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Abstract 

    The purpose of this paper is to model and forecast the risk of six commodities na-

mely, crude oil, copper, gold, silver, palladium, and platinum during the period from 

02/01/2002 to 29/04/2016 using volatility, value at risk and expected shortfall as risk 

measures. After showing that squared returns of all six commodities have a significant 

long memory, the volatility, the value at risk and expected shortfall based on fractional 

GARCH models are estimated and forecasted. Both forecast performance of volatility 

models and backtest for value at risk indicate that in many cases FIAPARCH model out-

performs the other GARCH models. Then volatility, value at risk and expected shortfall 

estimates based on FIAPARCH model show that the volatility and market risk of oil is 

much higher than the other commodities. This casts doubt on the use of oil as a hedging 

tool.
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Özet - Emtia Piyasalarının Oynaklık ve Riske Maruz Değer   

  Dinamiklerinin Modellenmesi ve Öngörüsü

Bu çalışmanın amacı, ham petrol, bakır, altın, gümüş, paladyum ve platinden oluşan 

altı temel emtiaya ait zaman serisinin 02/01/2002 - 29/04/2016 arasını kapsayan 

dönemde, oynaklık, riske maruz değer ve beklenen açık risk ölçümlerini kullanarak, em-

tia piyasalarının riskini modellemek ve öngörmektir. Bu altı emtianın getiri karelerinin 

önemli ölçüde uzun hafıza özelliğine sahip olduğu gösterildikten sonra oynaklık, riske 

maruz değer ve beklenen açık, kesirli bütünleşik GARCH modelleri kullanılarak tahmin 

edilmiş ve öngörülmüştür. Hem oynaklık modellerinin öngörü performansı hem de riske 

maruz değer için yapılan geri testler birçok durumda FIAPARCH modelinin diğer GARCH 

modellerinden bariz biçimde üstün olduğunu göstermektedir. FIAPARCH modelini kul-

lanarak yapılan oynaklık, riske maruz değer ve beklenen açık tahmin sonuçları petrolün 

diğer emtialardan daha riskli olduğunu göstermekte ve petrolün riskten korunma aracı 

olarak kullanılmasını sorgulanır hale getirmektedir.    
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Açık
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1. Introduction

In the light of recent and still growing literature of long memory property, this 

paper investigates the conditional volatility of six major commodities, namely, crude 

oil, copper, gold, silver, palladium, and platinum. Various forms of GARCH-class mo-

dels (linear and non-linear) allowing for asymmetry and long memory characteristic 

of returns are used for this purpose.

Over recent years, we have witnessed an acceleration of financial integration 

across stock markets and other assets. This in turn has weakened diversification 

opportunities across financial markets and brought about the financialization of 

commodity markets. Especially gold and oil have become important hedging tools 

for investors seeking to diversify their risk (Kang et al. 2016).  Moreover, it is well 

known that gold is considered as a safe asset worldwide. In risk management, port-

folio allocation, and hedging, precious metals have been widely used as assets.  The 

appropriate risk measurement of an asset is therefore crucial both for investors and 

fund managers. Volatility and value at risk of an asset are important indicators for 

investors and would play an important role for short and long run trading decisions 

along with the attitude of investors towards risk. Over recent years in addition to 

Value at Risk, Expected Shortfall has also been widely used as a risk measurement 

in the literature. Since expected shortfall (henceforth ESF) is the expected value of 

the losses conditional on the loss being larger than the VaR (Scaillet, 2004), it is also 

known as conditional value at risk. As pointed out by Tsay (2010), VaR estimates 

the potential financial loss. However when an extreme event happens it could un-

derestimate the actual loss. Thus for appropriate measurement of risk, ESF besides 

the VaR should be used. 

There are several ways to measure market risk in the literature. In this study all 

risk measures (volatility, VaR, ESF) have been based on the same GARCH models to 

avoid inconsistency between different risk measurements and make them compa-

rable. 

In this framework, forecasting of volatility becomes essential for appropriate me-

asurement of risk. This leads us to appropriate modeling of volatility to measure and 

forecast the volatility. To address this issue we employ various linear and non-linear 

GARCH models allowing for asymmetry and long memory and compare their fore-

casting performance.  

This study contributes to the literature in several ways. First, we employ three dif-
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ferent risk measures for commodities. More precisely we use dynamic volatility, VaR 

and ESF. All of them are coherent as they are based on the same GARCH models. 

Second, forecast performance of GARCH models and backtests for VaR are carri-

ed out. Third unlike the previous studies, which use fractionally integrated GARCH 

models without testing for long memory for commodities, in this study we have 

employed various tests for long memory in returns and squared returns. Fourth the 

results have also practical implications for investors in the sense that using appropri-

ate GARCH models they could accurately measure and forecast the future volatility. 

Then the decision to invest on the commodity market could be taken. In addition, 

comparing with the risk of other assets (such as equity) commodities could be used 

as hedging instruments.

This paper is structured as follows. After the introduction, the second section is 

devoted to the literature. The third section presents data and descriptive statistics. 

The methodology used in the paper is illustrated in section four. The fifth section 

presents empirical findings. The last section concludes the paper.

2. Literature

Recent empirical studies on commodity markets volatilities focus on the long 

memory behavior of data (Aloui and Mabrouk, 2010). In this respect, several studies 

have been carried out allowing for the long memory to model both price variations 

and price volatilities.

Firstly, Mandelbrot (1971) analyzes long memory in financial markets and sug-

gests using Hurst’s ‘rescaled range’ statistic to test for long memory process in fi-

nancial return series. He argues that arbitrage opportunities might exist since in the 

presence of long memory shocks cannot be absorbed quickly. As shown by Yajima 

(1985), if security prices expose long memory, then the standard testing procedures 

of asset pricing and the martingale models will be inappropriate. In addition, Lo 

(1991) states that both the capital asset pricing model and the arbitrage pricing 

theory based on standard testing procedures may not be valid if the security returns 

display long memory behavior.

Long memory models are known with their autocovariances falling into decay 

slowly. According to Ding et al. (1993) fully decaying of a shock can last for long. 

Long memory property can be clearly explained as a significant correlation between 

distant observations of time series. This means that a shock cannot be eliminated 

immediately by the market. Thus, the distinction between I(0) stationary and I(1) 
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nonstationary processes is prominently too restrictive (Baillie et al., 1996). While the 

propagation of shocks in a stationary process arises at an exponential rate of decay, 

for a nonstationary process shocks exhibit infinite persistence. 

In order to bridge the gap between short and complete persistence while mo-

deling the conditional mean, fractionally integrated autoregressive moving avera-

ge (ARFIMA) specifications have been suggested. In this class of the model, the 

short-run conduct of time-series is represented by the ARMA parameters, while the 

fractional differencing parameter allows for the long-run dependence (Conrad and 

Haag, 2006).

According to fractional integration theory, the order of integration namely the 

fractional difference parameter is a fractional value (Baillie, 1996). Fractionally integ-

rated processes are different from both stationary and unit root processes with their 

persistence and mean reverting features. Especially, the long memory parameter is 

given by d(0, 0.5). When d > 0.5 the time series is considered as nonstationary and 

when d(-0.5, 0) the series is considered as antipersistent (Kumar, 2014).

