
MATHEMATICAL SCIENCES AND APPLICATIONS

E-NOTES
https://doi.org/10.36753 /mathenot.807993
9 (4) 170-175 (2021) - Research Article
ISSN: 2147-6268
c©MSAEN

The Monoid Rank and Monoid Presentation of
Order-Preserving and Order-Decreasing Full

Contraction Mappings
Kemal Toker*

Abstract
Let n ∈ Z+ and Xn = {1, 2, . . . , n} be a finite set. Let ODCTn be the order-preserving and order-
decreasing full contraction mappings on Xn. It is well known that ODCTn is a monoid. In this paper, we
have found the monoid rank and monoid presentation of ODCTn. In particular, we have proved that
monoid rank of ODCTn is n− 1 for n ∈ Z+ and < a1, a2, . . . , an−1 | aian−1 = ai (1 ≤ i ≤ n− 1), aiaj =
aj+1ai (1 ≤ i ≤ j ≤ n− 2) > is a monoid presentation of ODCTn for n ≥ 3.
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1. Introduction
Let X be a non-empty set and let TX be the full transformation semigroup on X . Every semigroup is isomorphic

to a subsemigroup of full transformation semigroup [7]. So, the full transformation semigroup is ubiquitous in the
semigroup theory. Let n ∈ Z+ and Xn = {1, 2, . . . , n} be a finite set. We use Tn instead of TXn

for convenience.
Let M be a monoid and A be any subset of M . Then the submonoid of M by generated A (which is the smallest

submonoid of M containing A) is denoted by < A >. If < A >= M while the cardinality of A is a finite number,
then M is called finitely generated monoid. With a similar idea, by replacing M by a semigroup S, one may define
finitely generated semigroup as well.

The monoid rank of finitely generated monoid M is defined by

rankM (M) = min{|A| :< A >= M}.

Let CTn be the full contraction transformations on Xn, it is defined by

CTn = {α ∈ Tn | (∀x, y ∈ Xn) |xα− yα| ≤ x− y}
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and CTn is a submonoid of Tn. Let On be the order-preserving full transformations on Xn and it is defined by

On = {α ∈ Tn | (∀x, y ∈ Xn) x ≤ y =⇒ xα ≤ yα}.

Let Sn be the symmetric group on Xn. Gomes and Howie have found the semigroup rank of On \ Sn = On \ {1S}
where 1S is the identity mapping of Sn [5]. Let Cn be the order-preserving and order-decreasing transformations on
Xn, it is called Catalan monoid on Xn and it is defined by

Cn = {α ∈ On | (∀x ∈ Xn) xα ≤ x}.

There are some papers about Cn, in the literature such as [2, 6]. Adeshola and Umar defined a semigroup which
is On ∩ CTn and they used OCTn instead of On ∩ CTn. The cardinalities of some equivalences on OCTn has been
investigated by Adeshola and Umar [1]. Let

Dn = {α ∈ Tn | (∀x ∈ Xn) xα ≤ x}

be the subsemigroup of Tn consisting of all order-decreasing transformations of Xn. Moreover, Adeshola and Umar
defined a semigroup which is OCTn ∩ Dn and they used ODCTn instead of OCTn ∩ Dn [1]. ODCTn is called
order-preserving and order-decreasing full contraction mappings. Also, ODCTn = CTn ∩ Cn thus ODCTn is a
submonoid of OCTn and submonoid of Cn.

Let A be a set, then we denote by A∗ the free monoid on A. Let R ⊆ A∗ × A∗ is a set of pairs of words. An
element (r, s) of R is called a relation, and is usually written r = s instead of (r, s). Monoid presentation is an
ordered pair< A | R >which is the quotient monoidA∗/R# whereR# is the smallest congruence onA∗ containing
R. Let M be the monoid defined by < A | R >. Let w1, w2 ∈ A∗, if w1 and w2 are identical words on A∗ then we
write w1 ≡ w2, and we write w1 = w2 if they represent the same element of the monoid M , that is (w1, w2) ∈ R#.
If u1 ≡ xry and u2 ≡ xsy where x, y ∈ A∗ and (r, s) ∈ R or (s, r) ∈ R then, we say u2 is obtained from u1 by an
application of one relation from R. We say that w1 = w2 is a consequence of R, if w1 and w2 are identical words or if
there exists a sequence w1 ≡ u1 → u2 → . . .→ uk ≡ w2 where each ui+1 is obtained from ui (1 ≤ i ≤ k − 1) by an
application of one relation from R. Let T be any monoid, let B be a generating set for T , and let φ : A→ B be an
onto mapping. φ can be extended in a unique way φ̄ : A∗ → T . The monoid T is said to satisfy relations R if for
each (u, v) ∈ R we have uφ̄ = vφ̄. We refer the readers to two theses about semigroup and monoid presentations
[3, 8].

