MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES

https://doi.org/10.36753 /mathenot.807993 9 (4) 170-175 (2021) - Research Article ISSN: 2147-6268 ©MSAEN

The Monoid Rank and Monoid Presentation of Order-Preserving and Order-Decreasing Full Contraction Mappings

Kemal Toker*

Abstract

Let $n \in \mathbb{Z}^+$ and $X_n = \{1, 2, ..., n\}$ be a finite set. Let \mathcal{ODCT}_n be the order-preserving and orderdecreasing full contraction mappings on X_n . It is well known that \mathcal{ODCT}_n is a monoid. In this paper, we have found the monoid rank and monoid presentation of \mathcal{ODCT}_n . In particular, we have proved that monoid rank of \mathcal{ODCT}_n is n - 1 for $n \in \mathbb{Z}^+$ and $\langle a_1, a_2, \ldots, a_{n-1} | a_i a_{n-1} = a_i \ (1 \le i \le n-1), a_i a_j = a_{j+1}a_i \ (1 \le i \le j \le n-2) \rangle$ is a monoid presentation of \mathcal{ODCT}_n for $n \ge 3$.

Keywords: Contraction mappings; Generating set; Monoid presentation.

AMS Subject Classification (2020): 20M20.

*Corresponding author

1. Introduction

Let *X* be a non-empty set and let \mathcal{T}_X be the full transformation semigroup on *X*. Every semigroup is isomorphic to a subsemigroup of full transformation semigroup [7]. So, the full transformation semigroup is ubiquitous in the semigroup theory. Let $n \in \mathbb{Z}^+$ and $X_n = \{1, 2, ..., n\}$ be a finite set. We use \mathcal{T}_n instead of \mathcal{T}_{X_n} for convenience.

Let *M* be a monoid and A be any subset of *M*. Then the submonoid of *M* by generated *A* (which is the smallest submonoid of *M* containing *A*) is denoted by $\langle A \rangle$. If $\langle A \rangle = M$ while the cardinality of *A* is a finite number, then *M* is called finitely generated monoid. With a similar idea, by replacing *M* by a semigroup *S*, one may define finitely generated semigroup as well.

The monoid rank of finitely generated monoid M is defined by

$$\operatorname{rank}_{M}(M) = \min\{|A| : < A > = M\}.$$

Let CT_n be the full contraction transformations on X_n , it is defined by

 $\mathcal{C}T_n = \{ \alpha \in \mathcal{T}_n \mid (\forall x, y \in X_n) \mid x\alpha - y\alpha \mid \le x - y \}$

and CT_n is a submonoid of T_n . Let \mathcal{O}_n be the order-preserving full transformations on X_n and it is defined by

$$\mathcal{O}_n = \{ \alpha \in \mathcal{T}_n \mid (\forall x, y \in X_n) \ x \le y \implies x\alpha \le y\alpha \}.$$

Let S_n be the symmetric group on X_n . Gomes and Howie have found the semigroup rank of $\mathcal{O}_n \setminus S_n = \mathcal{O}_n \setminus \{1_S\}$ where 1_S is the identity mapping of S_n [5]. Let \mathcal{C}_n be the order-preserving and order-decreasing transformations on X_n , it is called Catalan monoid on X_n and it is defined by

$$\mathcal{C}_n = \{ \alpha \in \mathcal{O}_n \mid (\forall x \in X_n) \ x \alpha \le x \}.$$

There are some papers about C_n , in the literature such as [2, 6]. Adeshola and Umar defined a semigroup which is $\mathcal{O}_n \cap \mathcal{C}T_n$ and they used $\mathcal{O}CT_n$ instead of $\mathcal{O}_n \cap \mathcal{C}T_n$. The cardinalities of some equivalences on $\mathcal{O}CT_n$ has been investigated by Adeshola and Umar [1]. Let

$$\mathcal{D}_n = \{ \alpha \in \mathcal{T}_n \mid (\forall x \in X_n) \ x \alpha \le x \}$$

be the subsemigroup of \mathcal{T}_n consisting of all order-decreasing transformations of X_n . Moreover, Adeshola and Umar defined a semigroup which is $\mathcal{O}CT_n \cap \mathcal{D}_n$ and they used $\mathcal{O}DCT_n$ instead of $\mathcal{O}CT_n \cap \mathcal{D}_n$ [1]. $\mathcal{O}DCT_n$ is called order-preserving and order-decreasing full contraction mappings. Also, $\mathcal{O}DCT_n = \mathcal{C}T_n \cap \mathcal{C}_n$ thus $\mathcal{O}DCT_n$ is a submonoid of $\mathcal{O}CT_n$ and submonoid of \mathcal{C}_n .