Long-memory property can occur in volatility of financial returns as well, which 

points out the wide-distant correlation of time-varying volatility elements.  Robinson 

(1991) comes up with the linear autoregressive conditional heteroskedastic model 

(LARCH) which permits long memory in the conditional variance. Later extensions of 

generalized ARCH (GARCH)-type models taking into account long-memory behavior 

have been proposed by many researchers. Baillie, Bollerslev, and Mikkelsen (1996) 

develop the fractionally integrated GARCH (FIGARCH) model which are more con-

venient for this type of data in various empirical analyses (Bollerslev and Mikkelsen, 

1996; Beine and Laurent 2003; Conrad and Karanasos, 2005a, b). 

Following the studies by Granger (1980), Granger and Joyeux (1980) and Hos-

king (1981), extended use of long memory model is observed in empirical studies. 

Two strands of literature in the field of long memory have received a great amount 

of attention. One strand investigates modeling the volatility of commodities. Based 

on standard volatility models, previous studies on the volatility of commodity focus 

on single commodity’s dynamic volatility characteristics or volatility spillovers across 

various commodities. More recent studies, however, extend the existing literature 

by incorporating a variety of volatility behavior of several commodities (Arouri et al., 

2012a, b; Wei et al., 2010).
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The other strand of literature focuses on the relationship between commodities 

and stock markets. Kang et al.(2017) investigate spillover effects among six com-

modity futures markets (gold, silver, crude oil, corn, wheat, and rice) for the period 

from January 4, 2002 to July 28, 2016. They find out bidirectional return and volatil-

ity spillovers between commodity markets. The findings of the study show that both 

gold and silver are information transmitters to other commodity futures markets. 

With respect to crude oil, corn, wheat, and rice, the results indicate that those com-

modities are receivers of spillovers during the financial crisis period in 2017.  

Jain and Biswal(2016) examine the relationships between gold, oil USD-INR(Indian 

Rupee) exchange rate  and SENSEX. Using the daily data spanning the period 2006-

2015 and employing the DCC GARCH model and linear and non-linear causality 

tests, they show that a decrease in gold and oil prices causes the exchange rate to 

depreciate. The results of the study also show that gold becomes an investment 

asset class among the investors. Besides, the authors argue that gold and oil can 

be used as hedging tools against to volatility in SENSEX and fluctuations in the ex-

change rate. 

Creti et al. (2013) analyze the links between returns for 25 commodities and 

stocks over the period from January 2001 to November 2011. Using the dynamic 

conditional correlation (DCC) GARCH model, they show that the correlations be-

tween commodity and stock markets are highly volatile especially since the 2007–

2008 financial crisis and vary through time.

In a recent study by Dahl and Iglesias (2009), an alternative functional relation-

ships (from GARCH (1, 1) to GARCH (1, 1)-AR (m)) are used to model the spot price 

risk and spot prices. Based on the classical rational expectations and ARCH-M model 

proposed by Engle et al. (1987), they investigate empirically the rational expecta-

tions model of Muth’s (1961). In their paper, they conclude that lagged conditional 

variance should enter into the mean equation.

Kang and Yoon (2013) explore the effectiveness of a volatility model for three 

crude oil markets, namely, Brent, Dubai, and West Texas Intermediate (WTI) regar-

ding persistence and long memory.  Relying on the conditional volatility models they 

found that the CGARCH and FIGARCH models are better equipped to capture persis-

tence and provide superior performance in terms of out-of-sample volatility forecasts 

in comparison with the GARCH and IGARCH models. 

In their paper, Thuraisamy et al. (2013) investigate spillover effects between the 
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volatility of Asian equity market and that of the crude oil and gold futures. Their 

results show that volatility shocks in fully-fledged equity markets overflow into the 

crude oil and gold futures markets, while fledgling markets are in a tendency to spill 

over from commodity futures to equity markets. They also provide strong evidence 

of increased bi-directional volatility transmission during the 2008 financial crisis peri-

od. As for equity market volatility, not only volatility shocks from the crude oil futu-

res market are important but also the volatility shocks from the gold futures market.

In a recent study, Vivian and Wohar (2012), investigate whether there are struc-

tural breaks in commodity spot return volatility using an iterative cumulative sum of 

squares procedure and the GARCH (1,1) model for each regime. Their findings pro-

vide very limited evidence of commodity volatility breaks during the recent financial 

crisis compared to the 1985–2010 sample period as a whole. 

In their paper, Aloui and Mabrouk (2010) appraise the value-at-risk (VaR) for 

some major crude oil and gas commodities for both short and long trading po-

sitions. They calculate the VaR for various ARCH/GARCH-type models, namely FI-

GARCH, FIAPARCH and HYGARCH. Their findings show that considering long-range 

memory, fat-tails, and asymmetry performs better in predicting a one-day-ahead 

VaR for both short and long trading positions. 

Wang et al. (2010) use two non-parametric methods, detrended fluctuation 

analysis (DFA) and rescaled range analysis (R/S). They check the long memory pro-

perties of conditional volatility series obtained from GARCH-class models against 

actual volatility series for WTI crude oil returns. As they are interested in the long 

memory of volatility, GARCH models are appropriate for the time scale larger than 

a year. 

Choi and Hammoudeh (2009) conclude that forecasting the commodity volatility 

relying on long memory univariate GARCH models is more accurate than the stan-

dard GARCH models for oil and refined products markets. 

Other papers allowing for structural breaks and long memory properties in return 

and volatility of commodity markets show that the volatility of precious metals is bet-

ter represented by long memory than by structural breaks (Arouri et al., 2012a,b).

The studies, which concentrate on commodity volatility, have been becoming 

crucial because of the increasing importance of commodities in the financial sector 

(Regnier, 2007; Chkili et al. 2014). Not only financial sector but also real sector, 

and economic growth are significantly affected by prices of commodities. Another 
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reason for their popularities are their empirical features such as their pronounced 

excess kurtosis or fat tailedness, asymmetry, and structural breaks that influence the 

model fitting, these series need to be estimated with varied volatility models (Aloui 

and Mabrouk, 2010; Cheng and Hung, 2011; Cheong, 2009; Hung et al., 2008). 

Existing researches on volatility forecasting for commodity markets are limited since 

they have concentrated more on forecasting conditional return than conditional 

volatility.

3. Data

In this study, daily data of six major commodity spot prices; gold, silver, copper, 

crude oil, palladium, and platinum are used. Prices of two main metals gold and sil-

ver are determined by Handy & Harman (H & H) which is operated as dealers in silver 

and gold and these base prices are taken for transactions worldwide. These precious 

metals are measured in US dollars per troy ounce. The other precious metals cop-

per and platinum are traded on the London Metal Exchange (LME) as the second 

largest traded contract. West Texas Intermediate (WTI) crude oil produced in the 

US serves as a reference price in the oil market. The data set is extracted from the 

Thomson and Reuters DataStream database, and the whole sample period spans 

from 02/01/2002 to 29/04/2016. All estimations are based on the daily period 

from January 2, 2002 to February 26, 2016. The out-of-sample forecast performan-

ces of the competing long memory-based GARCH models are based on the period 

from February 29, 2016 to April 29, 2016. Daily return series are calculated as log 

differences in price levels as follows: 

        , , 1100 ln lnt i t i tr P P − = × −  			                           (1)

The return series of gold, copper, silver, crude oil, palladium, and platinum are 

plotted in Figure 1. As illustrated in Table A1, all returns series are stationary accor-

ding to ADF and KPSS test statistics.

