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Abstract
In this paper we continue to study the strongly annihilating-submodule graph. In addition
to providing the more properties of this graph, we compare extensively the properties of
this graph with the annihilating-submodule graph.
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1. Introduction
Throughout this paper R is a commutative ring with nonzero identity element and M

is a unitary right R-module. For a submodule N of M , denoted by N ≤ M , the ideal
{r ∈ R | Mr ⊆ N} will be denoted by (N :R M) (briefly by (N : M)). Recall that M
is indecomposable if it is nonzero and cannot be written as a direct sum of two nonzero
submodules. M is called uniform if the intersection of any two nonzero submodules is
nonzero. Also a submodule N of M is called an essential submodule of M , denoted by
N ≤e M , if for any nonzero submodule K of M , K ∩ N ̸= 0. For X ⊆ M , the annihilator
of X in R is the ideal annR(X) = {r ∈ R | Xr = 0}. We say that M has uniform
dimension n (written u.dim M = n) if there exists an essential submodule N ≤e M that
is a direct sum of n uniform submodules, i.e., u.dim M is the supremum of the set {k | M
contains a direct sum of k nonzero submodules}, for more details see [21].

There are many papers on assigning graphs to groups, rings or modules, for example
see [1–4, 9, 18, 25]. For any ring R with the set of zero-divisors Z(R), the zero-divisor
graph of R, denoted by Γ(R), is a simple graph with vertices Z(R)∗ = Z(R) \ {0} and
two distinct vertices x and y are adjacent if and only if xy = 0. The concept of a zero-
divisor graph of a commutative ring was introduced in [13], and it was mainly concerned
with coloring of rings. The above definition first appeared in the work of Anderson and
Livingston [7]. This definition, unlike the earlier work of Anderson and Naseer [8] and
Beck [13], dose not take zero to be a vertex of Γ(R). The zero-divisor graph of a ring has
been studied by several authors, see for example [3, 4, 6–8]. An ideal I of a commutative
ring R is called an annihilating ideal if IJ = 0, for some nonzero ideal J of R. Also the
set of all annihilating ideals of R is denoted by A(R). The notion of annihilating-ideal
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graph was first introduced and studied in [14]. The annihilating ideal graph of R, denoted
by AG(R), is a simple graph with vertices A(R)∗ = A(R) \ {0} and two distinct vertices
I and J are adjacent if and only if IJ = 0. Later, it was modified and further studied
by many authors, see for example [1, 2, 5, 23]. Recently, the notions of zero divisor graph
and annihilating-ideal graph have been extended from rings to modules in different ways.
For instance, we can refer to [9] and [25]. In [9], the authors introduced and studied the
annihilating-submodule graph. By the annihilating-submodule graph of M , denoted by
AG(M), we mean the simple graph with vertices {0 ̸= N ≤ M | M(N : M)(K : M) = 0,
for some nonzero submodule K of M} and two distinct vertices N and K are adjacent if
and only if M(N : M)(K : M) = 0. The authors in [10,11] and [9], investigated the basic
properties of this graph and presented some related results.

In this paper, we continue to study the strongly annihilating-submodule graph of a
module introduced in [15]. The strongly annihilating-submodule graph of M , denoted by
SAG(M), is an undirected (simple) graph in which a nonzero submodule N of M is a
vertex if N(K : M) = 0 or K(N : M) = 0, for some nonzero submodule K ≤ M and two
distinct vertices N and K are adjacent if and only if N(K : M) = 0 or K(N : M) = 0.
It is clear that if M = R, then SAG(R) = AG(R) and if M is a multiplication R-module,
then SAG(M) = AG(M). We compare extensively the properties of this graph with the
annihilating-submodule graph.

We state some definitions and notions of graph theory used throughout this paper.
Recall that for a graph G, the degree of a vertex x in G is the number of edges of G
incident with x. A graph G is connected if there is a path between any two vertices of G.
The diameter of G is diam(G) = sup{d(x, y) | x and y are distinct vertices of G}, where
d(x, y) is the length of the shortest path from x to y in G and if there is no such path, we
write d(x, y) = ∞. The girth of a graph G, denoted by gr(G), is the smallest size of the
length of cycles of G and if G has no cycles, we write gr(G) = ∞. A bipartite graph G is
a graph whose vertices can be partitioned into two subsets U and V such that every edge
connects a vertex in U to one in V . Vertex sets U and V usually are called the parts of
G. A complete bipartite graph is one in which every vertex in U is joined to every vertex
in V . A complete bipartite graph with parts U and V is called star graph if |U | = 1 or
|V | = 1. In a graph G, if all the vertices of G have the same degree r, then G is called
r-regular, or simply regular. A graph in which each pair of distinct vertices is connected
by an edge is called a complete graph. A connected graph is called a tree if it has no cycles.
For a graph G, a complete subgraph of G is called a clique. The clique number, cl(G), is
the greatest integer n ≥ 1 such that G contains a complete subgraph with n vertices, and
cl(G) is infinite if for any n, G contains a complete subgraph with n vertices. By χ(G),
we denote the chromatic number of G, i.e., the minimum number of colors which can be
assigned to the vertices of G in such a way that every two adjacent vertices have different
colors. For every graph G, a subset D of V (G) is called a dominating set if every vertex
of G is either in D or adjacent to at least one vertex in D. The domination number of G
is the number of vertices in a smallest dominating set of G. A total dominating set of a
graph G is a subset S of V (G) such that every vertex is adjacent to a vertex in S. The
total domination number of G is the minimum cardinality of a total dominating set. The
notations of graph theory used in the sequel can be found in [19].

