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Abstract

In this study, we deal with an m banded circulant matrix, generally called circulant m-
diagonal matrix. This special family of circulant matrices arise in many applications such
as prediction, time series analysis, spline approximation, difference solution of partial
differential equations, and so on. We firstly obtain the statements of eigenvalues and
eigenvectors of circulant m-diagonal matrix based on the Chebyshev polynomials of the
first and second kind. Then we present an efficient formula for the integer powers of this
matrix family depending on the polynomials mentioned above. Finally, some illustrative
examples are given by using maple software, one of computer algebra systems (CAS).

1. Introduction

Multiplying a vector by a circulant matrix is equivalent to a well-known operation called a circular convolution. Convolu-
tion operations, and so circulant matrices, arise in number of applications: digital signal processing, image compression,
physics/engineering simulations, number theory, coding theory, cryptography, etc. Numerical solutions of certain types of
elliptic and parabolic partial differential equations with periodic boundary conditions often involve linear systems associated
with circulant matrices [1]-[3].
A certain type of transformation of a set of numbers can be represented as the multiplication of a vector by a square matrix.
Repetition of the operation is equivalent to multiplying the original vector by a power of the matrix. Solving some difference
equations, differential and delay differential equations and boundary value problems, we need to compute the arbitrary integer
powers of a square matrix [4, 5]. The powers of matrices are thus of considerable importance.
Computing the integer powers of circulant matrices depending on Chebyshev polynomials recently has been a very attractive
problem [6]-[13]. For example, Rimas obtained a general expression for the entries of the rth power (r ∈ N) of the n×n real
symmetric circulant circn (0,1,0, . . . ,0,1) (see [6] or [7] for the odd case and [8] or [9] for the even case). In [10], Gutiérrez
obtained a general expression for the entries of the positive integer powers of complex symmetric circulant matrix given by

circn

(
b0,b1, . . . ,b n−1

2
,b n−1

2
, . . . ,b1

)
if n is odd,

circn

(
b0,b1, . . . ,b n

2−1,b n
2
,b n

2−1, . . . ,b1

)
if n is even.

(1.1)

by generalizing the results derived by Rimas in [6]-[9].
In [11], Köken et al. obtained a general expression for the entries of the rth power (r ∈ N) of odd order circulant matrices
of the type circn (0,a,0, . . . ,0,b). In [12], we presented a single expression for the integer powers of the circulant matrix
circn (a0,a1,0, . . . ,0,a−1) of odd and even order by generalizing the results derived by Köken et al. in [11].
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In the current study, we consider an n×n circulant m-diagonal matrix An, that clearly is as,

An = circn (a0,a1, . . . ,am,0, . . . ,0,a−m, . . . ,a−1) (1.2)

=



a0 a1 · · · am 0 · · · 0 a−m · · · a−1

a−1 a0 a1
. . . am 0

. . . . . . . . .
...

... a−1 a0 a1
. . . . . . . . . . . . . . . a−m

a−m
. . . a−1 a0

. . . . . . . . . . . . . . . 0

0 a−m
. . . . . . . . . . . . . . . . . . 0

...
... 0

. . . . . . . . . . . . . . . . . . am 0

0
. . . . . . . . . . . . . . . . . . . . . . . . am

am
. . . . . . . . . . . . . . . . . . . . . a1

...
...

. . . . . . . . . 0 a−m · · · a−1 a0 a1
a1 · · · am 0 · · · 0 a−m · · · a−1 a0


for all 3≤ n ∈ N, where 1≤ m≤

⌊ n−1
2

⌋
and

a−i = an−i, i = 1, . . . ,m. (1.3)

We organize this paper as the following parts. In Section 2, we give some fundamental notations, definitions and important
properties that we will need for the next sections. In Section 3, we introduce Lemma 3.1 and Theorem 3.3 that respectively
give the statements of eigenvalues and eigenvectors of circulant m-diagonal matrix in (1.2) depending on the Chebyshev
polynomials of the first and second kind. In Section 4, we obtain an efficient expression for the integer power of this matrix by
means of the polynomials mentioned above. In Section 5, some illustrative examples are given. Finally, we will finish the
paper with two Maple procedures.