Descriptive statistics for the commodity return series are shown in Table 1. As 

seen, all series have high excess kurtosis and negative skewness. In addition, the 

distribution of the series seems to be leptokurtic. Furthermore, Ljung-Box Q (20) 

statistic for returns are significant except for silver and it is significant for squared 

returns of all commodities.  As seen, regardless of the lag chosen, all ARCH test 

statistics are highly significant. As a result, while modeling the returns, conditional 

heteroscedasticity and serial correlations are taken into account. 
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Figure 1: Time series plots of spot price series
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Figure 2: Time series plots of spot return series
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Table 1: Descriptive Statistics

  GOLD COPPER SILVER CRUDE_OIL PALLADIUM PLATINIUM

 Mean  0.040513  0.031673  0.031497  0.013397 0.0031338 0.017

 Maximum  6.855528  11.72590  13.66480  16.41370 12.846 8.427

 Minimum -9.596 -10.358 -12.982 -12.827 -17.859 -17.2

 Std. Dev.  1.170235  1.786288  2.023908  2.380344 2.1148 1.42

 Skewness -0.407524 -0.134399 -0.565387 -0.020894 -0.42313 -0.82

 Kurtosis  8.248861  7.025565  7.966751  7.369698 5.5092 10.21

 Jarque-Bera  4342.735  2505.367  3993.717  2939.193 4781.9 16481

ARCH 1-2 31.544[0.000] 211.86[0.000] 76.64[0.000] 145.9[0.000] 61.7[0.000] 126.7[0.000]

ARCH 1-5 41.230[0.000] 123.61[0.000] 39.59[0.000] 128.06[0.000] 38.6[0.000] 61.7[0.000]

ARCH 1-10 33.808[0.000] 74.510[0.000] 24.39[0.000] 69.27[0.000] 23.9[0.000] 34.3[0.000]

Q(20) 36.46[0.013] 52.95[0.000] 22.09[0.335] 57.13[0.000] 36.03[0.015] 24.7[0.209]

Q
2

(20) 1150.08[0.000] 3197.8[0.000] 635.34[0.000] 2803.92[0.000] 646.8[0.000] 964.5[0.000]

Observations  3693  3693  3693  3693  3693 3693

Figure 3: Density plots of return series

4. Methodology

In this section, the tests of long memory as well as various forms of GARCH-type 

models allowing for asymmetry and long memory characteristic of commodity price 

are used to model volatility. Then based on the GARCH models value at risk and 

expected shortfall is calculated.

4.1. Long Memory Tests

The presence of long memory in the data implies the persistence of observed 

autocorrelations. Long memory in volatility is an important phenomenon since it is 

characterized by a slowly decaying autocovariance function. When long memory in 

time series exists then various forms of models can be employed taking into account 

intermediate degrees of volatility persistence. 
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In this paper, the Hurst-Mandelbrot Rescaled Range (R/S) statistics, Lo (1991) 

Rescaled Range R/S, Geweke and Porter-Hudak (1983) (GPH), and the Robinson and 

Hendry (1999) Gaussian Semiparametric (GSP) test statistics are used in order to test 

for long memory components in the returns. In addition, considering long memory 

in the volatility process, these tests are applied to commodities’ squared returns, 

which are widely regarded as a proxy of conditional volatility (Choi & Hammoudeh, 

2009; Lobato & Savin, 1998). These tests have been extensively used in the related 

literature.

4.1.1. Rescaled Range (R/S) statistics

Rescaled range statistic R/S is one of the oldest and famous tests which was int-

roduced by Mandelbrot and Wallis (1969) and Hurst (1951) to examine the presen-

ce of long-term memory in time series. Mandelbrot (1971) suggests that R/S analy-

sis can be used in economic and financial investigations. Basically, Rescaled range 

statistic R/S is the range of partial sums of deviations of a time series from its mean 

scaled with its standard deviation. Hence, Hurst exponent H stands for the scaling 

behavior of the range of cumulative departures of a time series from its mean. This 

statistic is robust to data non-normality, but in the presence of autocorrelation, the 

coefficients may be biased. Therefore, Mandelbrot’s null hypothesis is “there is no 

long-term dependence” under the assumption of no autocorrelation.

Consequently, Lo (1991) developed a modified rescaled range, which adjusts 

for possible short term dependence by applying the Newey West heteroscedasticity 

and autocorrelation consistent estimator instead of the sample standard deviation. 

Hence, Lo’s null hypothesis is “there is no long-term dependence”. 

Geweke and Porter-Hudak (1983) propose a semi-nonparametric approach to 

test for long memory with regard to a fractionally integrated process. Furthermore, 

Geweke and Porter-Hudak (1983) use Fourier transformation and spectral density 

into the test equation. GPH test for the null hypothesis is “there is no long memory 

(d=0)”.

Gaussian Semiparametric estimation model developed by Robinson and Henry 

(1999) depends on low-frequency periodogram estimates and the specification of 

the shape of the spectral density of the time series. Robinson and Henry (1999) 

demonstrate that the Gaussian semiparametric estimator is asymptotically normally 

distributed and it is robust to conditional heteroskedasticity including the long-range 

dependence.  
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4.2. Results of Long Memory Tests

As can be seen from the Tables 2-7, the long memory property in return and squ-

ared returns are analyzed using test statistics of Hurst-Mandelbrot R/S, Lo R/S, GPH, 

and GSP. The results show that these test statistics do not reject the null hypothesis 

of no long-range dependence. So, it seems that the commodity return series does 

not exhibit a long memory effect.

On the other hand, for the squared returns, tests lend a support to long memory 

effect at the 1% level. Since d parameter is significantly lies into interval (0, 0.5) one 

may conclude that the squared return series follow the long memory process. 

Other studies dealing with commodity markets also attain almost identical results 

(Aloui and Mabrouk, 2010; Cheong, 2009; Choi and Hammoudeh, 2009; Moham-

madi and Su, 2010; Wei et al., 2010). 

To sum up, according to the long memory test results, the most appropriate 

method to model and forecast of commodity volatility is the GARCH-class models 

allowing for long memory property.