The organization of this paper is as follows: In Section 2, we give more properties of
SAG(M) and remind that SAG(M) can be a strict subgraph of AG(M). It is shown that
if M is not a prime R-module, then SAG(M) has ACC (resp. DCC) on vertices if and
only if M is a Noetherian (resp. an Artinian) module (Theorem 2.8). In Section 3, we
compare extensively the properties of the two graphs SAG(M) and AG(M); in particular
when SAG(M) ( or AG(M)) is a path, bipartite, tree, star, regular or complete graph. For
instance, we show that gr(SAG(M)) = 4 if and only if gr(AG(M)) = 4; moreover in this
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case SAG(M) = AG(M) (Proposition 3.3 and Theorem 3.8). Also, if SAG(M) is a tree,
then either SAG(M) is a star graph or SAG(M) = P4; moreover, SAG(M) = P4 if and
only if M = F × S, where F is a simple module and S is a module with a unique non-
trivial submodule (Theorem 3.10). Finally in the fourth section, we compare the (total)
dominating number of SAG(M) and AG(M) (Theorem 4.2 and Proposition 4.3). Also
the dominating number and the total dominating number of SAG(M) are investigated
(Theorem 4.4).

2. More properties of SAG(M)
Throughout the paper, M is a unitary right R-module and N, K are nonzero submodules

of M . In SAG(M), M itself can be a vertex. In fact M is a vertex if and only if every
nonzero submodule is a vertex, if and only if there exists a nonzero proper submodule
N of M such that (N : M) = ann(M). We note that for any R-module M , SAG(M)
is a subgraph of AG(M) and if M = R, then the three graphs SAG(M), AG(M) and
the annihilating-ideal graph introduced in [14] coincide. However, the following example
shows that SAG(M) is a strict subgraph of AG(M) even in the case where M is semiprime
(defined later) or semisimple (see part (5) in the following example). For a given R-module
M , we use the notation n(M) for the number of the submodules of M . Also the degree
of a vertex K in graphs SAG(M) and AG(M) is denoted by degS(K) and degA(K),
respectively. In the following example we consider M as a Z-module.

Example 2.1. (1) Let M = Z2 ⊕ Z4, N1 = (0) ⊕ Z4 and N2 = (1, 1)Z. Then N1 and N2
are adjacent in AG(M), but not adjacent in SAG(M). Thus SAG(M) is different from
AG(M).
(2) Let M = (⊕n

i=1Zp) ⊕ (⊕m
i=1Zq) and K = (⊕n

i=1Zp) ⊕ (⊕m−1
i=1 Zq), where p and q are

two distinct prime numbers and m ≥ 2. We set N = T ⊕ (⊕m
i=1Zq), where T is a nonzero

proper submodule of ⊕n
i=1Zp. Then M(N : M)(K : M) = M(pZ)(qZ) = 0. However,

N(K : M) = N(qZ) ̸= 0 and K(N : M) = K(pZ) ̸= 0. Thus N and K are adjacent in
AG(M), but not adjacent in SAG(M) and hence degA(K) − degS(K) ≥ n(⊕n

i=1Zp) − 2.
(3) Let M = Zp ⊕ Zp ⊕ (⊕m

i=1Zq) and K = Zp ⊕ Zp ⊕ (⊕m−1
i=1 Zq), where p and q are two

distinct prime numbers and m ≥ 2. Since by [26, Corollary 4.4], n(Zp ⊕ Zp) = p + 3, the
part (2) implies that degA(K) − degS(K) ≥ p + 1.
(4) In Z16, SAG(Z16) = AG(Z16) is the star graph N1 − N3 − N2, where N1 = 2Z16,
N2 = 4Z16 and N3 = 8Z16.
(5) Let M = (⊕2

i=1Z2) ⊕ (⊕2
i=1Z3), N = Z2 ⊕ (⊕2

i=1Z3) and K = (⊕2
i=1Z2) ⊕ Z3. Clearly

N and K are adjacent in AG(M), but not adjacent in SAG(M).

An R-module M is called prime if annR(M) = annR(N), for any nonzero submodule
N of M . Also M is called weakly prime (resp. semiprime), if annR(N) is a prime (resp.
semiprime) ideal of R, for any nonzero submodule N of M . The dual of notions prime
and weakly prime for modules are second and weakly second, respectively. Indeed M is
called second if annR(M) = annR(M/N), for any proper submodule N of M . Also M is
called weakly second, if annR(M/N) is a prime ideal of R, for any proper submodule N
of M . Clearly, any prime module is weakly prime and also any second module is weakly
second. For more details about these notions, the reader is referred to [12,16,17].

Example 2.2. (1) If M = ⊕n
i=1Si, where Si’s are isomorphic simple R-modules, then

SAG(M) is a complete graph such that every nonzero submodule of M is a vertex and so
SAG(M) = AG(M).
(2) It is easy to see that SAG(M) is the empty graph if and only if M is a prime module
and not vertex.
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Proposition 2.3. If one of the following conditions holds, then the two graphs SAG(M)
and AG(M) coincide.
(1) M is prime.
(2) M is weakly prime.
(3) M is second.
(4) M is weakly second.
(5) M is a multiplication R-module (i.e., for every submodule N of M there exists an ideal
I of R such that N = MI).
(6) M is a cyclic R-module.

Proof. Clear. �

The following useful lemmas will be used frequently in this paper.

