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Abstract

In this paper, we introduce the (α,k)-gamma function, (α,k)-beta function, Pochhammer symbol (x)α

n,k and Laplace transforms for con-
formable fractional integrals. We prove several properties generalizing those satisfied by the classical gamma function, beta function and
Pochhammer symbol. The results presented here would provide generalizations of those given in earlier works.
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1. Introduction

The classical Euler gamma function or Euler integral of the second kind is given by

Γ(x) =
∫

∞

0
tx−1e−tdt, x > 0

and the beta function or Eulerian integral of the first kind with two variables is defined by

B(x,y) =
∫ 1

0
tx−1 (1− t)y−1 dt, x, y > 0.

Therefore, the classical beta function in terms of gamma function is defined in [3] as

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

, x, y > 0.

The rising factorial x(n), sometimes also denoted (x)n([5, p. 6]) or xn ([9, p. 48]), is defined by

x(n) = x(x+1) ...(x+n−1) .

This function is also known as the rising factorial power ([9, p. 48]) and frequently called the Pochhammer symbol in the theory of special
functions. The rising factorial is implemented in the Wolfram Language as Pochhammer [x,n]. In recently, Diaz and Pariguan give a new
definition for the function of variable x as follows

(x)n,k = x(x+ k)(x+2k) ...(x+(n−1)k)

and they called the Pochhammer k-symbol. Setting k = 1 one obtains the usual Pochhammer symbol (x)n. Recently, in a series of research
publications, Diaz et al. ([6]-[8]) have introduced k-gamma and k-beta functions and proved a number of their properties. They have also
studied k-zeta function and k-hypergeometric functions based on Pochhammer k-symbols for factorial functions. The k-gamma function is
defined by

Γk (x) = lim
n→∞

n!kn (kn)
x
k−1

(x)n,α
, k > 0.
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It has been shown that the Mellin transform of the exponential function e−
tk
k is the k-gamma function, explicitly given by

Γk (x) =
∫

∞

0
tx−1e−

tk
k dt.

Clearly, Γ(x) = lim
k→1

Γk (x) , Γk (x) = k
x
k−1

Γ
( x

k
)

and Γk (x+ k) = xΓk (x) . This gives rise to k-beta function defined by

Bk (x,y) =
1
k

∫ 1

0
t

x
k−1 (1− t)

y
k−1 dt

so that Bk (x,y) = 1
k B
( x

k ,
y
k
)

and Bk (x,y) =
Γk(x)Γk(y)

Γk(x+y) .

The purpose of this paper is to introduce (α,k)-gamma function and (α,k)-beta function for conformable fractional integrals and obtain
some of their properties. When (α,k)→ (1,1), it turns out to be the usual gamma function and beta function.

2. Definitions and Properties of Conformable Fractional Derivative and Integral

The following definitions and theorems with respect to conformable fractional derivative and integral were referred in [1], [2], [10], [12]-[17].

Definition 2.1. (Conformable fractional derivative) Given a function f : [0,∞)→ R. Then the “conformable fractional derivative” of f of
order α is defined by

Dα ( f )(t) = lim
ε→0

f
(
t + εt1−α

)
− f (t)

ε
(2.1)

for all t > 0, α ∈ (0,1) . If f is α−differentiable in some (0,a) , α > 0, lim
t→0+

f (α) (t) exist, then define

f (α) (0) = lim
t→0+

f (α) (t) . (2.2)

We can write f (α) (t) for Dα ( f )(t) to denote the conformable fractional derivatives of f of order α . In addition, if the conformable fractional
derivative of f of order α exists, then we simply say f is α-differentiable. For 2≤ n ∈ N, we denote Dn

α ( f )(t) = Dα Dn−1
α ( f )(t) .

Theorem 2.2. Let α ∈ (0,1] and f ,g be α-differentiable at a point t > 0. Then
i. Dα (a f +bg) = aDα ( f )+bDα (g) , for all a,b ∈ R,
ii. Dα (λ ) = 0, for all constant functions f (t) = λ ,
iii. Dα ( f g) = f Dα (g)+gDα ( f ) ,

iv. Dα

(
f
g

)
=

gDα ( f )− f Dα (g)
g2 .

v. If f is differentiable, then

Dα ( f )(t) = t1−α d f
dt

(t) . (2.3)

Definition 2.3 (Conformable fractional integral). Let α ∈ (0,1] and 0≤ a < b. A function f : [a,b]→ R is α-fractional integrable on [a,b]
if the integral ∫ b

a
f (x)dα x :=

∫ b

a
f (x)xα−1dx (2.4)

exists and is finite.