2. Preliminaries
Let α ∈ Tn, then the kernel and image of α are defined by

ker(α) = {(x, y) ∈ Xn ×Xn | xα = yα}

im(α) = {xα | x ∈ Xn}.

Moreover, it is well known that if α, β ∈ Tn then im(αβ) ⊆ im(β) and ker(αβ) ⊇ ker(α).

Definition 2.1. Let A be a non-empty subset of Xn. If x, y ∈ A and x ≤ z ≤ y =⇒ z ∈ A for all x, y ∈ A, then A is
called a convex subset of Xn.

If α ∈ Tn is a contraction mapping then im(α) is a convex subset of Xn [4]. Thus if α ∈ ODCTn then im(α)
is a convex subset of Xn. Moreover, from the definition of ODCTn it is easy to see that if α ∈ ODCTn then
im(α) = {1, 2, . . . , r} for 1 ≤ r ≤ n and each equivalence kernel classes of α are convex subsets of Xn. Thus if
α ∈ ODCTn then

α =

(
A1 A2 . . . Ar

1 2 . . . r

)
for 1 ≤ r ≤ n. Moreover, we have x ≥ i for ∀x ∈ Ai and {A1, A2, . . . Ar} is a partition of Xn, if a ∈ Ai and b ∈ Aj

for 1 ≤ i < j ≤ n then a < b.
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3. The Monoid Rank of ODCTn

In this section, we have found a minimal generating set of ODCTn and we obtained the monoid rank of

ODCTn. It is clear that ODCT1 = {
(

1
1

)
}} which is a clearly generated by empty set as a monoid and ODCT2 =

{
(

1 2
1 1

)
,

(
1 2
1 2

)
} which is clearly generated by the element

(
1 2
1 1

)
as a monoid. Let n ≥ 3 and Fr =

{α ∈ ODCTn : |im(α)| = r} for 1 ≤ r ≤ n. Notice that Fn = {ε =

(
1 2 . . . n
1 2 . . . n

)
} where ε is the identity

element of ODCTn.

Lemma 3.1. Let n ≥ 3. If α ∈ Fr then α ∈< Fr+1 > for 1 ≤ r ≤ n− 2.

Proof. Let n ≥ 3 and α ∈ Fr for 1 ≤ r ≤ n− 2. Then we have

α =

(
A1 A2 . . . Ar

1 2 . . . r

)
where 1 ≤ r ≤ n− 2, so there exists i such that |Ai| ≥ 2 for 1 ≤ i ≤ r. Let xi be the maximum element in Ai. Let β
be a mapping such that

β =

(
A1 . . . Ai−1 Ai \ {xi} {xi} Ai+1 . . . Ar

1 . . . i− 1 i i+ 1 i+ 2 . . . r + 1

)
for i > 1 and

β =

(
A1 \ {x1} {x1} A2 . . . Ar

1 2 3 . . . r + 1

)
for i = 1. Then it is clear that β ∈ Fr+1. Let γ be the mapping defined as

jγ =


j if 1 ≤ j ≤ i
i if j = i+ 1
j − 1 if i+ 2 ≤ j ≤ r + 1
r + 1 if j > r + 1


then it is clear that γ ∈ Fr+1 and α = βγ, so α ∈< Fr+1 >.

Corollary 3.1. Fr ⊆< Fr+1 > for each 1 ≤ r ≤ n− 2.

Corollary 3.2. Since Fn is the set that has only the identity mapping of ODCTn then we have < Fn−1 >= ODCTn for
n ≥ 3.

Corollary 3.3 ([1]). |Fr| =
(
n−1
r−1

)
for 1 ≤ r ≤ n.

Corollary 3.4. rankM (ODCTn) ≤ n− 1 for n ∈ Z+ since |Fn−1| = n− 1.

Corollary 3.5 ([1]). |ODCTn| = 2n−1 for n ≥ 1.

Theorem 3.1. rankM (ODCTn) = n− 1 for n ∈ Z+.

Proof. If n = 1 or n = 2 then result is clear, let n ≥ 3. We have rankM (ODCTn) ≤ n− 1 from Corollary 3.4. Let

ODCT(n,r) = {α ∈ ODCTn : |im(α)| ≤ r}

for 1 ≤ r ≤ n−1. It is clear thatODCT(n,r) is an ideal ofODCTn. In particular,ODCT(n,n−2) is an ideal ofODCTn.
Moreover, there are n− 1 different kernel classes in Fn−1 and we have Fn = {ε}, so rankM (ODCTn) ≥ n− 1. Thus
we have concluded that rankM (ODCTn) = n− 1 for n ∈ Z+.
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4. The Monoid Presentation of ODCTn

In this section, we have found a monoid presentation of ODCTn for n ≥ 3.