Lemma 2.4. [15, Lemma 2.1] (1) If N and K are adjacent in SAG(M), then N1 and K1
are also adjacent in SAG(M) for every 0 ̸= N1 ≤ N and 0 ̸= K1 ≤ K with N1 ̸= K1.
(2) If N ∩ K = 0, then N and K are adjacent in SAG(M).
(3) If N is not a vertex in SAG(M), then N ≤e M .

The converse of (3) in the above lemma is not true. Indeed, if we consider Z12 as a
Z-module, then 2Z12 ≤e Z12. However, 2Z12 and 6Z12 are adjacent and so 2Z12 is a vertex
in SAG(Z12).

The following lemma shows that V (SAG(M)) = V (AG(M)).

Lemma 2.5. [15, Lemma 2.2] If N and K are adjacent in AG(M), then the following
statements hold.
(1) N and K are adjacent in SAG(M) or there exists a nonzero submodule of N ∩ K such
that is adjacent to both N and K in SAG(M).
(2) There exists a nonzero submodule of N that is adjacent to K in SAG(M).

Corollary 2.6. Let N and K be adjacent in AG(M) and N be a minimal submodule of
M . Then N and K are adjacent in SAG(M).

Proposition 2.7. Let M be an R-module and I be an ideal of R.
(1) If V (SAG(M)) ̸= ∅, then every minimal submodule of M is a vertex.
(2) If MI − N is an edge in AG(M), then MI − N is an edge in SAG(M).
(3) If AG(M) is a triangle-free graph or contains no cycle, then SAG(M) = AG(M).

Proof. (1). Let N be a minimal submodule of M . Then for every nonzero submodule
K of M , N ∩ K = 0 or N ⊆ K. If N ∩ K = 0, then N and K are adjacent, and we
are done. Thus we may assume that N ⊆ K, for any nonzero submodule K of M . Now
let K ∈ V (SAG(M)). Then there exists 0 ̸= K ′ ≤ M such that K(K ′ : M) = 0 or
K ′(K : M) = 0. Thus N(K ′ : M) = 0 or K ′(N : M) = 0, as desired.
(2). Since MI − N is an edge in AG(M), we have M(MI : M)(N : M) = 0. Clearly
M(MI : M) = MI. Thus MI(N : M) = 0, as desired.
(3). It is clear by Lemma 2.5. �

Theorem 2.8. If M is not a prime R-module, then SAG(M) has ACC (resp. DCC) on
vertices if and only if M is a Noetherian (resp. an Artinian) module.

Proof. Suppose that SAG(M) has ACC (resp. DCC) on vertices. Since M is not a prime
module, there exists r ∈ R and m ∈ M such that mr = 0 but m ̸= 0 and r /∈ ann(M).
Since Mr(annM (r) : M) ⊆ annM (r)r = 0, every nonzero submodule in annM (r) and
in Mr is a vertex. This implies that the R-modules annM (r) and Mr have ACC (resp.
DCC) on submodules. Now Mr ∼= M/annM (r) implies that M is a Noetherian (resp. an
Artinian) module. The converse is clear. �
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Corollary 2.9. [15, Theorem 2.4] For any R-module M , SAG(M) is a connected graph
with diam(SAG(M)) ≤ 3.

Theorem 2.10. [15, Theorem 2.5] For any R-module M , if SAG(M) contains a cycle,
then gr(SAG(M)) ≤ 4.

3. Comparison of SAG(M) and AG(M)
At the beginning of this section, we compare the girth of two graphs AG(M) and

SAG(M).

Proposition 3.1. Let M be an R-module with u.dim(M) ≥ 2. Then

gr(SAG(M)) = 3 ⇐⇒ gr(AG(M)) = 3.

Proof. Let gr(AG(M)) = 3 and N1 − N2 − N3 − N1 be a cycle in AG(M). If this cycle
is also a cycle in SAG(M), there is nothing to prove. Thus without loss of generality, we
may assume that N1 and N2 are not adjacent in SAG(M). By Lemma 2.5, there exists
L ≤ N1 ∩ N2 such that N1 − L − N2 is a path in SAG(M). If there exists 0 ̸= L1 � L,
then L − L1 − N1 − L is a cycle in SAG(M). Now assume that L is minimal and L2 ≤ M
is a complement of L in M . Then L ⊕ L2 ≤e M and since M is not uniform, L2 ̸= 0. If
N1 ∩L2 = 0, then L−L2 −N1 −L is a cycle in SAG(M). Thus we assume that N1 ∩L2 ̸= 0
and consider the following cases.
Case 1: N1 ∩ L2 ̸= L2. Then since N2 − N1 ∩ L2 is an edge in AG(M), by Lemma 2.5
L − N2 − N1 ∩ L2 − L is a cycle in SAG(M) or there exists K ≤ N2 ∩ (N1 ∩ L2) such
that N2 − K − N1 ∩ L2 is a path in SAG(M). In the latter, L − N2 − K − L is a cycle in
SAG(M).
Case 2: N1 ∩L2 = L2. Then L2 ( N1 and since N2 −L2 is an edge in AG(M), by Lemma
2.5 L − N2 − L2 − L in SAG(M) or there exists K ≤ N2 ∩ L2 such that N2 − K − L2 is a
path in SAG(M). In the latter, L − N2 − K − L is a cycle in SAG(M). The converse is
clear. �

We have not found any example of a module that gr(AG(M)) = 3 and gr(SAG(M)) ̸=
3. The lack of such counterexample together with the above proposition motivates the
following fundamental conjecture.

Conjecture 3.2. For any R-module M , gr(SAG(M)) = 3 if and only if gr(AG(M)) = 3.