Let *A* be a set, then we denote by A^* the free monoid on *A*. Let $R \subseteq A^* \times A^*$ is a set of pairs of words. An element (r, s) of *R* is called a relation, and is usually written r = s instead of (r, s). Monoid presentation is an ordered pair $\langle A | R \rangle$ which is the quotient monoid $A^*/R^{\#}$ where $R^{\#}$ is the smallest congruence on A^* containing *R*. Let *M* be the monoid defined by $\langle A | R \rangle$. Let $w_1, w_2 \in A^*$, if w_1 and w_2 are identical words on A^* then we write $w_1 \equiv w_2$, and we write $w_1 = w_2$ if they represent the same element of the monoid *M*, that is $(w_1, w_2) \in R^{\#}$. If $u_1 \equiv xry$ and $u_2 \equiv xsy$ where $x, y \in A^*$ and $(r, s) \in R$ or $(s, r) \in R$ then, we say u_2 is obtained from u_1 by an application of one relation from *R*. We say that $w_1 = w_2$ is a consequence of *R*, if w_1 and w_2 are identical words or if there exists a sequence $w_1 \equiv u_1 \rightarrow u_2 \rightarrow \ldots \rightarrow u_k \equiv w_2$ where each u_{i+1} is obtained from u_i $(1 \le i \le k - 1)$ by an application of one relation from *R*. Let *T* be any monoid, let *B* be a generating set for *T*, and let $\phi : A \rightarrow B$ be an onto mapping. ϕ can be extended in a unique way $\overline{\phi} : A^* \rightarrow T$. The monoid *T* is said to satisfy relations *R* if for each $(u, v) \in R$ we have $u\overline{\phi} = v\overline{\phi}$. We refer the readers to two theses about semigroup and monoid presentations [3, 8].

2. Preliminaries

Let $\alpha \in \mathcal{T}_n$, then the kernel and image of α are defined by

$$\ker(\alpha) = \{(x, y) \in X_n \times X_n \mid x\alpha = y\alpha\}$$

$$\operatorname{im}(\alpha) = \{ x \alpha \mid x \in X_n \}.$$

Moreover, it is well known that if $\alpha, \beta \in \mathcal{T}_n$ then $\operatorname{im}(\alpha\beta) \subseteq \operatorname{im}(\beta)$ and $\operatorname{ker}(\alpha\beta) \supseteq \operatorname{ker}(\alpha)$.

Definition 2.1. Let *A* be a non-empty subset of X_n . If $x, y \in A$ and $x \le z \le y \implies z \in A$ for all $x, y \in A$, then *A* is called a convex subset of X_n .

If $\alpha \in \mathcal{T}_n$ is a contraction mapping then $\operatorname{im}(\alpha)$ is a convex subset of X_n [4]. Thus if $\alpha \in \mathcal{ODCT}_n$ then $\operatorname{im}(\alpha)$ is a convex subset of X_n . Moreover, from the definition of \mathcal{ODCT}_n it is easy to see that if $\alpha \in \mathcal{ODCT}_n$ then $\operatorname{im}(\alpha) = \{1, 2, \ldots, r\}$ for $1 \leq r \leq n$ and each equivalence kernel classes of α are convex subsets of X_n . Thus if $\alpha \in \mathcal{ODCT}_n$ then

$$\alpha = \left(\begin{array}{ccc} A_1 & A_2 & \dots & A_r \\ 1 & 2 & \dots & r \end{array}\right)$$

for $1 \le r \le n$. Moreover, we have $x \ge i$ for $\forall x \in A_i$ and $\{A_1, A_2, \dots, A_r\}$ is a partition of X_n , if $a \in A_i$ and $b \in A_j$ for $1 \le i < j \le n$ then a < b.

