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Abstract. In this study, the solutions of second order linear homogeneous ordinary differential equations being
variable and constant coefficients have been obtained by using power series method which is used frequently in
dual space. The solutions of second order homogeneous ordinary differential equations being constant and variable
coefficients in dual space by using power series have given and some applications have implemented.
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1. Introduction

In dual space, many works have been carried on dual numbers, dual vectors, dual functions and their applications.
In [1], any differential equation is considered; the differential equation in the dual part is divided into real and dual
parts such that each term of the differential equation in the real part has an upper order differential. When the equations
in these parts are solved separately, it is seen that the solution of the dual part is found by adding a constant to the
solution of the real part. Thus, by using this method, it has been seen that the solution of a higher order differential
equation is easily obtained by reducing the orders of each term of the differential equation. Information about the dual
numbers, dual space and functions with dual variables used in this study have been presented in [3, 4]. By introducing
second order linear differential equations with variable and constant coefficients in dual space in [6], their solutions
have been investigated by using power series. In this study, second order homogeneous ordinary differential equations
with variable and constant coefficients in dual space and their solutions have been studied by using power series in
detail, and also simulations have been given.

2. Preliminary

In this part, it will be given some descriptions and theorem which will be in this article.

Definition 2.1 ( [9, 10]). Each element of D =
{
Z = (x, x∗) : Z = x + εx∗, ε , 0, ε2 = 0, x, x∗ ∈ R

}
where D = R × R

is called dual number. Here, x ∈ R is the real part of Z; x∗ ∈ R is the imajinary part of Z and it is shown by
Re (Z) = x, Du (Z) = x∗.
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Theorem 2.2 ( [4]). For Z1 = (x + εx∗) ∈ D, Z2 = (x + εx∗) ∈ D addition and multiplication is defined by

Z1 + Z2 = (x1 + x2) + ε
(
x∗1 + x∗2

)
,

Z1.Z2 = x1x2 + ε
(
x1x∗2 + x2x∗1

)
.

In addition to this, (D,+, .) triple is a ring but not a field.

Theorem 2.3 ( [4]). Dual number ring (D,+, .) includes a subset as a subfield which is isomorphic R to real number
set.

Definition 2.4 ( [9, 10]). Let D1 and D2 are dual points sets. If for ∀Z ∈ D1 point is in reply to W ∈ D2 dual number
with any f rule where Z = (x + εx∗) ∈ D1 an arbitrary dual variety, f is called dual function which is from D1 to D2. It
is shown by

f : D1 → D2, f (Z) = W.
D1 is the definition of f and D2 is value region defion over D1. If Z = x + εx∗ is written in W = f (Z) and
Re (W) = u (x, x∗) ,Du (W) = u∗ (x, x∗) .

f (Z) = u (x, x∗) + εu∗ (x, x∗)
is found. Than f = u + εu∗ is written where u : R × R → R and u∗ : R × R → R real two variables function. If f is
analytic,

u (x, x∗) = f (x) and u∗ (x, x∗) = x∗ f (x) .

Definition 2.5 ( [4]). Let f dual function defines in a G district. If it is found δ > 0 for ∀η > 0, for all 0 < |h| < δ such
that ∣∣∣∣∣ f (Z0 + h) − f (Z0)

h
− f ′ (Z0)

∣∣∣∣∣ < η
exists f ′ (Z0), then it is called differentiable at Z0 ∈ G point. The derive of f at Z0 is

f ′ (Z0) = lim
h→0

f (Z0 + h) − f (Z0)
h

.

The derivative rules of the addition, multiplication and divison of dual functions f = u + εu∗ and g = v + εv∗ are the
same as real functions.

Definition 2.6 ( [4]). If dual function f can be differentiable at every point of G district, than G is analytic and regular.

Definition 2.7 ( [4]). Suppose that an infinite f0, f1, f2, . . . , fn, . . . which is occured by arbitrary dual functions. Let
Z = x + εx∗ is a point which belongs to definition district of all these functions. At this point,

f0 (Z) + f1 (Z) + f2 (Z) + · · · + fn (Z) + · · · =

∞∑
n=0

fn (Z)

series is convergent or not. The point set of this convergent series a called convergence district of series.

Theorem 2.8 ( [4]). If n ∈ N than
Zn = (x + εx∗)n

= xn + εnxn−1x∗.