Remark 2.4.

Ia
α ( f )(t) = Ia

1

(
tα−1 f

)
=
∫ t

a

f (x)
x1−α

dx,

where the integral is the usual Riemann improper integral, and α ∈ (0,1].

Theorem 2.5. Let f : (a,b)→ R be differentiable and 0 < α ≤ 1. Then, for all t > a we have

Ia
α Da

α f (t) = f (t)− f (a) . (2.5)

Theorem 2.6. (Integration by parts) Let f ,g : [a,b]→ R be two functions such that f g is differentiable. Then∫ b

a
f (x)Da

α (g)(x)dα x = f g|ba−
∫ b

a
g(x)Da

α ( f )(x)dα x. (2.6)

Theorem 2.7. [17] (Inverse property) Assume that a≥ 0, and α ∈ (0,1), and also let f be a continuous function such that Iα
a f exists. Then,

for all t > a we have

Da
α Ia

α f (t) = f (t) .

In this paper, we firstly introduce the (α,k)-gamma function, (α,k)-beta function, Pochhammer symbol (x)α

n,k and we prove several
properties generalizing those satisfied by the classical gamma function, beta function and Pochhammer symbol. Then, we give a new
definition of Laplace transform for conformable fractional integrals and we prove several properties of generalized Laplace transform. The
results presented here would provide generalizations of those given in earlier works.
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3. Gamma and Beta Functions for Conformable fractional integral

Definition 3.1. (Pochhammer symbol) Let p ∈ (0,∞) , k > 0, α ∈ (0,1] , and n ∈ N+ Pochhammer symbol (p)α

n,k is given by

(p)α

n,k = (p+α−1)(p+α−1+αk)(p+α−1+2αk) ...(p+α−1+(n−1)αk) .

Proposition 3.2. Let α ∈ (0,1] and Γα
k : (0,∞)→ R. For 0 < p < ∞, Conformable gamma function Γα

k is given by

Γα
k (p) =

∫
∞

0 t p−1e−
tαk
αk dα t = lim

n→∞

n!αnkn (nαk)
p+α−1

αk −1

(p)α

n,k
.

Proof. We will give two different proofs. Firstly, we take

Γα
k (p) =

∫
∞

0 t p−1e−
tαk
αk dα t = lim

n→∞

∫ (nk)
1
k

0

(
1− tαk

nαk

)n
t p−1dα t.

Let An,i (p) , i = 0, ...,n, be given by An,i (p) =
∫ (nαk)

1
αk

0

(
1− tαk

nαk

)i

t p−1dα t. The following recursion formula is proven using integration

by parts

An,i (p) =
∫ (nαk)

1
αk

0

(
1− tαk

nαk

)i

t p−1dα t

=
∫ (nαk)

1
αk

0

(
1− tαk

nαk

)i

t p+α−2dt

=

(
1− tαk

nαk

)i
t p+α−1

p+α−1

∣∣∣∣∣
(nαk)

1
αk

0

+
i

n(p+α−1)
∫ (nαk)

1
αk

0

(
1− tαk

nαk

)i−1

t p+α+αk−2dt

=
i

n(p+α−1)
∫ (nαk)

1
αk

0

(
1− tαk

nαk

)i−1

t p+αk−1dα t

=
i

n(p+α−1)
An,i−1 (p+αk) .

Also,

An,0 (p) =
∫ (nαk)

1
αk

0 t p−1dα t =
(nαk)

p+α−1
αk

p+α−1
.

Therefore, integrating by parts

An,n (p) =
∫ (nαk)

1
αk

0

(
1− tαk

nαk

)n

t p−1dα t

=

(
1− tαk

nαk

)n
t p+α−1

p+α−1

∣∣∣∣∣
(nαk)

1
αk

0

+
n

n(p+α−1)

∫ (nαk)
1

αk

0

(
1− tαk

nαk

)n−1

t p+αk−1dα t

=
n

n(p+α−1)

∫ (nαk)
1

αk

0

(
1− tαk

nαk

)n−1

t p+αk−1dα t

=
n

n(p+α−1)


(

1− tαk

nαk

)n−1
t p+αk+α−1

p+αk+α−1

∣∣∣∣∣
(nαk)

1
αk

0

+
n−1

n(p+αk+α−1)

∫ (nαk)
1

αk

0

(
1− tαk

nαk

)n−1

t p+2αk−1dα t


=

n
n(p+α−1)

{
n−1

n(p+αk+α−1)

∫ (nαk)
1

αk

0

(
1− tαk

nαk

)n−1

t p+2αk−1dα t

}
...