3. The Monoid Rank of *ODCT*_n

In this section, we have found a minimal generating set of \mathcal{ODCT}_n and we obtained the monoid rank of \mathcal{ODCT}_n . It is clear that $\mathcal{ODCT}_1 = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ which is a clearly generated by empty set as a monoid and $\mathcal{ODCT}_2 = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \right\}$ which is clearly generated by the element $\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ as a monoid. Let $n \ge 3$ and $\mathcal{F}_r = \left\{ \alpha \in \mathcal{ODCT}_n : |\operatorname{im}(\alpha)| = r \right\}$ for $1 \le r \le n$. Notice that $\mathcal{F}_n = \left\{ \epsilon = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix} \right\}$ where ϵ is the identity element of \mathcal{ODCT}_n .

Lemma 3.1. Let $n \ge 3$. If $\alpha \in \mathcal{F}_r$ then $\alpha \in \mathcal{F}_{r+1} > for \ 1 \le r \le n-2$.

Proof. Let $n \ge 3$ and $\alpha \in \mathcal{F}_r$ for $1 \le r \le n-2$. Then we have

$$\alpha = \left(\begin{array}{ccc} A_1 & A_2 & \dots & A_r \\ 1 & 2 & \dots & r \end{array}\right)$$

where $1 \le r \le n-2$, so there exists *i* such that $|A_i| \ge 2$ for $1 \le i \le r$. Let x_i be the maximum element in A_i . Let β be a mapping such that

$$\beta = \begin{pmatrix} A_1 & \dots & A_{i-1} & A_i \setminus \{x_i\} & \{x_i\} & A_{i+1} & \dots & A_r \\ 1 & \dots & i-1 & i & i+1 & i+2 & \dots & r+1 \end{pmatrix}$$

for i > 1 and

$$\beta = \begin{pmatrix} A_1 \setminus \{x_1\} & \{x_1\} & A_2 & \dots & A_r \\ 1 & 2 & 3 & \dots & r+1 \end{pmatrix}$$

for i = 1. Then it is clear that $\beta \in \mathcal{F}_{r+1}$. Let γ be the mapping defined as

$$j\gamma = \left\{ \begin{array}{ll} j & \text{if } 1 \leq j \leq i \\ i & \text{if } j = i+1 \\ j-1 & \text{if } i+2 \leq j \leq r+1 \\ r+1 & \text{if } j > r+1 \end{array} \right\}$$

then it is clear that $\gamma \in \mathcal{F}_{r+1}$ and $\alpha = \beta \gamma$, so $\alpha \in \mathcal{F}_{r+1} >$.

Corollary 3.1. $\mathcal{F}_r \subseteq \langle \mathcal{F}_{r+1} \rangle$ for each $1 \leq r \leq n-2$.

Corollary 3.2. Since \mathcal{F}_n is the set that has only the identity mapping of \mathcal{ODCT}_n then we have $\langle \mathcal{F}_{n-1} \rangle = \mathcal{ODCT}_n$ for $n \geq 3$.

Corollary 3.3 ([1]). $|\mathcal{F}_r| = \binom{n-1}{r-1}$ for $1 \le r \le n$.

Corollary 3.4. rank_M(\mathcal{ODCT}_n) $\leq n - 1$ for $n \in \mathbb{Z}^+$ since $|\mathcal{F}_{n-1}| = n - 1$.

Corollary 3.5 ([1]). $|ODCT_n| = 2^{n-1}$ for $n \ge 1$.

Theorem 3.1. $rank_M(\mathcal{ODCT}_n) = n - 1$ for $n \in \mathbb{Z}^+$.