2. Preliminaries

In this part, we present some fundamental notations, definitions and necessary properties for the next parts.
An n×n circulant matrix is defined in [14] as

Cn :=



c0 c1 c2 . . . cn−2 cn−1

cn−1 c0 c1
. . . cn−2

cn−2 cn−1 c0
. . . . . .

...
...

. . . . . . . . . . . . c2

c2
. . . . . . . . . c1

c1 c2 . . . cn−2 cn−1 c0


where ci j = c( j−i)(mod n). It can be clearly seen from above that each row of Cn is a cyclic shift of the previous row. Since Cn
has at most n distinct elements in each row, it is often represented by

Cn := circn (c0,c1, . . . ,cn−1) .

Let n≥ 1 be a fixed integer and ω be the primitive nth root of unity; namely, ω = ei 2π
n = cos

( 2π

n

)
+ isin

( 2π

n

)
, i =

√
−1. The

well-known eigenvalue decomposition of the matrix Cn = circn (c0,c1, . . . ,cn−1) is that

Cn = F∗n DnFn (2.1)

where * denotes the conjugate transpose (i.e F∗n = FT
n ), Fn called n×n Fourier matrix that contains the eigenvectors of Cn such

that

[F∗n ]u,v =
1√
n

ω
(u−1)(v−1), 1≤ u,v≤ n

and Dn = diag(λ1,λ2, . . . ,λn) with

λk =
n

∑
r=1

cr−1ω
(k−1)(r−1), 1≤ k ≤ n (2.2)
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are the eigenvalues of Cn [14].
It can be easily seen that the matrices Fn and F∗n are symmetric:

Fn = FT
n , F∗n = (F∗n )

T = Fn (2.3)

where we can deduce [Fn]u,v = [Fn]v,u. It is also one of fundamental property that the matrix Fn is unitary: FnF∗n = F∗n Fn = I
[14].
In [15], we have the eigenvector f (k) of Cn corresponding to the eigenvalue λk in (2.2) as the following

f (k) =
1√
n

(
1,ωk−1,ω2(k−1), . . . ,ω(n−1)(k−1)

)T
. (2.4)

Since the product of two circulant matrices is again a circulant matrix, the rth power (r ∈ N) of Cn is also circulant and it is,
from the well-known expression (2.1), obtained as

Cr
n = F∗n Dr

nFn = F∗n diag(λ r
1 ,λ

r
2 , . . . ,λ

r
n) Fn. (2.5)

If Cn is nonsingular, then the expression (2.5) applies to negative integers.

Definition 2.1. The Chebyshev polynomial Tn (x) of the first kind is a polynomial in x of degree n, defined by the relation

Tn (x) = cosnθ when x = cosθ .

Definition 2.2. The Chebyshev polynomial Un (x) of the second kind is a polynomial of degree n in x defined by

Un (x) = sin(n+1)θ/sinθ when x = cosθ .

One can reach the following result about Chebyshev polynomials in [16]:
Let Tk (x) and Uk (x) (k ∈ N∪{0}) be the kth degree Chebyshev polynomials of the first and second kind, respectively. Then

Tk (x) = cos(k arccosx) and Uk (x) =
sin((k+1)arccosx)

sin(arccosx)
(2.6)

for −1≤ x≤ 1. Moreover, one can find more applications related this polynomials in [17]-[19].

3. Eigenvalues and eigenvectors of circulant m-diagonal matrix

In this part, we give the expressions of eigenvalues and eigenvectors of An = circn (a0,a1, . . . ,am,0, . . . ,0,a−m, . . . ,a−1)
depending on Chebyshev polynomials of the first and second kind.

Lemma 3.1. Consider 3≤ n∈N, 1≤m≤
⌊ n−1

2

⌋
and ai ∈R (i = 0,±1, . . .±m). Let An = circn (a0,a1, . . . ,am,0, . . . ,0,a−m, . . . ,a−1)

be an n×n circulant matrix and αk = cos 2π(k−1)
n for every 1≤ k ≤ n. Then the eigenvalues of An are

λk = a0 +
m

∑
l=1

(
(al +a−l)Tl (αk)+ i(al−a−l)sgn

(n
2
+1− k

)√
1−α2

k lim
j→k

Ul−1 (α j)

)
(3.1)

where λk is the kth eigenvalue of An and sgn denotes the signum function.