Proposition 4.1 ([8]). Let A be a set and let M be any monoid. Then any mapping φ : A→M can be extended in a unique
way to a homomorphism φ : A∗ →M .

Definition 4.1. Let M be any monoid, let B be a generating set of M , and let φ : A→ B be an onto mapping. By
Proposition 4.1 the mapping φ can be extended in a unique way to an epimorphism φ : A∗ →M . Let R ⊆ A∗ ×A∗

be a set of relations. The monoid M is said to satisfy relations R if for each (u, v) ∈ R we have uφ = vφ.

Let M be a finite monoid, A ⊆M and < A >= M . Let R ⊆ A∗ ×A∗ be a set of relations, and let W ⊆ A∗. It is
well known that if

(i) the generators A of M satisfy all the relations from R

(ii) for each word w ∈ A∗ there exists a word w ∈W such that w = w is a consequence of R

(iii) |W | ≤ |M |

then < A | R > is a monoid presentation of M .
Let n ≥ 3 and αi be the mapping defined as

αi =

(
1 . . . i− 1 i i+ 1 i+ 2 . . . n
1 . . . i− 1 i i i+ 1 . . . n− 1

)
for 2 ≤ i ≤ n− 1 and

α1 =

(
1 2 3 . . . n
1 1 2 . . . n− 1

)
,

then it is clear that Fn−1 = {αi | 1 ≤ i ≤ n− 1}.

Lemma 4.1. Let n ≥ 3 and αi be defined as above then αiαn−1 = αi for 1 ≤ i ≤ n− 1. In particular, (αn−1)2 = αn−1.

Proof. Let n ≥ 3 and αi be defined as above, then

αn−1 =

(
1 2 . . . n− 1 n
1 2 . . . n− 1 n− 1

)
.

1(αiαn−1) = 1 and n(αiαn−1) = n − 1, we have im(αiαn−1) = {1, 2, . . . , n − 1} from the definition of ODCTn.
Moreover, i(αiαn−1) = i and (i+ 1)(αiαn−1) = i, so αiαn−1 = αi for 1 ≤ i ≤ n− 1.

Lemma 4.2. Let n ≥ 3 and αi be defined as above then αiαj = αj+1αi for 1 ≤ i ≤ j ≤ n− 2.

Proof. Let n ≥ 3, αi be defined as above and 1 ≤ i ≤ j ≤ n−2. It is clear that 1(αiαj) = 1 and n(αiαj) = n−1(αj) =
n− 2 since 1 ≤ i ≤ j ≤ n− 2. Thus im(αiαj) = {1, 2, . . . , n− 2} from the definition of ODCTn. Moreover we have

i(αiαj) = iαj = i

(i+ 1)(αiαj) = iαj = i

(j + 1)(αiαj) = jαj = j

(j + 2)(αiαj) = (j + 1)αj = j.

Also, 1(αj+1αi) = 1 and n(αj+1αi) = (n− 1)αi = n− 2 thus im(αj+1αi) = {1, 2, . . . , n− 2} from the definition of
ODCTn. Moreover we have

i(αj+1αi) = iαi = i

(i+ 1)(αj+1αi) = (i+ 1)αi = i

(j + 1)(αj+1αi) = (j + 1)αi = j

(j + 2)(αj+1αi) = (j + 1)αi = j.

Therefore, x(αiαj) = x(αj+1αi) for ∀x ∈ Xn. It follows that αiαj = αj+1αi for 1 ≤ i ≤ j ≤ n− 2.
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Definition 4.2. Let A be a finite set and w = a1a2 . . . ak for ai ∈ A and 1 ≤ i ≤ k. Length of w is defined as k and
we write l(w) = k and if w is empty word then the length of w is defined as 0 (zero) and we write l(w) = 0.

Theorem 4.1. Let n ≥ 3. Let A = {a1, a2, . . . , an−1} and R = {aian−1 = ai (1 ≤ i ≤ n− 1), aiaj = aj+1ai (1 ≤ i ≤
j ≤ n− 2)}. Then < A | R > is a monoid presentation of ODCTn for n ≥ 3.