Proof. If n = 1 or n = 2 then result is clear, let $n \ge 3$. We have rank_M($ODCT_n$) $\le n - 1$ from Corollary 3.4. Let

$$\mathcal{O}DCT_{(n,r)} = \{ \alpha \in \mathcal{O}DCT_n : |\operatorname{im}(\alpha)| \le r \}$$

for $1 \le r \le n-1$. It is clear that $\mathcal{ODCT}_{(n,r)}$ is an ideal of \mathcal{ODCT}_n . In particular, $\mathcal{ODCT}_{(n,n-2)}$ is an ideal of \mathcal{ODCT}_n . Moreover, there are n-1 different kernel classes in \mathcal{F}_{n-1} and we have $\mathcal{F}_n = \{\epsilon\}$, so $\operatorname{rank}_M(\mathcal{ODCT}_n) \ge n-1$. Thus we have concluded that $\operatorname{rank}_M(\mathcal{ODCT}_n) = n-1$ for $n \in \mathbb{Z}^+$.

4. The Monoid Presentation of ODCT_n

In this section, we have found a monoid presentation of $ODCT_n$ for $n \ge 3$.

Proposition 4.1 ([8]). Let A be a set and let M be any monoid. Then any mapping $\phi : A \to M$ can be extended in a unique way to a homomorphism $\overline{\phi} : A^* \to M$.

Definition 4.1. Let *M* be any monoid, let *B* be a generating set of *M*, and let $\phi : A \to B$ be an onto mapping. By Proposition 4.1 the mapping ϕ can be extended in a unique way to an epimorphism $\overline{\phi} : A^* \to M$. Let $R \subseteq A^* \times A^*$ be a set of relations. The monoid *M* is said to satisfy relations *R* if for each $(u, v) \in R$ we have $u\overline{\phi} = v\overline{\phi}$.

Let *M* be a finite monoid, $A \subseteq M$ and $\langle A \rangle = M$. Let $R \subseteq A^* \times A^*$ be a set of relations, and let $W \subseteq A^*$. It is well known that if

- (i) the generators A of M satisfy all the relations from R
- (ii) for each word $w \in A^*$ there exists a word $\overline{w} \in W$ such that $w = \overline{w}$ is a consequence of R
- (iii) $|W| \le |M|$

then $\langle A | R \rangle$ is a monoid presentation of M.

Let $n \geq 3$ and α_i be the mapping defined as

for $2 \le i \le n-1$ and

$$\alpha_1 = \left(\begin{array}{rrrr} 1 & 2 & 3 & \dots & n \\ 1 & 1 & 2 & \dots & n-1 \end{array}\right),$$

then it is clear that $\mathcal{F}_{n-1} = \{\alpha_i \mid 1 \leq i \leq n-1\}.$

Lemma 4.1. Let $n \ge 3$ and α_i be defined as above then $\alpha_i \alpha_{n-1} = \alpha_i$ for $1 \le i \le n-1$. In particular, $(\alpha_{n-1})^2 = \alpha_{n-1}$.

Proof. Let $n \geq 3$ and α_i be defined as above, then

$$\alpha_{n-1} = \left(\begin{array}{cccc} 1 & 2 & \dots & n-1 & n \\ 1 & 2 & \dots & n-1 & n-1 \end{array} \right).$$

 $1(\alpha_i \alpha_{n-1}) = 1$ and $n(\alpha_i \alpha_{n-1}) = n-1$, we have $im(\alpha_i \alpha_{n-1}) = \{1, 2, ..., n-1\}$ from the definition of $ODCT_n$. Moreover, $i(\alpha_i \alpha_{n-1}) = i$ and $(i+1)(\alpha_i \alpha_{n-1}) = i$, so $\alpha_i \alpha_{n-1} = \alpha_i$ for $1 \le i \le n-1$.

Lemma 4.2. Let $n \ge 3$ and α_i be defined as above then $\alpha_i \alpha_j = \alpha_{j+1} \alpha_i$ for $1 \le i \le j \le n-2$.

Proof. Let $n \ge 3$, α_i be defined as above and $1 \le i \le j \le n-2$. It is clear that $1(\alpha_i \alpha_j) = 1$ and $n(\alpha_i \alpha_j) = n - 1(\alpha_j) = n - 2$ since $1 \le i \le j \le n-2$. Thus $im(\alpha_i \alpha_j) = \{1, 2, ..., n-2\}$ from the definition of $ODCT_n$. Moreover we have

$$i(\alpha_i \alpha_j) = i\alpha_j = i$$
$$(i+1)(\alpha_i \alpha_j) = i\alpha_j = i$$
$$(j+1)(\alpha_i \alpha_j) = j\alpha_j = j$$
$$(j+2)(\alpha_i \alpha_j) = (j+1)\alpha_j = j.$$