Definition 2.9 ( [4]).

f (Z) = f (Z0) +
Z − Z0

1!
f ′ (Z0) +

(Z − Z0)2

2!
f ′′ (Z0) + · · · +

(Z − Z0)n

n!
f (n) (Z0) + · · ·

series is called the Taylor expansion of f dual function at Z0 ∈ G is

f (x + εx∗) = f (0) +
x + εx∗

1!
f ′ (0) +

(x + εx∗)2

2!
f ′′ (0) + · · · +

(x + εx∗)n

n!
f (n) (0) + · · ·

or

f (x + εx∗) = f (0) +
x
1!

f ′ (0) +
x2

2!
f ′′ (0) + · · · +

xn−1

(n − 1)!
f (n−1) (0) +

xn

n!
f (n) (0) +

· · · + εx∗
[

f
′

(0) +
x
1!

f ′′ (0) +
x2

2!
f ′′′ (0) + · · · +

xn−1

(n − 1)!
f (n) (0) +

xn

n!
f (n+1) (0) + · · ·

]
.
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If f ′ (0) = F (0), then f (p) = F(p−1) exist. So,

f (x + εx∗) = f (0) +
x
1!

F (0) +
x2

2!
F′ (0) + · · · +

xn−1

(n − 1)!
F(n−2) (0) +

xn

n!
F(n−1) (0) +

· · · + εx∗
[
F (0) +

x
1!

F
′

(0) +
x2

2!
F′′ (0) + · · · +

xn−1

(n − 1)!
F(n−1) (0) +

xn

n!
F(n) (0) + · · ·

]
.

Here, the first part is Taylor expansion of f (x) at x = 0 and the second part is Taylor expansion of F (x) = f ′ (x) at
x = 0 . Thus,

f (x + εx∗) = f (x) + εx∗ f ′ (x) .
According to this, Taylor expansion cos (x + εx∗), sin (x + εx∗) dual functions of them at 0 = 0 + ε0 are [4]

cos (x + εx∗) = cosx − εx∗ sin x,

sin (x + εx∗) = sin x + εx∗ cos x.

3. Solution of Linear Differential Equations on Dual Space with Power Series

In this study; second order homogeneous ordinary differential equations with variable and constant coefficients in
dual space will be briefly referred to as linear differential equation. Solution of linear differential equations with power
series is frequently used method [7,8]. The solutions in this method are in the from of Taylor series or Taylor expansion
multiple by any power of Z. To have a solution, series has to be convergent. The series has only value at convergence
interval. The addition of a convergent series is finite and defines a function. It may be found many works about these
field of science in the literature [2, 5, 11].

The general definition of a second order homogeneous linear differential equation in dual space is

b2 (Z) Y ′′ + b1 (Z) Y ′ + b0 (Z) Y = 0,

where Y = Y(Z), Z = x + εx∗.
If each term of this equation is divided by b2 (Z) , 0, we find

Y ′′ + P (Z) Y ′ + Q (Z) Y = 0, (3.1)

where P (Z) =
b1(Z)
b2(Z) , Q (Z) =

b0(Z)
b2(Z) .

Definition 3.1. If both of constant functions P (Z) and Q (Z) of equation (3.1) is analytic in Z0, then the point Z0 is called
ordinary point. If one of these points is not analytic in Z0 is called singular point of (3.1) equation as (Z − Z0) P (Z) and
(Z − Z0)2 Q (Z). If both coefficient functions of (3.1) equation P (Z) and Q (Z), is analytic in Z0, Z0 is called as ordinary
point. If any of these functions is analytic in Z0, in this case, Z0 is a singular point of (3.1) equation. Specifically, if
Z0 is the regular singular point of equation (3.1) and both of (Z − Z0) P (Z) and (Z − Z0)2 Q (Z) is analytic in Z0, Z0 is
regular singular point of (3.1) equation, otherwise, otherwise called non regular singular point.

Theorem 3.2. If Z0 is ordinary point of second order linear differential equation (3.1), general solution of equation is

Y =

∞∑
n=0

An (Z − Z0)n = A0Y1(Z) + A1Y2(Z)

in the interval which contains Z0 points and where A0 and A1 are arbitrary dual fixed numbers, Y1(Z) and Y2(Z) are
analytic functions in Z0. If the ordinary point is Z0 , 0, serial solutions of the new equation are obtained by using
T = Z − Z0 changing variables method. As a result, the serial solution of the equation is obtained by using changing
the variables again T = Z − Z0. If both P (Z) and Q (Z) in (3.1) are constants, each point is ordinary point and the
power series method can be applied to each point.