Proposition 3.3. For any R-module M , gr(SAG(M)) = 4 if and only if gr(AG(M)) = 4.

Proof. Let gr(AG(M)) = 4 and N1 − N2 − N3 − N4 − N1 be a cycle in AG(M). We claim
that N1 ∩ N2 = N2 ∩ N3 = N3 ∩ N4 = N4 ∩ N1 = 0 and this implies that N1 − N2 − N3 −
N4 − N1 is also a cycle in SAG(M). On the contrary, assume that N1 ∩ N2 ̸= 0. Then the
following cases can occur.
Case 1: N1 ∩ N2 /∈ {N1, N2}. Then N1 − N1 ∩ N2 − N2 − N1 is a cycle in AG(M), a
contradiction.
Case 2: N1 ∩ N2 = N1. Then N1 ⊆ N2 and so N1 − N2 − N3 − N1 is a cycle in AG(M),
a contradiction.
Case 3: N1 ∩ N2 = N2. Then N2 ⊆ N1 and so N1 − N2 − N4 − N1 is a cycle in AG(M),
a contradiction. Thus the claim is proved and so gr(SAG(M)) = 4.
Conversely, let gr(SAG(M)) = 4 and N1 − N2 − N3 − N4 − N1 be a cycle in SAG(M).
By [9, Theorem 3.4], gr(AG(M)) ≤ 4. First, we claim that N1 and N3 are not adjacent
in AG(M). On the contrary, assume that N1 and N3 adjacent in AG(M). By Lemma
2.5, there exists L ≤ N1 ∩ N3 such that L is adjacent both N1 and N3 in SAG(M). If
L /∈ {N2, N4}, then N3 − L − N4 − N3 is a cycle in SAG(M), a contradiction. If L = N2
or L = N4, then N1 − N2 − N4 − N1 is a cycle in SAG(M), a contradiction. Similarly,
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we can show that N2 and N4 are not adjacent in AG(M). Now if gr(AG(M)) = 3,
then by Proposition 3.1, M must be uniform and as in proof of that proposition, we
will have a triangle N5 − N6 − N7 − N5 in AG(M) such that N5 is a minimal essential
submodule of M and so for every vertex K, N5 ⊆ K. If N5 ̸= Ni for i ∈ {1, 2, 3, 4},
then N5 − N1 − N2 − N5 is a cycle in SAG(M), because N5 ⊆ N4 and also N5 ⊆ N3,
a contradiction. If N5 = Ni for some i ∈ {1, 2, 3, 4}, without loss of generality, we may
assume that N5 = N2. Then N1 − N2 − N4 − N1 is a cycle in SAG(M), because N2 ⊆ N1,
which again is a contradiction. �
Corollary 3.4. Let M be an R-module with u.dim(M) ≥ 2. Then AG(M) is a tree if and
only if SAG(M) is a tree.

Proof. Let SAG(M) be a tree. If AG(M) contains a cycle, then by [9, Theorem 3.4],
gr(AG(M)) ≤ 4. Now by Proposition 3.1 and Proposition 3.3, we have gr(SAG(M)) = 4
or gr(SAG(M)) = 3, a contradiction. Thus AG(M) is also tree. Clearly, if AG(M) is tree,
then so is SAG(M). �
Proposition 3.5. (1) If AG(M) is a bipartite graph, then so is SAG(M).
(2) If SAG(M) is a bipartite graph with parts V1 and V2 such that |V1| ≥ 2 and |V2| ≥ 2,
then AG(M) is also bipartite.
(3) If SAG(M) is a bipartite graph with u.dim(M) ≥ 2, then AG(M) is also bipartite.

Proof. (1) is clear.
(2). Let SAG(M) be a bipartite graph with the conditions said in (2). Suppose, on the
contrary, there exist N and K in V1 such that N − K is an edge in AG(M). By Lemma
2.5, there exists L ≤ N ∩ K such that both N and K are adjacent to L in SAG(M).
Clearly L ∈ V2. By hypothesis, we can choose L ̸= T ∈ V2 and consider dS(T, K) and
dS(T, N), where dS(T, N) is the length of the shortest path from T to N in SAG(M). If
dS(T, N) = 1, then L ⊆ N ∩ K implies that T − L is an adge in SAG(M), a contradiction.
Similarly, dS(T, K) ̸= 1. Since SAG(M) is connected with diameter at most 3 and it is
bipartite, we conclude that dS(T, N) = dS(T, K) = 3. Thus T − T1 − P − K is a path in
SAG(M), for some T1 ∈ V1 and P ∈ V2. If P ̸= L, then P is adjacent to L in SAG(M),
a contradiction, since P is adjacent to K in SAG(M). Thus P = L. Clearly N ∩ T1 ̸= 0
and L is adjacent to N ∩ T1 in SAG(M), so N ∩ T1 ∈ V1. Now one of the following cases
may occur.
Case 1: N ∩ T1 = N . Then N ⊆ T1 and since T is adjacent to T1 in SAG(M), so T is
adjacent to N in SAG(M), a contradiction.
Case 2: N ∩ T1 = K. Then K ⊆ T1 and since T is adjacent to T1 in SAG(M), so T is
adjacent to K in SAG(M), a contradiction.
Case 3: N ∩T1 = T1. Then T1 ⊆ N and since K is adjacent to N in AG(M), we conclude
that K is adjacent to T1 in AG(M). Now by Lemma 2.5, there exists T2 � T1 such that
K is adjacent to T2 in SAG(M). Thus T2 ∈ V2 and it is easy to see that T2 = L. This
means L ⊆ T1 and hence T is adjacent to L in SAG(M), because T is adjacent to T1 in
SAG(M), a contradiction.
Case 4: N∩T1 /∈ {N, K, T1}. By replacing T1 with N∩T1 in Case 3, we get a contradiction.
Thus AG(M) is a bipartite graph, as desired.
(3). If AG(M) is not bipartite, then by Lemma 2.5, it contains a triangle and so gr(AG(M))
= 3. Now by Proposition 3.1, gr(SAG(M)) = 3, a contradiction. �
Corollary 3.6. Suppose that one of the two graphs AG(M) and SAG(M) is bipartite with
parts V1 and V2. If one of the following holds, then AG(M) and SAG(M) coincide.
(1) |V1| ≥ 2 and |V2| ≥ 2.
(2) u.dim(M) ≥ 2.