=
n(n−1)(n−2) ...(n− (n−1))(nαk)

p+α+nαk−1
αk

n(p+α−1)n(p+αk+α−1)n(p+2αk+α−1) ...n(p+(n−1)αk+α−1)(p+α +nαk−1)

=
n!nn.αn.kn (nαk)

p+α−1
αk

nn (p)α

n,k nαk
(

1+ p+α−1
nαk

)
=

n!αnkn (nαk)
p+α−1

αk −1

(p)α

n,k

(
1+ p+α−1

nαk

)
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and

Γα
k (p) = lim

n→∞
An,n (p) = lim

n→∞

n!αnkn (nαk)
p+α−1

αk −1

(p)α

n,k
.

which completes the proof.
Secondly, for proof of proposition, we first prove that∫ 1

0

(
1− tαk

)n
t p−1dα t =

n!αnkn

(p)α

n+1,k
(3.1)

for p > 0 and n = 0,1,2, .... In order to prove (3.1) by induction we first take n = 0 to obtain for p > 0∫ 1

0
t p−1dα t =

1
p+α−1

=
1

(p)α

1,k
.

Now we assume that (3.1) holds for n = m. Then we have∫ 1

0

(
1− tαk

)m+1
t p−1dα t =

∫ 1

0

(
1− tαk

)(
1− tαk

)m
t p−1dα t

=
∫ 1

0

(
1− tαk

)m
t p−1dα t−

∫ 1

0

(
1− tαk

)m
t p+αk−1dα t

=
m!αmkm

(p)α

m+1,k
− m!αmkm

(p+αk)α

m+1,k

=
m!αmkm

(p)α

m+2,k
(p+α−1+(m+1)αk− p−α +1)

=
(m+1)!αm+1km+1

(p)α

m+2,k

which shows that (3.1) holds for n = m+1. This proves that (3.1) holds for all n = 0,1,2, .... Now we set t = u(nαk)−
1

αk into (3.1) to find
that

1

(nαk)
p+α−1

αk

∫ (nαk)1/αk

0

(
1− uαk

nαk

)n

up−1dα u =
n!αnkn

(p)α

n,k nαk
(

1+ p+α−1
nαk

)
and then

∫ (nαk)1/αk

0

(
1− uαk

nαk

)n

up−1dα u =
n!αnkn (nαk)

p+α−1
k −1

(p)α

n,k

(
1+ p+α−1

nαk

) .

Since we have

lim
n→∞

(
1− uαk

nαk

)n

= e−
uαk
αk ,

we conclude that

Γ
α
k (p) =

∫
∞

0
up−1e−

uαk
αk dα u = lim

n→∞

n!αnkn (nαk)
p+α−1

αk −1

(p)α

n,k
.

Proposition 3.3. The (α,k)-Gamma function Γα
k (p) satisfies the following identities

(1) Γα
k (p+ k) = (p+α−1)Γα

k (p)
(2) Γα

k (p+nαk) = (p)α

n,k Γα
k (p)

(3) Γα
k (p) = (αk)

p+α−1
αk −1

Γ

(
p+α−1

αk

)
(4) Γα

k (p) = (α)
p+α−1

αk −1
Γk

(
p+α−1

α

)
(5) Γα

k (αk+1−α) = 1

(6) Γα
k (p) = a

p+α−1
αk

∫
∞

0 t p−1e−a tαk
αk dα t.
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Proof. (1) Using the integration by parts, we have

Γα
k (p+αk) =

∫
∞

0 t p+αk−1e−
tαk
αk dα t

= (p+α−1)
∫

∞

0 t p−1e−
tαk
αk dα t

= (p+α−1)Γα
k (p) .

(2) Integrating the by parts for n-times we get

Γ
α
k (p+nαk) =

∫
∞

0
t p+nαk−1e−

tαk
αk dα t

=
∫

∞

0
t p+α−2+nαke−

tαk
αk dt

= (p+α−1+(n−1)αk)
∫

∞

0
t p+α−2+(n−1)αke−

tαk
αk dt

= (p+α−1+(n−1)αk)(p+α−1+(n−2)αk)
∫

∞

0
t p+α−2+(n−3)ke−

tαk
αk dt

...

= (p+α−1+(n−1)αk)(p+α−1+(n−2)αk) ...(p+α−1)
∫

∞

0
t p+α−2e−

tαk
αk dt

= (p)α

n,k Γ
α
k (p) .

(3) By definition (α,k)-Gamma function Γα
k (p) ,

Γ
α
k (p) =

∫
∞

0
up−1e−

uαk
αk dα u

and by changing the variable t = uαk

αk , we obtain the result (3). The proof of the properties (4), (5) and (6) are obvious from the definition of
(α,k)-Gamma function Γα

k .