Example 3.3. The solution of
d2Y
dZ2 + Y = 0, (3.2)

constant coefficients linear differential equation with power series where Y = Y(Z), Z = x + εx∗ at dual point Z0
neighbourhood. Dual point Z0 is a ordinary point of this equation. So, the solution of this equation is

Y =

∞∑
n=0

AnZn = A0

(
xn + εnx∗xn−1

)
.
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If

dY
dZ

=

∞∑
n=0

nAnZn−1 =

∞∑
n=0

nAn

(
xn−1 + ε (n − 1) x∗xn−2

)
,

d2Y
d2Z

=

∞∑
n=0

n (n − 1) AnZn−2 =

∞∑
n=0

n (n − 1) An

(
xn−2 + ε (n − 2) x∗xn−3

)
are written in (3.2) and making some arrangement, we find

∞∑
n=0

[(n + 2) (n + 1) An+2 + An] xn =

∞∑
n=0

[(n + 2) (n + 1) An+2 + An] εnx∗xn−1 = 0

or
∞∑

n=0

[(n + 2) (n + 1) An+2 + An] Zn = 0.

If each ower of constant in Z is equal to zero, the reduction relation is

An+2 = −
1

(n + 2)(n + 1)
An, n = 0, 1, 2, . . . ,

An =

 (−1)k

(2k)! A0, n = k
(−1)k

(2k+1)! A1, n = 2k + 1
.

Thus, the solution from

Y (Z) = A0

∞∑
k=0

(−1)k

(2k)!
Z2k + A1

∞∑
k=0

(−1)k

(2k + 1)!
Z2k+1

= A0 cos Z + A1 sin Z

= A0 cos(x + εx∗) + A1 sin(x + εx∗)

is
Y = A0 cos x + A1 sin x + εx∗(−A0 sin x + A1 cos x).

Example 3.4. The solution of variable coefficients linear differential equation with power series where

Y = Y(Z), Z = x + εx∗,

d2Y
dZ2 − Z

dY
dZ

+ 2Y = 0 (3.3)

at dual point Z0 = 0 neighbourhood. Dual point Z0 = 0 is an ordinary point of this equation. So, there is a

Y =

∞∑
n=0

AnZn =

∞∑
n=0

An(xn + εnx∗xn−1)

solution for this equation. If the equations

dY
dZ

=

∞∑
n=0

nAnZn−1 =

∞∑
n=0

nAn(xn−1 + ε(n − 1)x∗xn−2),

d2Y
dZ2 =

∞∑
n=0

n(n − 1)AnZn−2 =

∞∑
n=0

n(n − 1)An(xn−2 + ε(n − 2)x∗xn−3)

are written in (3.3) and with some arrangement, we find
∞∑

n=0

[(n + 2)(n + 1)An+2 − (n − 2)An] xn +

∞∑
n=0

[(n + 2)(n + 1)An+2 − (n − 2)An] εnxn−1x∗ = 0

or
∞∑

n=0

[(n + 2)(n + 1)An+2 − (n − 2)An] Zn = 0.
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If each power of constant of Z is equal to zero, the reduction relation is

An+2 =
n − 2

(n + 2)(n + 1)
An , n = 0, 1, 2, . . . .

From this relation we get A4 = 0. It is clear that all of even indis coffients are zero. That is on the otherside,

A3 = −
1
6

A1, A5 = −
1

120
A1, A7 = −

1
1680

A1, . . . .

Thus the solution

Y (Z) = A0(1 − Z2) + A1(Z −
1
6

Z3 −
1

120
Z5 −

1
1680

Z7 − · · · )

= A0

[
1 − (x + εx∗)2

]
+ A1

[
(x + εx∗) −

1
6

(x + εx∗)3 −
1

120
(x + εx∗)5 −

1
1680

(x + εx∗)7 − · · ·

]
= A0(1 − x2) + A1(x −

1
6

x3 −
1

120
x5 −

1
1680

x7 − · · · )

+ εx∗
[
−2A0x + A1(1 −

1
2

x2 −
1

24
x4 −

1
240

x6 − · · · )
]
.