Proof. Taking into account (2.2), (1.3) and ω(k−1)(n+2−r−1) = ω−(k−1)(r−1) for all 2≤ r ≤ n (see [10]), we can write λk as

λk = a0 +a1ω
(k−1)1 + . . .+amω

(k−1)m +an−mω
(k−1)(n−m)+ . . .+an−1ω

(k−1)(n−1)

= a0 +a1ω
(k−1)+ . . .+amω

(k−1)m +a−mω
−(k−1)m + . . .+a−1ω

−(k−1).

From the definition of ω , we get

λk = a0 +
m

∑
l=1

(
(al +a−l)cos

2π (k−1) l
n

+ i(al−a−l)sin
2π (k−1) l

n

)
. (3.2)

Observe that from (2.6), we have

Tm

(
cos

2π (k−1)
n

)
= cos

2π (k−1)m
n

,

and

Um−1

(
cos

2π (k−1)
n

)
=

sin 2π(k−1)m
n

sin 2π(k−1)
n
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where there exists indeterminate form 0/0 for k = 1 and k = n
2 +1. Then we can construct the expression (3.2) as

λk = a0 +
m

∑
l=1

(
(al +a−l)Tl

(
cos

2π (k−1)
n

)
+ i(al−a−l)sin

2π (k−1)
n

lim
j→k

Ul−1

(
cos

2π ( j−1)
n

))
.

Consequently, we reach the desired result by transforming cos 2π(k−1)
n = αk and then

sin
2π (k−1)

n
=


√

1−α2
k if n

2 +1− k > 0,
0 if n

2 +1− k = 0,

−
√

1−α2
k if n

2 +1− k < 0.

(3.3)

With the help of Lemma 3.1, we reach a nice result for the eigenvalues of An = circn (a0,a1, . . .am,0, . . . ,0,a−m, . . .a−1). Since

cos
2π (n+2− k−1)

n
= cos

2π (k−1)
n

and

sin
2π (n+2− k−1)

n
=−sin

2π (k−1)
n

.

We obtain that λk = λn+2−k (2≤ k ≤ n) from (3.2). Clearly, if we rewrite this eigenvalues in a diagonal matrix, then

Dn = diag
(

λ1,λ2, . . . ,λ n+1
2
,λ n+1

2
, . . . ,λ2

)
if n is odd,

Dn = diag
(

λ1,λ2, . . . ,λ n
2
,λ n

2+1,λ n
2
, . . . ,λ2

)
if n is even.

(3.4)

If we take n = 8 and m = 2 for the matrix An in (1.2), then, from Lemma 3.1, we get

λ3 = a0 +(a1 +a−1)cos
π

2
+ i(a1−a−1)sin

π

2
+(a2 +a−2)cosπ + i(a2−a−2)sinπ

= a0−a2−a−2 + i(a1−a−1)

and

λ7 = a0 +(a1 +a−1)cos
3π

2
+ i(a1−a−1)sin

3π

2
+(a2 +a−2)cos3π + i(a2−a−2)sin3π

= a0−a2−a−2− i(a1−a−1) .

As can be seen above, λ7 = λ3.

Corollary 3.2. Consider 3≤ n∈N, 1≤m≤
⌊ n−1

2

⌋
and ai ∈R (i = 0,1, . . .m). Let Bn = circn (a0,a1, . . . ,am,0, . . . ,0,am, . . . ,a1)

be an n×n symmetric circulant matrix and αk = cos 2π(k−1)
n for every 1≤ k ≤ n. Then the eigenvalues of Bn are

µk = a0 +2
m

∑
l=1

alTl (αk) (3.5)

where µk is the kth eigenvalue of Bn.

Proof. The proof can be straightforwardly obtained from Lemma 3.1.