Definition 3.4. Let α ∈ (0,1] . The (α,k)-Beta function Bα
k (p,q) is given the by formula

Bα
k (p,q) =

1
αk

∫ 1

0
t

p
αk−1 (1− t)

q
αk−1 dα t, p, q, k > 0.

Proposition 3.5. The (α,k)-Beta function Bα
k (p,q) satisfies the following identities

1) Bα
k (p,αk) = 1

p+αk(α−1) ,

2) Bα
k (αk (2−α) ,q) = 1

q .

Proof. From the definition of the (α,k)-Beta function Bα
k (p,q) , we have

Bα
k (p,αk) =

1
αk

∫ 1

0
t

p
αk−1dα t =

1
p+αk (α−1)

and similarly,

Bα
k (αk (2−α) ,q) =

1
αk

∫ 1

0
t1−α (1− t)

q
αk−1 dα t =

1
q
.

This completes the proof.

Remark 3.6. From the Proposition 3.5, we have

Bα
k (αk,αk) =

1
kα2 .

Remark 3.7. By the Proposition 3.5 with α = 1, we have the following properties for k-Beta function

Bk (p,k) =
1
p
, Bk (k,q) =

1
q
.

Proposition 3.8. The following property holds for (α,k)-Beta function Bα
k (p,q)

Bα
k (p,q) =

p+αk (α−2)
p+q+αk (α−2)

Bα
k (p−αk,q) .
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Proof. Integrating the by parts, we have

Bα
k (p,q) =

1
αk

∫ 1

0
t

p
αk−1 (1− t)

q
αk−1 dα t

=
1

αk
αk
q

t
p

αk +α−2 (1− t)
q

αk

∣∣∣∣1
0

+
1

αk
.
αk
q

( p
αk

+α−2
)∫ 1

0
t

p
αk−2 (1− t)

q
αk dα t

=
p+αk (α−2)

q
1

αk

∫ 1

0
t

p
αk−2 (1− t)(1− t)

q
αk−1 dα t

=
p+αk (α−2)

q

[
1

αk

∫ 1

0
t

p
αk−2 (1− t)

q
αk−1 dα t− 1

αk

∫ 1

0
t

p
αk−1 (1− t)

q
αk−1 dα t

]
=

p+αk2 (α−2)
q

[Bα
k (p−αk,q)−Bα

k (p,q)] .

That is,

Bα
k (p,q) =

p+αk (α−2)
q

[Bα
k (p−αk,q)−Bα

k (p,q)]

which completes the proof.

Proposition 3.9. The following identity holds

Bα
k (p,q) = Bk (p+αk (α−1) ,q) =

1
αk

B
( p

αk
+α−1,

q
αk

)
where Bk (x,y) is k-Beta function and B(x,y) is classical Beta function.

Proof. The proof is follows directly from the definitions of (α,k)-Beta function and conformable integral.

Proposition 3.10. The following property holds for (α,k)-Beta function in terms of (α,k)-gamma function

Bα
k (p+αk (1−α) ,q) =

Γα
k (p)Γα

k (q)
Γα

k (p+q+1−α)
.

Proof. By using definition of (α,k)-gamma function, we get

Γ
α
k (p)Γ

α
k (q) =

∫
∞

0
t p−1e−

tαk
αk dα t

∫
∞

0
sq−1e−

sαk
αk dα s

=
∫

∞

0

∫
∞

0
e−

tαk+sαk
αk t p−1sq−1dα tdα s.

Now we apply the change of variables tαk = xαky and sαk = xαk(1−y) to this double integral. Note that tαk + sαk = xαk and that 0 < t < ∞

and 0 < s < ∞ imply that 0 < x < ∞ and 0 < y < 1. The Jacobian of this transformation (see [4]) is(
∂ α f
∂xα

∂ α f
∂yα

∂ α g
∂xα

∂ α g
∂yα

)
=

(
x1−α ∂ f

∂x y1−α ∂ f
∂y

x1−α ∂g
∂x y1−α ∂g

∂y

)

=

(
x1−α y

1
αk 1

αk y1−α xy
1

αk−1

x1−α (1− y)
1

αk − 1
αk y1−α x(1− y)

1
αk−1

)

= − 1
αk

x2−α y
1

αk−α (1− y)
1

αk−1 .