Example 3.5 (Regular singular points and method of Frobenius). If dual point Z0 = x0 + εx∗0 is not a ordinary point of
second order homogenous linear differential equation

Y ′′ + P(Z)Y ′ + Q(Z)Y = 0 (3.4)

but both (Z − Z0) P (Z) and (Z − Z0)2 Q (Z) are analytic in Z0, then Z0 is a regular singular point of (3.4) equation.
General Solution:
Method of Frobenius always give a solution

Y1 (Z) = Zλ1

∞∑
n=0

An (λ1) Zn

of (3.4) equation. General solution is in the form Y = c1Y1 (Z) + c2Y2 (Z) where c1 and c2 are arbitrary constants,
Y ′′ (Z) is a solution in (3.4) which is linear independent from Y1 (Z) . The method of finding this second solution is
depended on the relation in between two roots of index equation.

i) If λ1 − λ2 is not an integer, it is Y2 (Z) = Zλ2
∞∑

n=0
An (λ2) Zn.

ii) If λ1 = λ2, then it is

Y2 (Z) = Y1 (Z) InZ + Zλ1

∞∑
n=0

Bn (λ1) Zn.

To find this soluion, making recurrence formul according λ to where constant A0 is arbitrary, this formul is used for
finding An (n ≥ 1) constants the type of λ and A0. This An values are written in the equation to find a Y (λ,Z) function
which is depended to λ and Z variables. Thus we find, Y2 (Z) =

dY(λ,Z)
dλ |λ=λ1

iii) If λ1 − λ2 = N (a positive integer), then

Y2 (Z) = d−1Y1 (Z) InZ + Zλ2

∞∑
n=0

dn (λ2) Zn. (3.5)

To find this solution, Frobenius method is tried with λ2 firstly. If this gives a second solution, then this solution is
Y2 (Z) which is in the form of (3.5) where d−1 = 0. Otherwise, to find, Y (λ,Z), second case is used. Then, we get

Y2 (Z) =
d

dλ
[(λ − λ2) Y (λ,Z)] |λ=λ2 .

Example 3.6 (The solution of hypergeometric differential equation’s at regular singular point Z0 = 0 neighbourhood).
At the neighbourhood of singular point, the solution of

Z (1 − Z) Y ′′ +
[
γ − (α + β + 1) Z

]
Y ′ − αβY = 0 , (3.6)

where α, β and γ are real constants, hypergeometric differential equation at the neighbourhood of Z0 = 0 regular
singular point with using Frobenius method:



G. Koru Yücekaya, Turk. J. Math. Comput. Sci., 12(2)(2020), 176–183 181

There exists a solution Y =
∞∑

n=0
AnZm+n of equation (3.6) at the neighbourhood of point Z0 = 0 where A0 , 0. With

derive and making some arrangements, we find[
m2 + (γ − 1) m

]
A0Zm−1 +

∞∑
n=0
{(m + n + 1) (m + n + γ) An+1

−
[
(m + n) (m + n + α + β) + αβ

]
An

}
Zm+n = 0.

Here,
m2 + (γ − 1) m = 0 , (3.7)

and index equation

An+1 =
(m + n) (α + β + m + n) + αβ

(m + n + 1) (m + n + γ)
An, n = 0, 1, 2, . . . ,

An+1 =
(α + m + n) (β + m + n)
(m + n + 1) (m + n + γ)

An, n = 0, 1, 2, . . . (3.8)

is to obtain where A0 , 0. The roots of index equation (3.7) are m1 = 0 and m2 = 1 − γ.
i) Reduction relation for m1 = 0 from (3.8) is

An+1 =
(α + n) (β + n)
(1 + n) (γ + n)

An, n = 0, 1, 2, ... . (3.9)

If we give the values of 0, 1, 2, ..., n − 1 to n at (3.9) and multiple side by side, we find the cofficients

An =
α (α + 1) ... (α + n − 1) β (β + 1) ... (β + n − 1)

n!γ (γ + 1) ... (γ + n − 1)
A0

or

An =
(α)n (β)n

n! (γ)n
.

To make the denominatör nonzero, we should take γ , 0,−1,−2, ... So if we take a0 = 1, a solution of equation (3.6)
is

Y1 (Z) = F (α, β; γ; Z) =

∞∑
n=0

(α)n (β)n

(γ)n

Zn

n!

=

∞∑
n=0

(α)n (β)n

(γ)n

(x + εx∗)n

n!