Since cos 2π(n+2−k−1)
n = cos 2π(k−1)

n , we can easily see that µk = µn+2−k (2≤ k ≤ n) from Corollary 3.2. Clearly, if we
rewrite this eigenvalues in a diagonal matrix again, then

Dn = diag
(

µ1,µ2, . . . ,µ n+1
2
,µ n+1

2
, . . . ,µ2

)
if n is odd,

Dn = diag
(

µ1,µ2, . . . ,µ n
2
,µ n

2+1,µ n
2
, . . . ,µ2

)
if n is even.

If we take n = 8 and m = 2 for the matrix Bn = circn (a0,a1, . . .am,0, . . . ,0,am, . . .a1), then, from Corollary 3.2, we get

µ3 = a0 +2
(

a1 cos
π

2
+a2 cosπ

)
= a0−2a2
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and

µ7 = a0 +2
(

a1 cos
3π

2
+a2 cos3π

)
= a0−2a2.

As can be seen above, µ7 = µ3.
Now, from the expression (2.4), let us give the following result for the eigenvectors of An = circn (a0,a1, . . . ,am,0, . . . ,0,a−m, . . . ,a−1)
depending on Chebyshev polynomials of the first and second kind

Theorem 3.3. Let 3≤ n ∈ N, 1≤ m≤
⌊ n−1

2

⌋
and ai ∈ R (i = 0,±1, . . .±m) and αk = cos 2π(k−1)

n for every 1≤ k ≤ n. Then
the eigenvector Fk of the matrix An = circn (a0,a1, . . . ,am,0, . . . ,0,a−m, . . . ,a−1) corresponding to the eigenvalue λk given by
(3.1) is

Fk =



T0 (αk)+ isgn
( n

2 +1− k
)√

1−α2
k lim

j→k
U−1 (α j)

T1 (αk)+ isgn
( n

2 +1− k
)√

1−α2
k lim

j→k
U0 (α j)

...

Tn−1 (αk)+ isgn
( n

2 +1− k
)√

1−α2
k lim

j→k
Un−2 (α j)


. (3.6)

Proof. From (2.4), (2.6) and (3.3), the result can be easily obtained.

We must note that each one of all circulant matrices also have the eigenvectors generated by Fk given by (3.6)

4. Integer powers of circulant m-diagonal matrix

In this part, by using the symmetric relationship between the eigenvalues in (3.4), we give the efficient expression to compute
the integer power of the circulant m-diagonal matrix An = circn (a0,a1, . . . ,am,0, . . . ,0,a−m, . . . ,a−1) based on Chebyshev
polynomials of the first and second kind such that the method is faster than any of the classical methods which find the powers
of An with an amount of computations.

Theorem 4.1. Consider 3≤ n∈N, 1≤m≤
⌊ n−1

2

⌋
and ai ∈R (i = 0,±1, . . .±m). Let An = circn (a0,a1, . . . ,am,0, . . . ,0,a−m, . . . ,a−1)

be an n×n nonsingular circulant m-diagonal matrix and αk = cos 2π(k−1)
n for every 1≤ k ≤ n. Then the (u,v)th entry of Ar

n is
that

[Ar
n]u,v =

1
n
(S1 +S2)

for all r ∈ Z and 1≤ u,v≤ n, where S1 and S2 are respectively such that

S1 =
b n

2c+1

∑
k=1

(
a0 +

m

∑
l=1

(
(al +a−l)Tl (αk)+ i(al−a−l)sgn

(n
2
+1− k

)√
1−α2

k lim
j→k

Ul−1 (α j)

))r

×
(

T|u−v| (αk)+ isgn(u− v)sgn
(n

2
+1− k

)√
1−α2

k lim
j→k

U|u−v|−1 (α j)

)

and

S2 =
b n+1

2 c
∑
k=2

(
a0 +

m

∑
l=1

(
(al +a−l)Tl (αk)− i(al−a−l)sgn

(n
2
+1− k

)√
1−α2

k lim
j→k

Ul−1 (α j)

))r

×
(

T|u−v| (αk)− isgn(u− v)sgn
(n

2
+1− k

)√
1−α2

k lim
j→k

U|u−v|−1 (α j)

)
.

Here bxc and sgn denote the largest integer less than or equal to x and the signum function, respectively.