Table 2: Long Memory Test for Gold return and gold squared return

 RETURN Hurst-mandelbrot R/S Lo R/S GPH GSP

d parameter - - 0.000377 (0.0163172) -0.0118 (0.0116342) 

Test Statistics 1.46717 1.47824

Critical values Probability Probability

90% [0.861, 1.747] [0.9815] [0.3088]

95% [0.809, 1.862]

99% [0.721, 2.098]

SQUARED RETURN Hurst-mandelbrot R/S Lo R/S GPH GSP

d parameter - -

0.0702662 

(0.0163172)

0.125672 (0.0116342)

Test Statistics 4.51543 4.29048

Critical values Probability Probability

90% [0.861, 1.747] [0.0000] [0.0000]

95% [0.809, 1.862]

99% [0.721, 2.098]
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Table 3: Long Memory Test for Copper return and Copper squared return

RETURN Hurst-mandelbrot R/S Lo R/S GPH GSP

d parameter - - -0.0205351 (0.0163172) -0.022516 (0.0116342)

Test Statistics 1.39618 1.44774

Critical values Probability Probability

90% [0.861, 1.747] [0.2082] [0.0529]

95% [0.809, 1.862]

99% [0.721, 2.098]

SQUARED RETURN Hurst-mandelbrot R/S Lo R/S GPH GSP

d parameter - - 0.18836 (0.0163172) 0.193619 (0.0116342)

Test Statistics 6.95016 6.1849

Critical values Probability Probability

90% [0.861, 1.747] [0.0000] [0.0000]

95% [0.809, 1.862]

99% [0.721, 2.098]

Table 4 : Long Memory Test for Silver return and Silver squared return

Hurst-mandelbrot R/S Lo R/S GPH GSP

d parameter - -       0.0092(0.0163172)    0.002(0.0116342)

Test Statistics 1.4115  1.4015

Critical values Probability Probability

90% [0.861, 1.747] [0.5696] [0.859]

95% [0.809, 1.862]

99% [0.721, 2.098]

Hurst-mandelbrot R/S Lo R/S GPH GSP

d parameter - - 0.152654 (0.0163172) 0.1494 (0.0116342)

Test Statistics 4.83328 4.4280

Critical values Probability Probability

90% [0.861, 1.747] [0.0000] [0.0000]

95% [0.809, 1.862]

99% [0.721, 2.098]
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Table 5: Long Memory Test for Crude oil return and Crude oil squared return

Hurst-mandelbrot R/S Lo R/S GPH GSP

d parameter - - -0.0085 (0.0163172) -0.0220 (0.0116342)

Test Statistics 1.3682 1.402

Critical values Probability Probability

99% [0.861, 1.747] [0.6002] [0.0585]

95% [0.809, 1.862]

99% [0.721, 2.098]

Hurst-mandelbrot R/S Lo R/S GPH GSP

d parameter - - 0.16218 (0.0163172) 0.181869 (0.0116342)

Test Statistics 4.8752 4.392

Critical values Probability Probability

90% [0.861, 1.747] [0.0000] [0.0000]

95% [0.809, 1.862]

99% [0.721, 2.098]

Table 6: Long Memory Test for Palladium return and Palladium squared return

  Hurst-mandelbrot R/S Lo R/S GPH GSP

d parameter - - 0.01508 (0.0163172) -0.0048 (0.0116342)

Test Statistics 1.352 1.348

Critical values Probability Probability

90% [0.861, 1.747] [0.3551] [0.6790]

95% [0.809, 1.862]

99% [0.721, 2.098]

  Hurst-mandelbrot R/S Lo R/S GPH GSP

d parameter - - 0.141 (0.0163172) 0.139 (0.0116342)

Test Statistics 3.654 3.391

Critical values Probability Probability

90% [0.861, 1.747] [0.0000] [0.0000]

95% [0.809, 1.862]

99% [0.721, 2.098]
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Table 7: Long Memory Test for Platinium return and Platinium squared return

  Hurst-mandelbrot R/S Lo R/S GPH GSP

d parameter - - 0.0114 (0.0163172) 0.00483 (0.0116342)

Test Statistics 1.605 1.598

Critical values Probability Probability

90% [0.861, 1.747] [0.4832]  [0.6780]

95% [0.809, 1.862]

99% [0.721, 2.098]

  Hurst-mandelbrot R/S Lo R/S GPH GSP

d parameter - - 0.204 (0.0163172)  0.171 (0.0116342)

Test Statistics 4.586 4.190

Critical values Probability Probability

90% [0.861, 1.747] [0.0000] [0.0000]

95% [0.809, 1.862]

99% [0.721, 2.098]

4.3. GARCH models

The GARCH (Bollerslev, 1986) models assume that the market variance is based 

on both past conditional market variance and past market shocks. Generalized Auto 

Regressive Conditional Heteroskedasticity GARCH (p, q) process is given by: 

0 1 1

k h
t i i j t j ti j

R X Rα β ψ ε−= =
= + + +∑ ∑ 				    (8)

where 1 (0, )t t tN hε −Ω �

2
1 1

p q
t i t i j t ji j

h hω β α ε− −= =
= + +∑ ∑ 					     (9)

where 

2
1t t th σ −= Ω

The parameters in this model should satisfy 

1 1
0, 0, 0, 1

p q

i i
i i

ω α β α β
= =

 
> > ≥ + < 

 
∑ ∑ . tε  

represents disturbance term for the mean equation, tR denotes the return of the 

asset at time t, and X ’s are explanatory variables.

Equation (8) is the mean equation while Equation (9) is the conditional variance 

equation. Note that in the GARCH model the parameters are restricted to be strictly 

non-negative in order to satisfy the positive variance condition. Therefore GARCH 

models give information about the magnitude of the shock but not about its sign. 
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4.3.1.Fractionally Integrated Asymmetric Power ARCH (FIAPARCH) 

Model 

Tse (1998) has proposed the fractionally integrated asymmetric power (FIA-

PARCH) model, which allows for long memory and asymmetry features in the con-

ditional variance. The FIAPARCH model can be written as follows: 

( ) ( ) ( )( ) ( )1 1/2 1 1 1 1 1 d
t t th L L L L

δδ ω β β λ ε γε− − = − + − − − − −                         (11)   

where 0, 0, 1, 1andω δ β λ> <  .

In the above equation (11) if the fractional integration parameter d is between 

zero and 1 (0 ≤ d ≤ 1), then volatility displays the long memory property. The asy-

mmetric parameter γ satisfies the condition −1 < γ < 1. If γ > 0 it means that nega-

tive shocks are more effective on volatility than positive shocks of equal dimension. 

When γ = 0 and δ = 2, the FIAPARCH model reduces to the FIGARCH model, and 

when d = 0 it degrades to the APARCH model. 

Conrad and Haag (2006) have created necessary and sufficient conditions for the 

positivity of the conditional variance in the FIGARCH model. According to Conrad 

et al. (2011), non-negativity condition for the conditional variance h
t 

is sufficient for 

all t when γ > −1 and the parameter combination (λ, d, β) satisfies the inequality 

constraints, which are:

(i) even if all parameters are nonnegative, the conditional variance can become 

negative and

 (ii) even if all parameters are negative (apart from d ), the conditional variance 

can be nonnegative almost surely. 

4.3.2. Hyperbolic GARCH (HYGARCH) Model

Hyperbolic GARCH is derived by Davidson (2004). The hyperbolic GARCH 

(HYGARCH) model extends the conditional variance of the FIGARCH model by int-

roducing weights into the difference operator. The HYGARCH model allows for mo-

deling long memory property in conditional volatility with hyperbolic convergence 

rates. The HYGARCH (1,d,1) model can be written as follows:

( ) ( )( ){ }1 21 1 1 1 1d
t th L L L− = + − − + − −  

ω β λ α ε     		  (12)

where ω > 0, α ≥ 0, β ≺ 1, λ < 1, and 0 ≤ d ≤ 1.
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Davidson (2004) argues that the HYGARCH model allows for the existence of the 

second moment and greater extremes of amplitudes and it could be considered as 

a more general version of FIGARCH.