Proof. Let n ≥ 3. Let A = {a1, a2, . . . , an−1} and R = {aian−1 = ai (1 ≤ i ≤ n − 1), aiaj = aj+1ai (1 ≤ i ≤ j ≤
n− 2)}. Let f : A→ Fn−1 be the mapping such that aif = αi. There exists a unique epimorpish f : A∗ → ODCTn
extending the f . Thus ODCTn satisfies all the relations from R since Lemma 4.1 and Lemma 4.2. Let ε is the empty
word and

W = {ajkajk−1
. . . aj1 | n− 1 ≥ jk > jk−1 > . . . > j1 ≥ 1} ∪ {ε}.

Thus it is clear that W ⊆ A∗ and |W | = 2n−1. Let w ∈ A∗ and l(w) = m. We will show that there exists w ∈W such
that w = w is a consequence of R. We use induction on m. If m = 0 or m = 1, then the result is clear. Let m ≥ 2,
then w ≡ w1w2 where l(w1) = m− 1 and l(w2) = 1. Thus w2 ∈ A, moreover we have w1 = w1 such that w1 ∈ W
from the induction hypothesis. So w = w1w2. If w1 ≡ ε then result is clear. Let w1 6≡ ε. Then,

w1 ≡ atpatp−1
. . . at1

where n− 1 ≥ tp > tp−1 > . . . > t1 ≥ 1 and w = atpatp−1
. . . at1w2. If w2 ≡ an−1 then

w = atpatp−1
. . . at1an−1

w = atpatp−1
. . . at1

so in this case w = w1 and w1 ∈W . Let w2 ≡ ai where 1 ≤ i ≤ n− 2. Then

w = atpatp−1
. . . at1ai,

if t1 > i then we have w ≡ atpatp−1
. . . at1ai and w = w, w ∈W . If t1 ≤ i then

w = atpatp−1
. . . at2at1ai

w = atpatp−1 . . . at2ai+1at1 .

If p = 1 then result is clear, let p ≥ 2. If t2 > i + 1 then we have w ≡ atpatp−1
. . . at2ai+1at1 and w = w, w ∈ W . If

i+ 1 = n− 1 then
w = atpatp−1 . . . at2ai+1at1

w = atpatp−1 . . . at2an−1at1

w = atpatp−1 . . . at2at1 ,

so in this case w ≡ atpatp−1 . . . at2at1 and w = w, w ∈W . If t2 ≤ i+ 1 < n− 1 then we have

w = atpatp−1 . . . at2ai+1at1

w = atpatp−1 . . . ai+2at2at1 .

If we use the same algorithm, it is clear that finally we conclude that there exists a word w ∈W such that w = w
is a consequence of R. Moreover, |W | = |ODCTn| = 2n−1, it follows that < A | R > is a monoid presentation of
ODCTn for n ≥ 3.

5. Conclusion
In this paper we have found monoid rank ofODCTn for n ∈ Z+. Moreover sinceODCT1 is a trivial monoid and

ODCT2 is a monogenic monoid, we give a monoid presentation of ODCTn for n ≥ 3. Recently, the rank of OCTn
and the rank of ORCTn have been found, finding presentation problem can be considered on those semigroups as
a future work.

Funding

There is no funding for this work.



Order-Preserving and Order-Decreasing Full Contraction Mappings 175

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References
[1] Adeshola, A.D., Umar, A.: Combinatorial results for certain semigroups of order-preserving full contraction mappings

of a finite chain. Journal of Combinatorial Mathematics and Combinatorial Computing. 106, 37-49 (2018).

[2] Ayık, G., Ayık H., Koç, M.: Combinatorial results for order-preserving and order-decreasing transformations. Turkish
Journal of Mathematics. 35 (4), 617-625 (2011).

[3] Ayık, H.: Presentations and efficiency of semigroups. Ph. D. Thesis. Universtiy of St Andrews (1998).

[4] Garba, G.U., Ibrahim, M.J., Imam, A.T.: On certain semigroups of full contraction maps of a finite chain. Turkish
Journal of Mathematics. 41 (3), 500-507 (2017).

[5] Gomes, M.S., Howie, J.M.: On the ranks of certain semigroups of order-preserving transformations. Semigroup Forum.
45 (1), 272-282 (1992).

[6] Higgins, P.M.: Combinatorial results for semigroups of order-preserving mappings. Mathematical Proceedings of the
Cambridge Philosophical Society. 113 (2), 281-296 (1993).

[7] Howie, J.M.: Fundamentals of semigroup theory. Oxford University Press. New York (1995).

[8] Ruskuc, N.: Semigroup presentations. Ph. D. Thesis. Universtiy of St Andrews (1995).

Affiliations

KEMAL TOKER
ADDRESS: Harran University, Department of Mathematics, Faculty of Science and Literature, 63000, Şanlıurfa -
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