Proof. By using (2.5) and (2.3), we get

[Ar
n]u,v = [F∗n Dr

nFn]u,v =
n

∑
k=1

[F∗n ]u,k [D
r
nFn]k,v =

n

∑
k=1

[F∗n ]u,k λ
r
k [Fn]k,v ,

=
n

∑
k=1

λ
r
k [F

∗
n ]u,k [Fn]v,k =

1
n

n

∑
k=1

λ
r
k ω

(u−1)(k−1)
ω
−(v−1)(k−1)
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and then

[Ar
n]u,v =

1
n

n

∑
k=1

λ
r
k ω

(k−1)(u−v) (4.1)

where λk is already obtained as in (3.1). Since λk = λn+2−k, 2≤ k ≤ n and ω(n+2−k−1)(u−v) = ω−(k−1)(v−u), the second half
of the sum in (4.1) can be written as

n

∑
k= n+1

2 +1

λ
r
k ω

(k−1)(u−v) =

n+1
2

∑
k=2

λ
r
n+2−kω

(n+2−k−1)(u−v) =

n+1
2

∑
k=2

λk
r
ω
−(k−1)(u−v)

for the case n is odd. The same observations can be applied in the case n even and the result is that

[Ar
n]u,v =

1
n

b n
2c+1

∑
k=1

λ
r
k ω

(k−1)(u−v)+
b n+1

2 c
∑
k=2

λk
r
ω
−(k−1)(u−v)

=
1
n
(S1 +S2) .

Thus, from the expression above, we can write

S1 =
b n

2c+1

∑
k=1

λ
r
k

(
cos

2π (k−1)(u− v)
n

+ isin
2π (k−1)(u− v)

n

)
and

S2 =
b n+1

2 c
∑
k=2

λk
r
(

cos
2π (k−1)(u− v)

n
− isin

2π (k−1)(u− v)
n

)
.

Since, from (2.6),

T|u−v|

(
cos

2π (k−1)
n

)
= cos

2π (k−1)(u− v)
n

and

U|u−v|−1

(
cos

2π (k−1)
n

)
= sgn(u− v)

sin 2π(k−1)(u−v)
n

sin 2π(k−1)
n

with indeterminate form 0/0 for k = 1 and k = n
2 +1, then

S1 =
b n

2c+1

∑
k=1

λ
r
k

(
T|u−v|

(
cos

2π (k−1)
n

)
+ isgn(u− v)sin

2π (k−1)
n

lim
j→k

U|u−v|−1

(
cos

2π ( j−1)
n

))
,

and

S2 =
b n+1

2 c
∑
k=2

λk
r
(

T|u−v|

(
cos

2π (k−1)
n

)
− isgn(u− v)sin

2π (k−1)
n

lim
j→k

U|u−v|−1

(
cos

2π ( j−1)
n

))
.

The theorem follows by substituting λk in (3.1) and cos 2π(k−1)
n = αk into the above expressions.

From (2.5), we have the rth power of any (symmetric) circulant matrix is also a (symmetric) circulant matrix.
Consider ai ∈ R (i = 0,±1) and let A4 = circ4 (a0,a1,0,a−1) be circulant tridiagonal matrix. Then, by using Theorem 4.1, we
get Ar

4 = circ4 (τ0,τ1,τ2,τ3) with

τ0 =
1
4
[(a0 +a1 +a−1)

r +(a0− (a1 +a−1))
r + zr + zr] ,

τ1 =
1
4
[(a0 +a1 +a−1)

r− (a0− (a1 +a−1))
r− izr + izr] ,

τ2 =
1
4
[(a0 +a1 +a−1)

r +(a0− (a1 +a−1))
r− izr− izr] ,

τ3 =
1
4
[(a0 +a1 +a−1)

r− (a0− (a1 +a−1))
r + izr− izr]

where z = a0 + i(a1−a−1) .
If we take m = 1 in Theorem 4.1, the expression given in [12, Theorem 2.1] can be easily seen.
Theorem 4.1 allows us to significantly reduce the computing process while finding the integer powers of the circulant
m-diagonal matrix An = circn (a0,a1, . . . ,am,0, . . . ,0,a−m, . . . ,a−1)
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Theorem 4.2. Consider 3≤ n∈N, 1≤m≤
⌊ n−1