Proof. Follows from Proposition 2.7(3) and Proposition 3.5 parts (2) and (3). �
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A similar result of the following has appeared in [24, Lemma 3.3]. Here, we give a
shorter proof of this fact.

Lemma 3.7. If SAG(M) contains a cycle of odd length, then it contains a triangle.

Proof. Using induction, we show that for every cycle of odd length 2n + 1 ≥ 5, there
exists a cycle with length 2k +1 such that k < n. Assume that N1 −N2 −· · ·−N2n+1 −N1
is a cycle with odd length 2n + 1. If two distinct non consecutive Ni and Nj are adjacent,
the proof is complete. Otherwise, we set 0 ̸= L = N1 ∩ N3. Then by Lemma 2.4, L ̸= Ni

for all 1 ≤ i ≤ 2n + 1 and L is adjacent to both N4 and N2n+1. Hence we have the cycle
N2n+1 − L − N4 − N5 − · · · − N2n+1, which is the desired cycle. �
Theorem 3.8. If gr(SAG(M)) = 4 or gr(AG(M)) = 4, then AG(M) and SAG(M)
coincide.

Proof. Follows from Propositions 3.3 and 2.7(3). �
For any R-module M , since diam(AG(M)) ≤ 3 and diam(SAG(M)) ≤ 3, if either

AG(M) = Pn or SAG(M) = Pn, then n ≤ 4. Now we have the following interesting
proposition.

Proposition 3.9. Let M be an R-module. Then
(1) For n ̸= 3, AG(M) = Pn if and only if SAG(M) = Pn.
(2) If M is not uniform, then AG(M) = P3 if and only if SAG(M) = P3

Proof. (1). For n = 1 and n = 2, the proof is clear. Let SAG(M) be a path, say,
N1 − N2 − N3 − N4. If AG(M) ̸= SAG(M), since the set of all vertices of AG(M) is equal
to the set of all vertices of SAG(M), AG(M) must contain a cycle. Thus by [9, Theorem
3.4], gr(AG(M)) ≤ 4. If gr(AG(M)) = 4, then by Proposition 3.3, gr(SAG(M)) = 4, a
contradiction. If gr(AG(M)) = 3, then without loss of generality, we may assume N1 and
N3 are adjacent in AG(M). Then by Lemma 2.5, there exists L ⊆ N3 such that N1 − L
is an edge in SAG(M). Since SAG(M) = P4, we will have L = N2 and so N2 ⊆ N3. Now
N4 and N2 must be adjacent in SAG(M), a contradiction. The converse is clear.
(2). Let SAG(M) be a path, say, N1 − N2 − N3 and AG(M) ̸= SAG(M). Then AG(M)
must be a triangle. Thus gr(AG(M)) = 3 and so by Proposition 3.1, gr(SAG(M)) = 3, a
contradiction. The converse is clear. �
Theorem 3.10. If SAG(M) is a tree, then either SAG(M) is a star graph or SAG(M) =
P4. Moreover, SAG(M) = P4 if and only if M = F × S, where F is a simple module and
S is a module with a unique non-trivial submodule.

Proof. If M is a vertex of SAG(M), then there exists nonzero submodule N ≤ M such
that M(N : M) = 0 and so K(N : M) = 0 for every nonzero submodule K ≤ M .
Thus every vertex is adjacent to N and since SAG(M) is tree, it must be a star graph.
Now we assume that M is not a vertex of SAG(M) and SAG(M) is not star. Now
by [19, Proposition 1.6.1], SAG(M) is a bipartite graph with parts V1 and V2 such that
|V1| ≥ 2 and |V2| ≥ 2. By Proposition 3.5, AG(M) is a bipartite graph and so by Corollary
3.6, SAG(M) and AG(M) coincide. Now by [10, Theorem 2.7], AG(M) = P4 and hence
SAG(M) = P4. For the latter assertion, if SAG(M) = P4, then by Proposition 3.9,
AG(M) = P4 and so by [10, Theorem 2.7], the proof is complete. �
Theorem 3.11. Let R be an Artinian ring and SAG(M) be a bipartite graph. Then
SAG(M) is a star graph or SAG(M) = P4. Moreover, if R is an Artinian local ring, then
SAG(M) is a star graph.