Since x, y, k > 0, we conclude that dα tdα s =

∣∣∣∣∣
(

∂ α f
∂xα

∂ α f
∂yα

∂ α g
∂xα

∂ α g
∂yα

)∣∣∣∣∣dα xdα y. Hence we have

Γ
α
k (p)Γ

α
k (q) =

∫ 1

0

∫
∞

0
e−

xαk
αk xp−1y

p−1
αk xq−1 (1− y)

q−1
αk

1
αk

x2−α y
1

αk−α (1− y)
1

αk−1 dα xdα y

=

(∫
∞

0
e−

xαk
αk xp+q−α dα x

)(
1

αk

∫ 1

0
y

p
αk−α (1− y)

q
αk−1 dα y

)
= Γ

α
k (p+q+1−α)Bα

k (p+αk (1−α) ,q) .

Remark 3.11. By the Proposition 3.10 with α = 1, we have the following properties

Bk (p,q) =
Γk (p)Γk (q)
Γk (p+q)

.
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4. Laplace Transform for Conformable Fractional Integral

In Abbeljawad give the definition of the Laplace transform for conformable left fractional integral of order 0 < α ≤ 1. In this section, we
will generalize the definition of the Laplace transform for conformable fractional integral and use it to soleve prove some properties.

Definition 4.1. Let α ∈ (0,1] , k > 0, and f : [0,∞)→ R be a function. Then the fractional Laplace transform of order α of f defined by

Lα
k { f (t)}(s) = Fα

k (s) =
∞∫

0

e−s tαk
αk f (t)dα t (4.1)

which is called (α,k)-Laplace transform.

Some properties of the (α,k)-Laplace Transform
1) Lα

k {0}(s) = 0
2) Lα

k { f (t)+g(t)}(s) = Lα
k { f (t)}(s)+Lα

k {g(t)}(s)
3) Lα

k {c f (t)}(s) = cLα
k { f (t)}(s) , c is a constant.

Properties 2) and 3) together means that the Laplace transform is linear.

Theorem 4.2. Let α ∈ (0,1] , k > 0, and f : (0,∞)→ R be differentiable function. Then

Lα
k {Dα f (t)}(s) = sLα

k

{
tα(k−1) f (t)

}
(s)− f (0) . (4.2)

Proof. By definition (α,k)-Laplace transform and using the (2.6), we have (4.2).

It is easy to see from definiton of the (α,k)-Laplace transform that we have rather unusual results given in the following theorem.

Theorem 4.3. Let α ∈ (0,1], c ∈ R and k > 0. Then we have the following results
i) Lα

k {1}(s) = s−
1
k Γα

k (1) ,

ii) Lα
k {t}(s) = s−

1+α

αk Γα
k (2) ,

iii) Lα
k {t

p}(s) = s−
p+α

αk Γα
k (p+1) ,

iv) Lα
k

{
ec tαk

αk

}
(s) = (s− c)−

1
k Γα

k (1) ,

v) Lα
k { f (t)}(s) = Fα

k (s)⇒ Lα
k

{
f (t).ec tαk

αk

}
(s) = Fα

k (s− c) ,

vi) Lα
k { f (t)}(s) = Fα

k (s)⇒ Lα
k { f (ct)}(s) = 1

cα Fα
k

(
s

cαk

)
.

Example 4.4. Let us consider the function f (t) = sinw tα

α
, then by using the property Dα

(
cosw tα

α

)
=−wsinw tα

α
, we can write

Lα
k

{
sinw

tα

α

}
(s) =

∞∫
0

e−s tαk
αk sinw

tα

α
dα t =− 1

w

∞∫
0

e−s tαk
αk Dα

(
cosw

tα

α

)
dα t.

Therefore, using integration by part for conformable integral, we have

− 1
w

∞∫
0

e−s tαk
αk Dα

(
cosw

tα

α

)
dα t = − 1

w

e−s tαk
αk cosw

tα

α

∣∣∣∣∞
0
−

∞∫
0

cosw
tα

α
Dα

(
e−s tαk

αk

)
dα t


=

1
w
− s

w

∞∫
0

tαk−α e−s tαk
αk cosw

tα

α
dα t

=
1
w
− s

w2

∞∫
0

tαk−α e−s tαk
αk Dα

(
sinw

tα

α

)
dα t.

Similarly, we get

Lα
k

{
sinw

tα

α

}
(s) =

1
w
+

s(k−α)

w2 Lα
k

{
tk−2α sinw

tα

α

}
(s)− s2

w2 Lα
k

{
tk−α sinw

tα

α

}
(s) . (4.3)

If we take k = α in (4.3), we have

Lα
α

{
sinw

tα

α

}
(s) =

w
1+ s2

which is proved by Abdeljawad in [1].
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