2

⌋
and ai ∈R (i = 0,1, . . .m). Let Bn = circn (a0,a1, . . . ,am,0, . . . ,0,am, . . . ,a1)

be an n×n nonsingular symmetric circulant m-diagonal matrix and αk = cos 2π(k−1)
n for every 1≤ k ≤ n. Then the (u,v)th

entry of Br
n is that

[Br
n]u,v =

1
n

b n
2c+1

∑
k=1

ln−2k+2

(
a0 +2

m

∑
l=1

alTl (αk)

)r

T|u−v| (αk)

where bxc denotes the largest integer less than or equal to x and

ls =
{

1 if s ∈ {0,n}
2 in other cases.

Proof. By using Theorem 4.1, we get

S1 =
b n

2c+1

∑
k=1

(
a0 +2

m

∑
l=1

alTl (αk)

)r

T|u−v| (αk)+ isgn(u− v)sgn
(n

2
+1− k

)√
1−α2

k U|u−v|−1 (αk)

and

S2 =
b n+1

2 c
∑
k=2

(
a0 +2

m

∑
l=1

alTl (αk)

)r

T|u−v| (αk)− isgn(u− v)sgn
(n

2
+1− k

)√
1−α2

k U|u−v|−1 (αk) .

Since { ⌊ n+1
2

⌋
= n+1

2 and
⌊ n

2

⌋
+1 = n+1

2 if n is odd,⌊ n+1
2

⌋
= n

2 and
⌊ n

2

⌋
+1 = n

2 +1 if n is even.

Then

[Br
n]u,v =

1
n
(S1 +S2)

=



1
n

[(
a0 +2

m
∑

l=1
al

)r

+2
n+1

2
∑

k=2

(
a0 +2

m
∑

l=1
alTl (αk)

)r

T|u−v| (αk)

]
if n is odd,

1
n

[(
a0 +2

m
∑

l=1
al

)r

+2
n
2
∑

k=2

(
a0 +2

m
∑

l=1
alTl (αk)

)r

T|u−v| (αk)+(
a0 +2

m
∑

l=1
alTl

(
α n

2+1

))r

T|u−v|

(
α n

2+1

)] if n is even.

Therefore,

[Br
n]u,v =

1
n

b n
2c+1

∑
k=1

ln−2k+2

(
a0 +2

m

∑
l=1

alTl (αk)

)r

T|u−v| (αk)

which is desired.

Consider ai ∈ R (i = 0,1,2) and let B5 = circ5 (a0,a1,a2,a2,a1) be a symmetric circulant pentadiagonal matrix. Then, from
Theorem 4.2, we get Br

5 = circ4 (τ0,τ1,τ2,τ2,τ1) with

τ0 =
1
5

[
(a0 +2a1 +2a2)

r +2
(

a0 +
1
φ

a1−φa2

)r

+2
(

a0−φa1 +
1
φ

a2

)r]
,

τ1 =
1
5

[
(a0 +2a1 +2a2)

r +
1
φ

(
a0 +

1
φ

a1−φa2

)r

−φ

(
a0−φa1 +

1
φ

a2

)r]
,

τ2 =
1
5

[
(a0 +2a1 +2a2)

r−φ

(
a0 +

1
φ

a1−φa2

)r

+
1
φ

(
a0−φa1 +

1
φ

a2

)r]
where φ denotes the golden ratio.
Now, if we consider {

m =
⌊ n−1

2

⌋
= n−1

2 for n is odd,

m =
⌊ n−1

2

⌋
+1 = n

2 for n is even,

in the symmetric circulant m-diagonal matrix Bn = circn (a0,a1, . . . ,am,0, · · · ,0,am, · · · ,a1) and a n
2
6= 0, then we get the sym-

metric circulant matrix in (1.1) discussed by Gutiérrez in [10]. And so, with the help of Theorem 4.2, we can straightforwardly
reach the expression obtained by Gutiérrez in [10, Theorem 1] for positive integer powers of the matrix Bn in (1.1).
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5. Illustrative examples

In this part, we give some illustrative examples. We will utilize Maple software in our calculations.