Proof. Suppose that SAG(M) is not a star graph, then SAG(M) is a bipartite graph with
parts V1 and V2 such that |V1| ≥ 2 and |V2| ≥ 2. By Corollary 3.6, SAG(M) = AG(M).
Now by [10, Theorem 2.8], SAG(M) = P4. Let m be a unique maximal ideal of R. Since R
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is an Artinian ring, there exists a natural number k such that Mmk = 0 and Mmk−1 ̸= 0.
Clearly Mmk−1(N : M) = 0 for each submodule N of M and so Mmk−1 is adjacent to
every other vertex of SAG(M). Thus SAG(M) is a star graph. �
Proposition 3.12. Let M = M1 ×M2 where M1 = Me ̸= 0, M2 = M(1−e) ̸= 0 and e be
an idempotent element of R. If SAG(M) is a triangle-free graph, then one of the following
statements holds.
(1) Both M1 and M2 are prime R-modules.
(2) One Mi is a prime module for i = 1, 2 and the other one is a module with unique
non-trivial submodule. Moreover, SAG(M) has no cycle if and only if M = F × S or
M = F ×D, where F is a simple module, S is a module with a unique non-trivial submodule
and D is a prime module.

Proof. Clearly M is not a uniform module. If SAG(M) is a triangle-free graph, then by
Proposition 3.1, AG(M) is a triangle-free graph. Thus by [10, Theorem 2.6], (1) or (2)
holds. Now suppose that SAG(M) has no cycle. Then by Theorem 3.10, SAG(M) is a
star graph or SAG(M) = P4 and also SAG(M) = P4 if and only if M = F × S, where F
is a simple module and S is a module with a unique non-trivial submodule. If SAG(M) is
a star graph, then by Proposition 3.1, AG(M) is a star graph and so SAG(M) = AG(M).
Now by [10, Theorem 2.6], we are done. The converse is trivial. �
Lemma 3.13. If SAG(M) is a regular graph of degree r, then so is AG(M); in particular
AG(M) = SAG(M).

Proof. Let SAG(M) be a regular graph of degree r. If SAG(M) is a complete graph, then
it is clear that AG(M) is also complete. Now assume that SAG(M) is not complete. Then
we show that AG(M) = SAG(M). Suppose, on the contrary, there exist two vertices N
and K that are adjacent in AG(M) but are not adjacent in SAG(M). Then by Lemma
2.5, there exists L ≤ N ∩ K such that both N and K are adjacent to L in SAG(M). On
the other hand since L ⊆ N , every vertex that is adjacent to N , is also adjacent to L.
Thus we conclude that degS(L) ≥ r − 1 + 2 = r + 1, a contradiction. �
Theorem 3.14. Let ann(M) be a nil ideal of R. If SAG(M) is a regular graph of finite
degree, then SAG(M) is a complete graph; in particular AG(M) = SAG(M).

Proof. Suppose that SAG(M) is a regular graph of degree r. Then by Lemma 3.13,
AG(M) is also a regular graph of degree r and AG(M) = SAG(M). Now by [10, Theorem
2.9], AG(M) is a complete graph and so is SAG(M). �

In the following theorem for any vertex K in the graph AG(M), we denote by NA(K),
the set of all vertices of G adjacent to K.

Theorem 3.15. Let AG(M) be a regular graph of degree r. If |V (AG(M))| ≥ r + 2, then
SAG(M) is also regular; in particular SAG(M) = AG(M).

Proof. Clearly r ̸= 1. Suppose that N and K are adjacent in AG(M). We claim that
N ∩K = 0 and so N and K are adjacent in SAG(M). Suppose, on the contrary, N ∩K ̸= 0.
One of the following cases holds.
Case 1: N ∩K /∈ {N, K}. Then we may assume NA(K) = {N, N ∩K, K1, K2, · · · , Kr−2}.
As NA(K) \ {N ∩ K} ⊆ NA(N ∩ K) and SAG(M) is a regular graph of degree r, we
have NA(N ∩ K) = {N, K, K1, K2, · · · , Kr−2}. This implies that NA(N) = {K, N ∩
K, K1, K2, · · · , Kr−2}. Now, since |V (AG(M))| ≥ r + 2, we consider a vertex L such
that L /∈ {N, K, N ∩ K, K1, K2, · · · , Kr−2}. Clearly L is not adjacent to any of the ver-
tices N , K and N ∩ K. Thus there exists a subset {L1, L2} ⊆ V (AG(M)) \ {N, K, N ∩
K, K1, K2, · · · , Kr−2} such that Li is adjacent to L in AG(M), for 1 ≤ i ≤ 2. It is easy to
check that 0 ̸= N ∩ L /∈ {L, N, K, N ∩ K, K1, K2, · · · , Kr−2}. Now since K is adjacent to
N , K is also adjacent to N ∩ L and so degA(K) ≥ r + 1, a contradiction.
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Case 2: N ∩ K = N . Then N ⊆ K. Suppose NA(K) = {N, K1, K2, · · · , Kr−1}.
Then NA(N) = {K, K1, K2, · · · , Kr−1}. Now since |V (AG(M))| ≥ r + 2, there ex-
ists a vertex L such that L /∈ {N, K, K1, K2, · · · , Kr−1}. Clearly L is not adjacent
to any of the vertices N and K. Thus there exists a vertex L1 such that is adja-
cent to L in AG(M) and L1 /∈ {N, K, K1, K2, · · · , Kr−1}. It is easy to check that
0 ̸= N ∩ L /∈ {L, N, K, K1, K2, · · · , Kr−1}. Clearly N ∩ L is adjacent to K and so
degA(K) ≥ r + 1, a contradiction.
Case 3: N ∩ K = K. It is similar to Case 2. �

For any N ≤ M , the prime radical radM (N) or simply rad(N) is defined to be the
intersection of all prime submodules of M containing N , and in case N is not contained
in any prime submodule, radM (N) is defined to be M . Also the set of all minimal prime
submodules of M is denoted by Min(M).

