \in W$ such that $w=\bar{w}$ is a consequence of R. Moreover, $|W|=\left|\mathcal{O} D C T_{n}\right|=2^{n-1}$, it follows that $<A \mid R>$ is a monoid presentation of $\mathcal{O} D C T_{n}$ for $n \geq 3$.

5. Conclusion

In this paper we have found monoid rank of $\mathcal{O} D C T_{n}$ for $n \in \mathbb{Z}^{+}$. Moreover since $\mathcal{O} D C T_{1}$ is a trivial monoid and $\mathcal{O} D C T_{2}$ is a monogenic monoid, we give a monoid presentation of $\mathcal{O} D C T_{n}$ for $n \geq 3$. Recently, the rank of $\mathcal{O} C T_{n}$ and the rank of $\mathcal{O} R C T_{n}$ have been found, finding presentation problem can be considered on those semigroups as a future work.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

[1] Adeshola, A.D., Umar, A.: Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain. Journal of Combinatorial Mathematics and Combinatorial Computing. 106, 37-49 (2018).
[2] Ayık, G., Ayık H., Koç, M.: Combinatorial results for order-preserving and order-decreasing transformations. Turkish Journal of Mathematics. 35 (4), 617-625 (2011).
[3] Ayık, H.: Presentations and efficiency of semigroups. Ph. D. Thesis. Universtiy of St Andrews (1998).
[4] Garba, G.U., Ibrahim, M.J., Imam, A.T.: On certain semigroups of full contraction maps of a finite chain. Turkish Journal of Mathematics. 41 (3), 500-507 (2017).
[5] Gomes, M.S., Howie, J.M.: On the ranks of certain semigroups of order-preserving transformations. Semigroup Forum. 45 (1), 272-282 (1992).
[6] Higgins, P.M.: Combinatorial results for semigroups of order-preserving mappings. Mathematical Proceedings of the Cambridge Philosophical Society. 113 (2), 281-296 (1993).
[7] Howie, J.M.: Fundamentals of semigroup theory. Oxford University Press. New York (1995).
[8] Ruskuc, N.: Semigroup presentations. Ph. D. Thesis. Universtiy of St Andrews (1995).

Affiliations

Kemal Toker
Address: Harran University, Department of Mathematics, Faculty of Science and Literature, 63000, Şanlıurfa Turkey.
E-MAIL: ktoker@harran.edu.tr
ORCID ID: 0000-0003-3696-1324