=

∞∑
n=0

(α)n (β)n

(γ)n

(x + εnx∗xn−1)
n!

= F (α, β; γ; x) + εx∗
αβ

γ

∞∑
n=0

(α + 1)n (β + 1)n

(γ + 1)n

xn

n!

= F (α, β; γ; x) + εx∗
d
dx

F (α, β; γ; x) . (3.10)

ii) Now let’s find the second solution. Reduction relation for m2 = 1 − γ from (3.8) is

An+1 =
(α + 1 − γ + n) (β + 1 − γ + n)

(n + 2 − γ) (n + 1)
An, n = 0, 1, 2, ... .

At this relation, if we give the values of 0, 1, 2, ..., n − 1 to n and multiple side bye side, we find

An =
(α − γ + 1) (α − γ + 2) · · · (α − γ + n) (β − γ + 1) (β − γ + 2) · · · (β − γ + n)

n! (2 − γ) (3 − γ) · · · (n + 1 − γ)
A0

or

An =
(α − γ + 1)n (β − γ + 1)n

n! (2 − γ)n
A0, n = 1, 2, ... .
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To make the denominator nonzero, we should take γ , 2, 3, 4, . . . . Accordingly, if we take a0 = 1, the second solution
of equation (3.6) is

Y2 (Z) = Z1−γ
∞∑

n=0

(α + 1 − γ)n (β + 1 − γ)n

(2 − γ)n

Zn

n!

= (x + εx∗)1−γ
∞∑

n=0

(α + 1 − γ)n (β + 1 − γ)n

(2 − γ)n

(x + εx∗)n

n!

= x1−γF (α − γ + 1, β − γ + 1; 2 − γ; x) + εx∗
[
(1 − γ) x−γF (α − γ + 1, β − γ + 1; 2 − γ; x)

+x1−γ d
dx

F (α − γ + 1, β − γ + 1; 2 − γ; x)
]

. (3.11)

If γ = 1, there exists Y1 and Y2 , but they are not linear independet.
If γ = 2, 3, 4, ... there exists Y1, but not Y2.
If γ , 0,−1,−2, ... there exists Y2, but not Y1.
So, if γ is not an integer, then the solutions Y1 and Y2 of (3.10) and (3.11) respectively are the linear independent

solutions of hypergeometric differential equation. Thus, general solution (3.6) is,

Y = AY1 + BY2

=
[
AF (α, β; γ; x) + Bx1−γF (α − γ + 1, β − γ + 1; 2 − γ; x)

]
+ εx∗

{
A

d
dx

F (α, β; γ; x)

+ B
[
(1 − γ) x−γF (α − γ + 1, β − γ + 1; 2 − γ; x) + x1−γ d

dx
F (α − γ + 1, β − γ + 1; 2 − γ; x)

]}
,

where A and B are arbitrary constants.
If α or β are zero or minus integer constants, then, Y1 is a polinomial which are γ = 1, 2, 3, . . . . If α − γ + 1 or

β − γ + 1 are zero or minus integer constants, then, Y2 can be converted polinomial which are γ = 1, 0,−1,−2, ... and
this polinomial multiplied by x1−γ. Thus, in these cases, all the terms after certain terms of the series (3.10) and (3.11)
are zero. These polynomials are called as hypergeometric polynomials. Except of these cases, if γ is an integer, one of
the solutions is logarithmic.

In the same manner, at the regular singular point x = 1, two solutions of (3.6) are given as follows:

Y1 = F (α, β;α + β − γ + 1; 1 − x) ,

Y2 = (1 − x)γ−α−β F (γ − α, γ − β; γ − α − β + 1; 1 − x) .

4. Conclusion

In this study, solutions of second order linear homogeneous ordinary differential equations with variable coefficients
and second order linear homogeneous ordinary differential equations with constant coefficients by using dual numbers,
which are the elements of dual space have been discussed. In dual space, the solutions of second order linear homoge-
neous ordinary differential equations with variable and constant coefficients have been given by power series and their
simulations have been exemplified. It has been observed that the results are similar to the solutions of the second order
linear homogeneous variable and constant coefficient ordinary differential equations in real space.
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[4] Hacısalihoğlu, H.H., Motion Geometry and Quaternions Theory, Gazi University Faculty of Arts and Science Publications, Math. 2, 1983. 1,
2.2, 2.3, 2.5, 2.6, 2.7, 2.8, 2.9, 2
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