Proposition 3.16. Let M be a finitely generated module, ann(M) be a nil ideal and
|Min(M)| = 1. If SAG(M) is a triangle-free graph, then SAG(M) is a star graph.

Proof. Let SAG(M) be a triangle-free graph. By Lemma 3.7, SAG(M) contains no odd
cycle. Now by [19, Proposition 1.6.1] SAG(M) is a bipartite graph. Suppose, on the
contrary, SAG(M) is not star. Thus SAG(M) is a bipartite graph with parts V1, V2 such
that |V1| ≥ 2 and |V2| ≥ 2. By Proposition 3.5, AG(M) is also bipartite and hence AG(M)
is triangle-free. Now by [10, Theorem 2.13], AG(M) is a star graph and so is SAG(M), a
contradiction. �
Corollary 3.17. Let M be a finitely generated module, ann(M) a nil ideal and |Min(M)| =
1. If SAG(M) is a bipartite graph, then SAG(M) is a star graph.

Remark 3.18. Let u.dimM = n, where M is an R-module. Then we have U1 ⊕ U2 ⊕
. . . ⊕ Un ≤ M , where Ui ̸= 0 for 1 ≤ i ≤ n. By Lemma 2.4, Ui and Uj are adjacent for
each i ̸= j and hence u.dimM ≤ cl(SAG(M)).

Proposition 3.19. For every module M , cl(SAG(M)) = 2 if and only if χ(SAG(M)) = 2;
in particular SAG(M) is bipartite if and only if SAG(M) is triangle-free.

Proof. Suppose that cl(SAG(M)) = 2 and SAG(M) is not bipartite. Then SAG(M)
contains an odd cycle and so by Lemma 3.7, the graph contains a triangle, a contradiction.
Thus SAG(M) is bipartite and so χ(SAG(M)) = 2. The converse is clear. �

If M is a cyclic module, then clearly M is a multiplication module and so by Proposition
2.3, the two graphs SAG(M) and AG(M) coincide. Now by [10], we have the following
results.

Proposition 3.20. Let M be a cyclic module.
(1) If {P1, · · · , Pn} is a finite set of distinct minimal prime submodules of M , then
SAG(M) has a clique of size n.
(2) cl(SAG(M)) ≥ |Min(M)| and if |Min(M)| ≥ 3, then gr(SAG(M)) = 3.
(3) If radM (0) = (0), then χ(SAG(M)) = cl(SAG(M)) = |Min(M)|.

Proposition 3.21. Let M be a cyclic module and ann(M) be a nil ideal of R.
(1) If radM (0) ̸= (0) and |Min(M)| = 2, then either SAG(M) contains a cycle or
SAG(M) = P4.
(2) If |Min(M)| ≥ 3, then SAG(M) contains a cycle.

4. Dominating set and total dominating set
For every graph G, the dominating number of G and the total dominating number of G

are denoted by γ(G) and γt(G), respectively. A dominating set of cardinality γ(G) (γt(G))
is called a γ-set (γt-set). Several authors studied the (total) domination number in the
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zero-divisor graphs and the annihilating-ideal graphs, see for example [20, 22, 23]. In this
section we compare γ(SAG(M)) with γ(AG(M)) and also γt(SAG(M)) with γt(AG(M)).
Some results are similar to some of the results for γ(AG(R)) in [23]. In the following
example we consider M as a Z-module. We remind that V (AG(M)) = V (SAG(M)).

Example 4.1. (1) If M = Zp ⊕ Zp, where p is prime, then γ(SAG(M)) = 1 and
γt(SAG(M)) = 2, because SAG(M) is a complete graph.
(2) If M = Zp ⊕Zp2 and N = Zp ⊕(0), then since (N : M) = p2Z, every vertex of SAG(M)
is adjacent to N . Thus γ(SAG(M)) = 1.
(3) If M = Zp ⊕ Zq, where p and q are distinct primes, then γ(SAG(M)) = 1 and
γt(SAG(M)) = 2.
(4) Let M = Zpqr, where p, q, r are distinct primes. Then {N1, N2, N3} is both a γ-set
and γt-set, where N1 = pqZpqr, N2 = prZpqr and N3 = qrZpqr. Thus γ(SAG(M)) =
γt(SAG(M)) = 3.
(5) Let M1 = M2 = Zp and M = M1 ⊕ M2. Then we have γ(SAG(M)) = 1 and
γ(SAG(M1)) = γ(SAG(M2)) = 0. Hence γ(SAG(M1⊕M2)) ̸= γ(SAG(M1))+γ(SAG(M2)).

Notice that for any R-module M , γ(AG(M)) ≤ γ(SAG(M)). However, we have the
following interesting result.

Theorem 4.2. Let M be an R-module. Then
(1) γ(SAG(M)) = 1 if and only if γ(AG(M)) = 1.
(2) If γ(SAG(M)) = 2, then γ(AG(M)) = 2.
(3) If γ(AG(M)) = n > 1, then n ≤ γ(SAG(M)) ≤ 2n