Also, $1(\alpha_{j+1}\alpha_i) = 1$ and $n(\alpha_{j+1}\alpha_i) = (n-1)\alpha_i = n-2$ thus $im(\alpha_{j+1}\alpha_i) = \{1, 2, ..., n-2\}$ from the definition of $ODCT_n$. Moreover we have

$$i(\alpha_{j+1}\alpha_i) = i\alpha_i - i$$

(i+1)(\alpha_{j+1}\alpha_i) = (i+1)\alpha_i = i
(j+1)(\alpha_{j+1}\alpha_i) = (j+1)\alpha_i = j
(j+2)(\alpha_{j+1}\alpha_i) = (j+1)\alpha_i = j.

Therefore, $x(\alpha_i \alpha_j) = x(\alpha_{j+1} \alpha_i)$ for $\forall x \in X_n$. It follows that $\alpha_i \alpha_j = \alpha_{j+1} \alpha_i$ for $1 \le i \le j \le n-2$.

Definition 4.2. Let *A* be a finite set and $w = a_1 a_2 \dots a_k$ for $a_i \in A$ and $1 \le i \le k$. Length of *w* is defined as *k* and we write l(w) = k and if *w* is empty word then the length of *w* is defined as 0 (zero) and we write l(w) = 0.

Theorem 4.1. Let $n \ge 3$. Let $A = \{a_1, a_2, ..., a_{n-1}\}$ and $R = \{a_i a_{n-1} = a_i \ (1 \le i \le n-1), a_i a_j = a_{j+1} a_i \ (1 \le i \le j \le n-2)\}$. Then $< A \mid R > is$ a monoid presentation of $ODCT_n$ for $n \ge 3$.

Proof. Let $n \ge 3$. Let $A = \{a_1, a_2, \ldots, a_{n-1}\}$ and $R = \{a_i a_{n-1} = a_i \ (1 \le i \le n-1), a_i a_j = a_{j+1} a_i \ (1 \le i \le j \le n-2)\}$. Let $f : A \to \mathcal{F}_{n-1}$ be the mapping such that $a_i f = \alpha_i$. There exists a unique epimorpish $\overline{f} : A^* \to \mathcal{O}DCT_n$ extending the f. Thus $\mathcal{O}DCT_n$ satisfies all the relations from R since Lemma 4.1 and Lemma 4.2. Let ε is the empty word and

$$W = \{a_{j_k}a_{j_{k-1}}\dots a_{j_1} \mid n-1 \ge j_k > j_{k-1} > \dots > j_1 \ge 1\} \cup \{\varepsilon\}.$$

Thus it is clear that $W \subseteq A^*$ and $|W| = 2^{n-1}$. Let $w \in A^*$ and l(w) = m. We will show that there exists $\overline{w} \in W$ such that $w = \overline{w}$ is a consequence of R. We use induction on m. If m = 0 or m = 1, then the result is clear. Let $m \ge 2$, then $w \equiv w_1 w_2$ where $l(w_1) = m - 1$ and $l(w_2) = 1$. Thus $w_2 \in A$, moreover we have $w_1 = \overline{w_1}$ such that $\overline{w_1} \in W$ from the induction hypothesis. So $w = \overline{w_1} w_2$. If $\overline{w_1} \equiv \varepsilon$ then result is clear. Let $\overline{w_1} \not\equiv \varepsilon$. Then,

 $\overline{w_1} \equiv a_{t_p} a_{t_{p-1}} \dots a_{t_1}$

where $n - 1 \ge t_p > t_{p-1} > \ldots > t_1 \ge 1$ and $w = a_{t_p} a_{t_{p-1}} \ldots a_{t_1} w_2$. If $w_2 \equiv a_{n-1}$ then

$$w = a_{t_p} a_{t_{p-1}} \dots a_{t_1} a_{n-1}$$

$$w = a_{t_p} a_{t_{p-1}} \dots a_{t_1}$$

so in this case $w = \overline{w_1}$ and $\overline{w_1} \in W$. Let $w_2 \equiv a_i$ where $1 \le i \le n-2$. Then

$$w = a_{t_p} a_{t_{p-1}} \dots a_{t_1} a_i$$

if $t_1 > i$ then we have $\overline{w} \equiv a_{t_p} a_{t_{p-1}} \dots a_{t_1} a_i$ and $w = \overline{w}, \overline{w} \in W$. If $t_1 \leq i$ then