In fact, the hyperbolic GARCH model can be considered as a more general ver-

sion of the FIGARCH model with hyperbolic convergence rates, and permits even 

more extreme amplitudes than the simple IGARCH and FIGARCH models.

4.4.Choosing between models

4.4.1. Forecast evaluation

Measuring comparative performance of out of sample forecasts obtained from 

various GARCH type models is an essential part of an empirical study. In this paper 

among the various forecast evaluation criteria, Mean Absolute Error (MAE), and 

Theil Inequality Coefficient (TIC) are used to measure the out-of-sample forecasting 

performance of the various GARCH-class models. 

We use the rolling forecasting methodology in order to constitute the one- and 

twenty-day out-of-sample forecasts of the various volatility models like previous stu-

dies (Chkili et al., Arouri et al., 2012b; Kang et al., 2009). The best forecasting 

GARCH-based model for forecasting the volatility of commodity returns is the one 

that creates the lowest prediction error.

4.4.2. The VaR and backtesting

Value at Risk is a measure that determines the potential loss in value of a risky 

asset or portfolio over a certain period of time for a given confidence level. The sig-

nificance level α (confidence level 1-α ) and the risk horizon (h), which is the period 

of time in terms of trading days, constitute two main parameters of VaR. According 

to the Basel II Accord, banks should measure VaR at the 99 % confidence level and 

use internal VaR models in order to determine their market risk capital requirement. 

Like other financial assets, commodities are sensitive to market-oriented fluctua-

tions. Because of this, investors who hold a portfolio of commodities are interested 

in measuring market risk of their portfolio (Chikili et al, 2014).  VaR is an attractive 

risk metric because it measures not only the risk factors but also the sensitivity to 

risk factor. One of the most important characteristics of VaR is its universality as ap-

plicable to all activities and to all type of risk (Carol, 2008). 
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While an attractive risk metric, the Value-at-Risk has however some drawbacks. 

One of these is that it is not a coherent measure of risk from the viewpoint of Artz-

ner et al. (1999). A coherent risk measure should satisfy the four axioms of transla-

tion invariance, subadditivity, positive homogeneity, and monotonicity (Artzner et 

al. 1999). VaR can identify extreme events, however it need not be sub-additive 

which means the total risk on a portfolio should never exceed the sum of individual 

risks. In order to deal with this shortcoming “Expected Shortfall” is used as a mea-

sure of risk (Scaillet, 2000). 

Expected shortfall is a coherent measure for such risk and it is used to predict 

the expected value of the losses conditional on the loss larger than the VaR (Scaillet, 

2004). ESF can be defined as follows:

ESF
t 

= E(|L
t

 | > |VaR
t

|), where L
t

 is the expected value of loss if a VaR
t 

violation 

occurs.

In this study, both long and short trading positions are taken into account and 

the VaRs are estimated for the GARCH, IGARCH, FIAPARCH, and FIAPARCH models 

under skewed student distribution. The daily VaR for long and short trading posi-

tions at time t can be calculated as 

, ˆ ˆL t t tVaR zαµ σ= +   and , 1ˆ ˆS t t tVaR z αµ σ−= +

Where zα  represents the left quantile at α percent of the normal distribution 

and 1z α−  is the right quantile at α percent. ˆtµ  denotes to the estimated daily 

conditional mean whereas ˆ tσ  represents the estimated standard deviation of the 

commodity returns obtained from a GARCH-class model.

The daily VaR’s for the skewed-Student distribution for long and short positions 

is given by

, ˆ ˆL t t tVaR skstαµ σ= +  and , ˆ ˆS t t tVaR skstαµ σ= +

VaR estimations should be backtested for their reliability and consistency. This 

testing method enables us to compare actual profits and losses with projected VaR. 

The most widely known test is Kupiec’s (1995) POF-test that examines the frequency 

of losses in excess of VaR. This test defined as a likelihood ratio test (LR) which ex-

amines whether the failure rate of the model is statistically equal to the expected 

one. 
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1

T
tt

N I
=

= ∑ is the number of exceptions in the sample size T. Then
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+
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follows a binomial distribution, N~B(T,α). If ( / )p E N T= is the expected ex-

ception frequency, then the hypothesis for testing whether the failure rate of the 

model is equal to the expected one is expressed as follows: 0 0:H =α α  and is 0α  

the prescribed VaR level.

Under the null hypothesis, the Kupiec’s (1995) likelihood ratio test is given by

{ }0 02 log (1 ) 2 log 1
T NN

N T N
uc

N NLR
T T

α α
−

−
      = − − + −           

and is asymptotically ( )2 1χ  chi squared distributed with one degree of free-

dom. Therefore, the model will be favored for VaR prediction which exhibits the 

property that the unconditional coverage measured by p=E(N/T) equals the desired 

coverage level p
0

.

5.Empirical Findings

5.1. Estimates of GARCH-type models

In this section, the findings obtained from different GARCH models are presen-

ted. Since normal distribution hypothesis is rejected for all returns, student t distri-

bution is used to model volatility. 

GARCH estimation results for gold are illustrated in Table 8. As seen, for all mo-

dels, d-FIGARCH coefficients are statistically significant at 1% level, which implies 

the existence of long memory in gold return. 

The conditional volatility of gold returns reacts asymmetrically to shocks since 

the APARCH (γ) parameter is negative and significant. This implies that positive and 

negative shocks have an asymmetric impact on conditional volatility. Positive shocks 

have an impact on the conditional volatility more than negative shocks. Among all 

models with different estimation technique and distributions, FIAPARCH (1, 0.894, 

1) appears to be the best model according to AIC.
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Table 8: Estimation results of GARCH methods for gold

 

GARC

H

IGARC

H

FIGARC

H

FIAPARC

H

FIAPARC

H

HYGARC

H

Estimation Method    

    skewed  

Cst(M) 0.058*** 0.058 0.055*** 0.061*** 0.052*** 0.056***

Cst(V) 0.011*** 0.007*** 0.012*** 0.017*** 0.016*** 0.018***

d-Figarch 0.903*** 0.894*** 0.89*** 0.923***

ARCH(Alpha1) 0.037*** 0.041*** 0.028*** 0.015 0.014 0.017

GARCH(Beta1) 0.955*** 0.958*** 0.929*** 0.925*** 0.92*** 0.928***

APARCH(Gamma1) -0.284*** -0.28

APARCH(Delta) 1.556*** 1.54***

Student(DF) 4.769*** 4.372*** 4.359*** 4.874*** 4.745***

Asymmetry -.028

Tail 4.94***

Log Alpha (HY) -0.011*

No. Observations 3693 3693 3693 3693 3693 3693

No. Parameters 5 4 6 8 9 7

Log Likelihood -5348.61 -5350.9 -5346.43 -5335.9 -5335 -5344.2

AIC 2.899 2.900 2.898 2.894 2.894 2.898

SW 2.907 2.906 2.908 2.907 2.909 2.909

SB 2.899 2.900 2.898 2.894 2.894 2.898

H-quinn 2.902 2.902 2.902 2.898 2.899 2.902

JB 4520*** 5287*** 8672.9 12759 12986 7010.9

Nyblom stability test 2.032 1.894 2.157 2.64 2.86 2.3

Pearson (50) 387.9*** 359.1*** 387.8*** 370.78*** 409.42*** 378.87***

Note: *, ** and *** indicate that statistics are significance at the 10%, 5% and 1% level of significant respectively.