Proof. (1). Let γ(SAG(M)) = 1 and {N} be a γ-set. Then since every edge in SAG(M)
is also an edge in AG(M), {N} is a γ-set in AG(M) and so γ(SAG(M)) = 1. Conversely,
suppose that {N} is a γ-set in AG(M) and we set N1 = M(N : M). If N1 = 0, or
N1 = N , then it is easy to see that {N} is also a γ-set in SAG(M) and we are done. Now
assume that 0 ̸= N1 ( N . Then for each vertex K ̸= N of SAG(M), we have M(N :
M)(K : M) = 0. Thus N1 − N is an edge in AG(M) and so M(N1 : M)(N : M) = 0.
We set N2 = M(N1 : M). Again if N2 = 0, then clearly {N1} is a γ-set in SAG(M).
Now if N2 ̸= 0, then we claim that {N2} is a γ-set in SAG(M). Since N2(N : M) = 0
and N2 ̸= N , N − N2 is an edge in SAG(M). Suppose that K ̸= N is another vertex of
SAG(M). Then K must be adjacent to N in AG(M) and so M(N : M)(K : M) = 0.
Since N1 ⊆ N , we have N2(K : M) = M(N1 : M)(K : M) ⊆ M(N : M)(K : M) = 0.
Thus K = N2 or K is adjacent to N2 in SAG(M) and the proof is complete.
(2). Let γ(SAG(M)) = 2. Then γ(AG(M)) ≤ 2. If γ(AG(M)) = 1, then by (1) we have
γ(SAG(M)) = 1, a contradiction. Thus γ(AG(M)) = 2.
(3). Let γ(AG(M)) = n and {N1, · · · , Nn} be a γ-set in AG(M). We set Ki = M(Ni : M)
for i = 1, 2, · · · , n. If Ki = M(Ni : M) = 0, for some i, then {Ni} is a γ-set in AG(M)
and hence γ(AG(M)) = 1, a contradiction. We claim that {N1, · · · , Nn, K1, · · · , Kn} is
a dominating set in SAG(M). Let K /∈ {N1, · · · , Nn} be a vertex of SAG(M). Then K
is adjacent to Ni in AG(M) for some i ∈ {1, · · · , n}. Thus M(Ni : M)(K : M) = 0 and
hence Ki(K : M) = 0. This means that K = Ki or K is adjacent to Ki in SAG(M). Thus
we have γ(SAG(M)) ≤ 2n. �
Proposition 4.3. For any R-module M , γt(SAG(M)) ≤ γt(AG(M)).

Proof. If γt(AG(M)) = ∞, there is no thing to prove. Let γt(AG(M)) = n and
{N1, · · · , Nn} be a γt-set in AG(M). Set Ki = M(Ni : M) for i = 1, 2, · · · , n. If Ki = 0
for some i, then {Ni, N} is a γt-set in both the graph AG(M) and the graph SAG(M),
for every vertex N ̸= Ni and we are done. Now, suppose that Ki ̸= 0 for every 1 ≤ i ≤ n.
We may assume the indexing is arranged such that K1, K2, · · · , Kr are pairwise distinct
(r ≤ n). Let K be a vertex in SAG(M). If K = Ki, for some 1 ≤ i ≤ n, then since there
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exists 1 ≤ j ≤ n such that Ni is adjacent to Nj in AG(M) we have Ki is adjacent to Kj

in SAG(M). Now if K ̸= Ki, for any 1 ≤ i ≤ n, then there exists 1 ≤ i ≤ n such that
K is adjacent to Ni in AG(M). Thus Ki(K : M) = M(Ni : M)(K : M) = 0 and so K
is adjacent to Ki. This means that {K1, · · · , Kr} is a total dominating set in SAG(M).
Therefore γt(SAG(M)) ≤ n. �

Theorem 4.4. For any R-module M , γt(SAG(M)) = γ(SAG(M)) or γt(SAG(M)) =
γ(SAG(M)) + 1.

Proof. Let γt(SAG(M)) ̸= γ(SAG(M)) and D be a γ-set in SAG(M). If γ(SAG(M)) = 1,
then it is clear that γt(SAG(M)) = 2. So let γ(SAG(M))  1 and set m = max{n |
∩n

i=1Ni ̸= 0, for some N1, · · · , Nn ∈ D}. Since γt(SAG(M)) ̸= γ(SAG(M)), we have
m ≥ 2. Suppose that ∩m

i=1Ni ̸= 0, for some N1, · · · , Nm ∈ D. Since D is a γ-set in
SAG(M), there exist distinct vertices K1, · · · , Km such that Ki is adjacent to Ni for
1 ≤ i ≤ m. As ∩m

i=1Ni ⊆ Ni, we conclude that Ki is adjacent to ∩m
i=1Ni, for each i. Now

we claim that S = {∩m
i=1Ni, K1, · · · , Km} ∪ D \ {N1, · · · , Nm} is a γt-set in SAG(M). Let

L be a vertex of SAG(M). Then one of the following cases holds.
Case 1: L ∈ D. If L ∈ {N1, · · · , Nm}, then L is adjacent to Ki, for some 1 ≤ i ≤ m. If
L /∈ {N1, · · · , Nm}, then by the maximality of m, ∩m

i=1Ni ∩ L = 0 and hence L is adjacent
to ∩m

i=1Ni.
Case 2: L /∈ D. If L is adjacent to one of the Ni

,s, then L is adjacent to ∩m
i=1Ni. Otherwise

L is adjacent to one of the element of D \ {N1, · · · , Nm}. This means that S is a γt-set in
SAG(M). Thus γt(SAG(M)) = γ(SAG(M)) + 1. �

Example 4.5. (1) Let R = Z, M = Z4, N = 2Z4. Then {N} is both a γ-set and γt-set
in SAG(M). Thus γt(SAG(M)) = γ(SAG(M)) = 1.
(2) Let R = Z, M = Z2 ⊕ Z2, N1 = Z2 ⊕ (0), and N2 = (0) ⊕ Z2. Then {N1} is a γ-set
and {N1, N2} is a γt-set in SAG(M). Thus γ(SAG(M)) = 1 and γt(SAG(M)) = 2.
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