Example 5.1. Let A6 = circ6 (5,4,9,0,8,−2) be a circulant pentadiagonal matrix. we find the eigenvalues of A6 by using
(3.1) as

λ1 = 24,
λ2 = −2,5000+6,0621i,
λ3 = −4,5000+4,3301i,
λ4 = 20,
λ5 = λ3 = −4,5000−4,3301i,
λ6 = λ2 = −2,5000−6,0621i

and from Theorem 4.1, the entries of A3
6 as

A3
6 = circ6 (3778,1008,3483,938,3651,966) .

Example 5.2. Let A9 = circ9 (−2,3,−4,9,0,0,6,5,−1) be a circulant heptadiagonal matrix. we find the eigenvalues of A9
by using (3.1) as

λ1 = 16,
λ2 = −7,7942−3,6940i,
λ3 = −10,0923−1,73701i,
λ4 = 11,5000+11,2583i,
λ5 = −10,6133+9,7512i,
λ6 = λ5 = −10,6133−9,7512i,
λ7 = λ4 = 11,5000−11,2583i,
λ8 = λ3 = −10,0923+1,73701i,
λ9 = λ2 = −7,7942+3,6940i

and from Theorem 4.1, the entries of A4
9 as

A4
9 = circ9 (−15410,26041,7866,−5401,16331,13209,−2024,3458,21466) .

Example 5.3. Let B7 = circ7 (1,−3,2,0,0,2,−3) be a symmetric circulant pentadiagonal matrix. we find the eigenvalues of
B7 by using (3.5) as

λ1 = −1,
λ2 = −3,6310,
λ3 = −1,2687,
λ4 = 8,8987,
λ5 = λ4 = 8,8987,
λ6 = λ3 = −1,2687,
λ7 = λ2 = −3,6310

and from Theorem 4.2, the entries of B5
7 as

B5
7 = circ7 (15771,−14485,9987,−3388,−3388,9987,−14485) .

Examples 5.1, 5.2 and 5.3 can be also confirmed by means of Maple procedures given by Appendix A and B.
Appendix A. Following Maple procedure firstly generates a n×n circulant heptadiagonal matrix An = circn(a0,a1,a2,a3,0, . . . ,0,
a−3,a−2,a−1) and then compute eigenvalues and the kth power (r ∈ Z) of it.
restart:
with(LinearAlgebra):
m:=’3’:
n:=’n’:
r:=’r’:
a[0]:=’a[0]’:
a[1]:=’a[1]’:
a[-1]:=’a[-1]’:
a[2]:=’a[2]’:
a[-2]:=’a[-2]’:
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a[3]:=’a[3]’:
a[-3]:=’a[-3]’:
f:=(i,j)→ piecewise(i=j,a[0],j>i and j-i<m+1,a[j-i],i>j and i-j<m+1,a[j-i],n-j+i<m+1,a[j-i-n],n-i+j<m+1,a[j-i+n]):
A[n]:=Matrix(n,n,f);
alpha:=k→ evalf(cos(2*Pi*(k-1)/n)):
lambda:=k→ evalf((a[0]+sum((a[l]+a[-l])*ChebyshevT(l,alpha(k))+I*(a[l]-a[-l])*signum((n/2)+1-k)*sqrt(1-(alpha(k))ˆ2)*limit
(ChebyshevU(l-1,alpha(j)),j=k),l=1..m))):
g:=(i,j)→ piecewise(i=j,lambda(i),0):
p:=(u,v)→evalf((1/n)*(sum((lambda(k)ˆr)*(ChebyshevT(abs(u-v),alpha(k))+I*signum(u-v)*signum((n/2)+1-k)*
sqrt(1-(alpha(k))ˆ2)*limit(ChebyshevU(abs(u-v)-1,alpha(j)),j=k)),k=1..floor(n/2)+1)+sum(conjugate(lambda(k))ˆr*
(ChebyshevT(abs(u-v),alpha(k))-I*signum(u-v)*signum((n/2)+1-k)*sqrt(1-(alpha(k))ˆ2)*ChebyshevU(abs(u-v)-1,alpha(k))),
k=2..floor((n+1)/2)))):
eigenvalues of A[n]:=Matrix(n,n,g);
the rth power of A[n]:=Matrix(n,n,p);