In Table 9, the estimated GARCH models for copper returns are compared. Si-

milarly for all models, d-FIGARCH coefficients are statistically significant at 1% level 

implying the existence of long memory in copper return.

ARCH and GARCH coefficients are also highly significant for all models except 

IGARCH model. GARCH coefficient is generally greater than 0.9 which implies highly 

persistence nature of volatility. GARCH coefficients of the FIGARCH, FIAPARCH, and 

HYGARCH models decrease gradually because these models take into consideration 

of long memory property in return series.

In addition, the conditional volatility of copper return reacts asymmetrically to 

shocks since the APARCH (γ) parameter is positive and significant. Therefore, nega-

tive shocks have impacts on volatility more than positive shocks. The APARCH (δ) 

power coefficient is also positive and significant. 
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Student t distribution reveals better performance than the normal distribution 

and the skewed student-t distribution since the t-statistics of the Student DF para-

meter is significant at 1% level for all estimation methods. 

According to AIC, FIAPARCH (1, 0.419, 1) can be chosen as to be the most app-

ropriate model.

Table 9: Estimation results of GARCH methods for copper

 

GARC

H

IGARC

H

FIGARC

H

FIAPARC

H

FIAPARC

H

HYGARC

H

Estimation Method    

    Skewed  

Cst(M) 0.036*** 0.035* 0.0358* 0.029 0.02 0.036*

AR(1) -0.069*** -0.069*** -0.067*** -0.067*** -0.06***

Cst(V) 0.014*** 0.01*** 0.05**

d-Figarch 0.492*** 0.419*** 0.49*** 0.439***

ARCH(Alpha1) 0.05*** 0.052*** 0.262*** 0.251*** 0.22*** 0.268***

GARCH(Beta1) 0.945*** 0.947 0.717*** 0.635*** 0.68*** 0.686***

APARCH(Gamma1) 0.124** 0.13**

APARCH(Delta) 2.137*** 1.93***

Student(DF) 6.863*** 6.528*** 7.648*** 7.008*** 6.78***

Asymmetry -.015

Tail 7.44***

Log Alpha (HY) 0.04*

No. Observations 3693 3693 3693 3693 3693 3693

No. Parameters 6 5 6 8 9 7

Log Likelihood -6781.97 -6782.71 -6786.99 -6780.13 -6788.6 -6783.2

AIC 3.676 3.675 3.678 3.676 3.681 3.677

SW 3.686 3.684 3.688 3.689 3.690 3.689

SB 3.676 3.675 3.678 3.676 3.681 3.677

H-quinn 3.679 3.678 3.682 3.681 3.686 3.681

JB 677.9 693.4 709.8 680.7 625.8 690.61

Nyblom stability test 2.518 2.29 2.54 4.946 4.5 2.855

Pearson (50) 100.29*** 97.29*** 104.71*** 104.92*** 260.8*** 97.45***

Note: *, ** and *** indicate that statistics are significance at the 10%, 5% and 1% level of significant respectively.

The results for silver and crude oil are illustrated in Table 10 and 11. The best mo-

del for silver is FIAPARCH (1, 0.414, 1) while it is FIAPARCH (1, 0.46, 1) with skewed 

student distribution for crude oil. The conditional volatility of silver returns reacts 

asymmetrically to shocks since the APARCH (γ) parameter is negative and signifi-

cant implying that positive shocks have more impacts on conditional volatility than 
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negative shocks. The power coefficient APARCH (δ) is also positive and significant. 

On the other hand, asymmetric volatility parameter (γ) is positive and significant 

for crude oil volatility estimation in Table 11. This result reveals that past negative 

shocks are more effective than past positive shocks on current conditional volatility.

Table 10: Estimation results of GARCH methods for silver

 

GARC

H

IGARC

H

FIGARC

H

FIAPARC

H

FIAPARC

H

HYGARC

H

Estimation Method         skewed  

Cst(M) 0.086*** 0.086*** 0.081*** 0.092*** 0.057** 0.085***

Cst(V) 0.024** 0.022*** 0.05

d-Figarch 0.452*** 0.414*** 0.47*** 0.345***

ARCH(Alpha1) 0.04*** 0.041*** 0.416*** 0.408*** 0.37*** 0.478***

GARCH(Beta1) 0.958*** 0.958 0.777*** 0.742*** 0.77*** 0.761***

APARCH(Gamma1) -0.21*** -0.2***

APARCH(Delta) 2.341*** 2.17***

Student(DF) 3.774*** 3.696*** 4.672*** 3.934*** 3.818***

Asymmetry -.05***

Tail 3.98***

Log Alpha (HY) 0.11**

No. Observations 3693 3693 3693 3693 3693 3693

No. Parameters 5 4 5 7 9 6

Log Likelihood -7321 -7321.1 -7327.9 -7312.9 -7309.04 -7318.72

AIC 3.967 3.967 3.971 3.964 3.96 3.966

SW 3.975 3.973 3.979 3.975 3.97 3.976

SB 3.967 3.967 3.971 3.964 3.963 3.966

H-quinn 3.970 3.969 3.974 3.968 3.96 3.970

JB 3855.1 3898.6 3118.4 3555.7 3452.7 3009.3

Nyblom stability test 2.483 2.370 2.184 3.26 4.36 2.67

Pearson (50) 386.05*** 384.59*** 358.7*** 360.98*** 558.48*** 348.33***

Note: *, ** and *** indicate that statistics are significance at the 10%, 5% and 1% level of significant respectively.
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Table 11: Estimation results of GARCH methods for crude oil

 

GARC

H

IGARC

H

FIGARC

H

FIAPARC

H

FIAPARC

H

HYGARC

H

Estimation Method         skewed  

Cst(M) 0.06** 0.06** 0.066** 0.058* 0.02 0.066***

AR(1) -0.046*** -0.046*** -0.04*** -0.048*** -0.047***

Cst(V) 0.024** 0.018*** 0.076*

d-Figarch 0.517*** 0.416*** 0.46*** 0.459***

ARCH(Alpha1) 0.053*** 0.055*** 0.359*** 0.406*** 0.37*** 0.384***

GARCH(Beta1) 0.943*** 0.944 0.774*** 0.718*** 0.72*** 0.752***

APARCH(Gamma1) 0.296*** 0.34***

APARCH(Delta) 1.98*** 1.76***

Student(DF) 7.064*** 6.834*** 7.995*** 7.433*** 7.06***

Asymmetry -0.05***

Tail 7.62***

Log Alpha (HY) 0.04**

No. Observations 3693 3693 3693 3693 3693 3693

No. Parameters 6 5 6 8 9 7

Log Likelihood -7863.4 -7863.85 -7867.6 -7852.6 -7854.6 -7862.8

AIC 4.261 4.261 4.264 4.257 4.25 4.262

SW 4.271 4.269 4.274 4.270 4.27 4.273

SB 4.261 4.261 4.264 4.257 4.25 4.262

H-quinn 4.265 4.264 4.267 4.261 4.26 4.266

JB 933.05 940.73 1000.3 942.27 901.5 999.83

Nyblom stability test 2.457 1.712 2.18 2.94 3.55 2.68

Pearson (50) 128.27*** 132.68*** 123.9*** 124.1*** 235.1*** 129.29***

Note: *, ** and *** indicate that statistics are significance at the 10%, 5% and 1% level of significant respectively.