 $w = a_{t_p} a_{t_{p-1}} \dots a_{t_2} a_{t_1} a_i$

$$w = a_{t_p}a_{t_{p-1}}\ldots a_{t_2}a_{i+1}a_{t_1}.$$

If p = 1 then result is clear, let $p \ge 2$. If $t_2 > i + 1$ then we have $\overline{w} \equiv a_{t_p}a_{t_{p-1}} \dots a_{t_2}a_{i+1}a_{t_1}$ and $w = \overline{w}, \overline{w} \in W$. If i + 1 = n - 1 then

$$w = a_{t_p} a_{t_{p-1}} \dots a_{t_2} a_{i+1} a_{t_1}$$
$$w = a_{t_p} a_{t_{p-1}} \dots a_{t_2} a_{n-1} a_{t_1}$$
$$w = a_{t_p} a_{t_{p-1}} \dots a_{t_2} a_{t_1},$$

so in this case $\overline{w} \equiv a_{t_p}a_{t_{p-1}} \dots a_{t_2}a_{t_1}$ and $w = \overline{w}$, $\overline{w} \in W$. If $t_2 \leq i+1 < n-1$ then we have

$$w = a_{t_p} a_{t_{p-1}} \dots a_{t_2} a_{i+1} a_{t_1}$$

$$w = a_{t_p}a_{t_{p-1}}\ldots a_{i+2}a_{t_2}a_{t_1}.$$

If we use the same algorithm, it is clear that finally we conclude that there exists a word $\overline{w} \in W$ such that $w = \overline{w}$ is a consequence of R. Moreover, $|W| = |\mathcal{O}DCT_n| = 2^{n-1}$, it follows that $\langle A | R \rangle$ is a monoid presentation of $\mathcal{O}DCT_n$ for $n \geq 3$.

5. Conclusion

In this paper we have found monoid rank of $ODCT_n$ for $n \in \mathbb{Z}^+$. Moreover since $ODCT_1$ is a trivial monoid and $ODCT_2$ is a monogenic monoid, we give a monoid presentation of $ODCT_n$ for $n \ge 3$. Recently, the rank of OCT_n and the rank of $ORCT_n$ have been found, finding presentation problem can be considered on those semigroups as a future work.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

- [1] Adeshola, A.D., Umar, A.: *Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain*. Journal of Combinatorial Mathematics and Combinatorial Computing. **106**, 37-49 (2018).
- [2] Ayık, G., Ayık H., Koç, M.: *Combinatorial results for order-preserving and order-decreasing transformations*. Turkish Journal of Mathematics. **35** (4), 617-625 (2011).
- [3] Ayık, H.: Presentations and efficiency of semigroups. Ph. D. Thesis. University of St Andrews (1998).
- [4] Garba, G.U., Ibrahim, M.J., Imam, A.T.: *On certain semigroups of full contraction maps of a finite chain*. Turkish Journal of Mathematics. **41** (3), 500-507 (2017).
- [5] Gomes, M.S., Howie, J.M.: *On the ranks of certain semigroups of order-preserving transformations*. Semigroup Forum. **45** (1), 272-282 (1992).
- [6] Higgins, P.M.: *Combinatorial results for semigroups of order-preserving mappings*. Mathematical Proceedings of the Cambridge Philosophical Society. **113** (2), 281-296 (1993).
- [7] Howie, J.M.: Fundamentals of semigroup theory. Oxford University Press. New York (1995).
- [8] Ruskuc, N.: Semigroup presentations. Ph. D. Thesis. University of St Andrews (1995).

Affiliations

KEMAL TOKER **ADDRESS:** Harran University, Department of Mathematics, Faculty of Science and Literature, 63000, Şanlıurfa -Turkey. **E-MAIL:** ktoker@harran.edu.tr **ORCID ID:** 0000-0003-3696-1324