Appendix B. Following Maple procedure firstly generates a n×n symmetric circulant heptadiagonal matrix Bn = circn(a0,a1,a2,
a3,0, . . . ,0,a3,a2,a1) and then compute eigenvalues and the kth power (r ∈ Z) of it.
restart:
with(LinearAlgebra):
m:=’3’:
n:=’n’:
a[0]:=’a[0]’:
a[1]:=’a[1]’:
a[2]:=’a[2]’:
a[3]:=’a[3]’:
r:=’r’:
f:=(i,j)→ piecewise(i=j,a[0],i>j and i-j<m+1,a[i-j],i<j and j-i<m+1,
a[j-i],i<j and j-i>n-m-1,a[n-(j-i)],i>j and i-j>n-m-1,a[n-(i-j)],0):
B[n]:=Matrix(n,n,f);
alpha:=k→ evalf(cos(2*Pi*(k-1)/n)):
mu:=k→ evalf(a[0]+2*sum(a[l]*ChebyshevT(l,alpha(k)),l=1..m)):
g:=(i,j)→ piecewise(i=j,µ(i),0):
l:=(s)→ piecewise(s=0,1,s=n,1,2):
p:=(u,v)→ evalf((1/n)*((sum(((l(n-2*k+2)*(µ(k))ˆr)*(ChebyshevT(abs(u-v),alpha(k))),k=1..floor(n/2)+1))))):
eigenvalues of B[n]:=Matrix(n,n,g);
the rt power of B[n]:=Matrix(n,n,p);

6. Conclusion

There has been recently increasing research interest in circulant matrices in several areas, such as digital signal processing,
image compression, physics/engineering simulations, number theory, coding theory, cryptography, and, naturally, linear algebra.
This paper present eigenvalues, eigenvectors, powers of circulant m-diagonal matrix which is one type of circulant matrices by
using some famous relations on chebyshev polynomials.

Acknowledgement

The author would like to thank the anonymous referees for their careful reading of the paper and very detailed proposals that
helped improve the presentation of the paper.

References

[1] N. L. Tsitsas, E.G. Alivizatos, G.H. Kalogeropoulos, A recursive algorithm for the inversion of matrices with circulant blocks, Appl. Math. Comput.,
188(1) (2007), 877-894.

[2] G. Zhao, The improved nonsingularity on the r-circulant matrices in signal processing, International Conference On Computer Techology and
Development, Kota Kinabalu, (ICCTD 2009), (2009), 564-567.

[3] W. Zhao, The inverse problem of anti-circulant matrices in signal processing, Pacific-Asia Conference on Knowledge Engineering and Software
Engineering, Shenzhen, (KESE 2009), (2009), 47-50.

[4] J. Rimas, Investigation of dynamics of mutually synchronized systems, Telecommun. Radio Eng., 31(2) (1977), 68-79.
[5] J. Rimas, G. Leonaite, Investigation of a multidimensional automatic control system with delays and chain form structure, Inf. Technol. Control, 35(1)

(2006), 65-70.
[6] J. Rimas, On computing of arbitrary positive integer powers for one type of odd order symmetric circulant matrices–I, Appl. Math. Comput., 165(1)

(2005), 137-141.
[7] J. Rimas, On computing of arbitrary positive integer powers for one type of odd order symmetric circulant matrices–II, Appl. Math. Comput., 169(2)

(2005), 1016-1027.
[8] J. Rimas, On computing of arbitrary positive integer powers for one type of even order symmetric circulant matrices–I, Appl. Math. Comput., 172(1)

(2006), 86-90.



58 Fundamental Journal of Mathematics and Applications

[9] J. Rimas, On computing of arbitrary positive integer powers for one type of even order symmetric circulant matrices–II, Appl. Math. Comput., 174(1)
(2006), 511-552.

[10] J. Gutiérrez-Gutiérrez, Positive integer powers of complex symmetric circulant matrices, Appl. Math. Comput., 202(2) (2008), 877-881.
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