GARCH estimation results for palladium is illustrated in Table 12. As seen for all 

models, d-FIGARCH coefficients are statistically significant at 1% level implying the 

existence of long memory in palladium return. On the other hand, the APARCH (γ) 

parameter is positive and insignificant. Here, neither positive nor negative shocks 

have the asymmetric effect on conditional volatility. The APARCH (δ) power coeffi-

cient is also positive and significant. According to AIC, FIAPARCH model could be 

chosen to be the most appropriate model. Regarding the log likelihood, FIAPARCH 

model with skewed student-t distributed innovations presents the most accurate 

model.
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Table 12: Estimation results of GARCH methods for Palladium

 

GARC

H

IGARC

H

FIGARC

H

FIAPARC

H

FIAPARC

H

HYGARC

H

Estimation Method         skewed  

Cst(M) 0.022 0.022 0.025 0.023 0.004 0.026

Cst(V)  0.059*** 0.058*** 0.109*** 0.109*** 0.109*** 0.078

d-Figarch  0.578*** 0.571*** 0.571*** 0.53***

ARCH(Alpha1) 0.10*** 0.10*** 0.27*** 0.289*** 0.288*** 0.297***

GARCH(Beta1) 0.899*** 0.899*** 0.709*** 0.708*** 0.708*** 0.694***

APARCH(Gamma1) 0.043 0.044

APARCH(Delta) 1.98*** 1.98***

Student(DF) 3.985*** 3.97*** 4.19*** 4.19*** 4.036***

Asymmetry -.031*

Tail 4.19***

Log Alpha (HY) 0.035

No. Observations 3693 3693 3693 3693 3693 3693

No. Parameters 5 4 6 8 9 7

Log Likelihood -7383.2 -7383.2 -7376.6 -7376.6 -7375 -7376.1

AIC 4 4 4 3.998 3.998 3.998

SW 4 4 4.008 4.012 4.014 4.010

SB 4 4 3.998 3.998 3.998 3.998

H-quinn 4 4 4 4.003 4 4.002

JB 16344 16576 15382 14914 14909 18114

Nyblom stability test 2.241 2 3 4.479 4.94 3.44

Pearson (50) 1704.25*** 1703.8***  1713.29*** 1717.04***  1709.55*** 1706.95***

Note: *, ** and *** indicate that statistics are significance at the 10%, 5% and 1% level of significant respectively.

In Table 13, various GARCH estimation results for platinum return are displayed. 

The results show evidence of  long memory in platinum return. The APARCH (δ) po-

wer coefficient is also positive and significant. However, the APARCH (γ) parameter 

is negative and insignificant. Here it couldn’t be mentioned the asymmetric effects 

of positive and negative shocks. According to information criteria and log likelihood 

ratio, FIAPARCH (1,0.74,1) model with skewed student-t distributed innovations 

could be interpreted as the most appropriate model. 
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Table 13: Estimation results of GARCH methods for Platinum

 

GARC

H

IGARC

H

FIGARC

H

FIAPARC

H

FIAPARC

H

HYGARC

H

Estimation Method         skewed  

Cst(M) 0.046*** 0.046*** 0.045*** 0.052*** 0.038** 0.03

Cst(V) 0.029*** 0.019*** 0.049** 0.049 0.051 0.06

d-Figarch 0.592*** 0.767*** 0.746*** 0.764***

ARCH(Alpha1) 0.07*** 0.07*** 0.274*** 0.177 0.185 0.177

GARCH(Beta1) 0.916*** 0.922*** 0.75*** 0.841*** 0.832*** 0.816***

APARCH(Gamma1) -0.039 -0.042

APARCH(Delta) 1.432*** 1.469***

Student(DF) 5.16*** 4.72*** 4.9*** 5.27***

Asymmetry -.037 -0.043**

Tail 5.3*** 5.22***

Log Alpha (HY) -0.032

No. Observations 3693 3693 3693 3693 3693 3693

No. Parameters 5 4 6 8 9 8

Log Likelihood -5938.4 -5941.06 -5938.57 -5931.6 -5930.14 -5.935

AIC 3.218 3.219 3.219 3.216 3.216 3.218

SW 3.227 3.219 3.229 3.230 3.231 3.231

SB 3.218 3.226 3.219 3.216 3.216 3.218

H-quinn 3.221 3.222 3.222 3.221 3.221 3.223

JB 867.96 898.6 857.75 855.49 859.55 858.97

Nyblom stability test 3.728 3.368 4.505 5 5.31 5.09

Pearson (50) 200.54*** 211.1*** 206.6*** 252.85*** 443.59*** 327.21***

Note: *, ** and *** indicate that statistics are significance at the 10%, 5% and 1% level of significant respectively.

We estimate FIAPARCH model both assuming Student-t and skewed Student-t 

distributed innovations. Asymmetric parameters are negative and statistically signi-

ficant for silver, crude oil and palladium respectively at the %1, %5 and %10 level. 

Therefore, one may observe from these results that silver, crude oil and palladium 

innovations are skewed to the left. In addition, the tail parameters in all the FIA-

PARCH models are statistically significant and positive. This reveals that the commo-

dity return series are fat-tailed. To sum up, FIAPARCH model with skewed student-t 

distributed innovations is the most accurate model for most of these commodity 

return series. It takes into consideration both asymmetry and long memory proper-

ties of series. 
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5.2. Forecast evaluation

To evaluate the forecast performance of different GARCH models, we constitute 

the one and twenty-day-ahead volatility forecasts over the out of sample period 

from February 29, 2016 through April 29, 2016 to assess the forecasting perfor-

mance of the eight competing GARCH models. Theil Inequality Coefficient (TIC) and 

Mean Absolute Error (MAE) are reported in tables 14, 15 for the mean equation of 

these commodities. As can be seen from Table 14, with regard to the one-day fore-

casting horizon, FIAPARCH model with student distribution outperforms the other 

models for metals but HYGARCH model performs better for crude oil, palladium 

and platinum.

Table 14: Forecast Comparison of Volatility models

Model Criteria GOLD COPPER SILVER CRUDE OIL PALLADIUM PLATINIUM

GARCH MAE 0.623 0.077 0.655 3.36 0.383 1.021

TIC 0.84 0.247 0.79 0.984 0.896 1

IGARCH MAE 0.624 0.076 0.655 3.36 0.383 1.021

TIC 0.842 0.242 0.791 0.984 0.897 1

FIGARCH MAE 0.626 0.081 0.659 3.354 0.379 1.02

TIC 0.849 0.26 0.801 0.981 0.879 1

FIAPARCH MAE 0.62 0.075 0.649 3.363 0.382 1.027

TIC 0.833 0.236 0.779 0.986 0.891 1

FIAPARCH MAE 0.63 0.21 0.68 3.35 0.401 1.014

skewed TIC 0.85 1 0.85 0.98 0.978 1

HYGARCH MAE 0.626 0.079 0.656 3.354 0.379 1.005

  TIC 0.847 0.255 0.792 0.981 0.879 1

Notes: This table reports the results of the one-day out-of-sample prediction errors of return series for the different 

competing volatility models.

When looking at the results of twenty-day forecast horizon in Table 15, it can be 

seen that the FIAPARCH model has superiority in terms of volatility forecast accuracy 

for all commodity returns except that of copper and palladium. With respect to Theil 

Inequality Coefficient (TIC), while IGARCH model produces the lowest mean loss for 
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copper, FIGARCH and HYGARCH model produce that of for Palladium and the latter 

produces the lowest mean absolute error for Platinum.

Table 15: Forecast Comparison of Volatility models

Model Criteria GOLD COPPER SILVER CRUDE OIL PALLADIUM PLATINIUM

GARCH MAE 0.989 1.043 1.189 2.849 1.63 1.396

TIC 0.959 0.965 0.948 0.979 0.986 0.972

IGARCH MAE 0.989 1.043 1.189 2.849 1.63 1.396

TIC 0.959 0.965 0.948 0.979 0.986 0.972

FIGARCH MAE 0.988 1.043 1.188 2.847 1.629 1.396

TIC 0.961 0.966 0.95 0.977 0.983 0.973

FIAPARCH MAE 0.989 1.043 1.19 2.84 1.63 1.397

TIC 0.957 0.969 0.945 0.98 0.985 0.969

FIAPARCH MAE 0.98 1.05 1.18 2.85 1.637 1.396

skewed TIC 0.96 0.98 0.96 0.99 0.997 0.977

HYGARCH MAE 0.988 1.043 1.189 2.847 1.629 1.395

  TIC 0.96 0.966 0.948 0.977 0.983 0.981

Notes: This table reports the results of the Twenty-day out-of-sample prediction errors of return series 

for the different competing volatility models.

Once again, out of sample forecast analysis implies that allowing for asymmetry 

and long memory properties leads to enhance the quality of volatility forecasts of 

commodity returns. In most cases, volatility estimates show that the FIAPARCH mo-

del is favored to the other five GARCH-class models.

5.3 VaR estimations

In this part of our analysis, VaR of commodities are estimated based on three 

GARCH models for level α from 5% to 0.25%. Besides we compute the failure rate 

for the long trading position as a percentage of negative returns smaller than one-

step-ahead VaR for long positions. For the short trading position, the failure rate is 

defined as the percentage of positive returns larger than the one-step-ahead VaR 

for short positions.

Table 16 shows the in sample VaR estimations based on GARCH, FIGARCH, and 

FIAPARCH models. In this respect, the Kupiec LR tests are carried out for each of 

these GARCH models, which investigate whether the empirical failure rate is equal 

to the pre-specified VaR level α . The other risk measures Expected Shortfalls (ESF) 

are presented for long and short positions and labelled ESF1 and ESF2 respectively 
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in Table 17-18. Hendricks (1996) defines the ESF1 as the excess value of the losses 

over the VaR, the ESF2 as the expected value of loss exceeding the VaR level, divided 

by the associated VaR values.

According to our results, expected shortfalls are the highest for crude oil and the 

lowest for gold for all risk levels. The Kupiec test statistics are highly significant at 

all levels (1%, 5%, and 10%) in most cases. This result suggests that the standard 

GARCH model performs inadequately at all events regardless of the commodity 

analyzed. For the short trading position, the use of the FIGARCH model for Copper, 

Silver, and Crude oil returns performs well. On the other hand, for these three com-

modity return series, the Kupiec test statistics are significant at three conventional 

levels for the long trading positions with the FIGARCH model. However, the Kupiec 

test statistics are insignificant for all commodities and for long trading position at 

% 1 level of significance with skewed t distribution FIAPARCH model. More preci-

sely the findings show that the FIAPARCH model with skewed student distributed 

innovations outperforms the other methods for long position and it has more or less 

similar performance with FIGARCH model for short trading positions. It can be conc-

luded that in the models which take into account volatility clustering, asymmetry 

and long memory in the commodity returns, VaR and ESF are more accurate measu-

re of risk for both long and short trading positions.
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Table 16: Kupiec LR test statistics based on in sample VaR

Short positions   Long positions

α quantile
GARCH FIGARCH FIAPARCH 

FIAPARCH 

skewed
α quantile

GARCH FIGARCH FIAPARCH 

FIAPARCH 

skewed

GOLD GOLD

0.95 0.2274 0.0103 0.0024 0.39 0.05 7.105*** 2.991* 7.885*** 4.682**

0.975 0.9993 3.998** 1.766 0.61 0.025 6.244*** 1.984 6.74*** 3.27*

0.99 15.214*** 15.214*** 10.694*** 10.69*** 0.01 0.9572 0.0238 3.613** 1.66

0.995 6.018*** 11.483*** 7.576*** 6.01*** 0.005 1.184 2.598 0.6984 1.81

0.9975 5.7308*** 12.038*** 8.36*** 3.78** 0.0025 0.1728 0.5908 0.59088 1.29

COPPER COPPER

0.95 0.1242 1.483 0.391 0.39 0.05 0.993 4.078** 0.6001 0.00069

0.975 0.612 1.006 0.005 0.14 0.025 1.455 4.437** 0.637 0.078

0.99 2.97* 0.023 1.856 1.85 0.01 0.957 8.588*** 2.087 0

0.995 7.576*** 2.598 6.018*** 1.18 0.005 0.011 2.091 0.011 0.011

0.9975 3.78** 3.78** 3.78** 3.78* 0.0025 1.366 3.033* 0.319 0.31

SILVER SILVER

0.95 0.78963 1.8621 2.2794 0.015 0.05 5.662*** 15.471*** 8.7031*** 3.24*

0.975 6.614*** 0.2389 4.9591** 0.019 0.025 4.862** 27.275*** 6.7408*** 2.27

0.99 10.694*** 0.24122 7.1297*** 2.97* 0.01 0.4374 8.5883*** 2.5534 0.0238

0.995 7.5768*** 1.1845 9.3862*** 3.54** 0.005 1.038 9.3092*** 1.038 0.015

0.9975 .NaN 3.7809** 12.038*** 8.36*** 0.0025 0.0622 6.521*** 0.75932 0.319

CRUDE OIL

CRUDE 

OIL

0.95 2.521 0.107 0.789 0.72 0.05 4.078** 11.38*** 1.309 .015

0.975 2.762* 0.148 2.762* 0.124 0.025 1.221 8.334*** 2.277 .078

0.99 8.22*** 0.696 7.129*** 2.37 0.01 0.437 4.206** 0.673 0.000133

0.995 6.018*** 4.683** 7.576*** 3.54* 0.005 0.64 4.269*** 2.74* 0.334

0.9975 0.59 0.172 1.296 1.29 0.0025 1.366 5.237** 3.033* .759

PALLADIUM PALLADIUM

0.95 0.00069 0.227 0.49 2.067 0.05 0.063 1.146 0.993 0.227

0.975 0.211 0.321 0.612 0.005 0.025 0.483 0.637 0.637 0.03

0.99 2.974* 2.379 2.974* 1.017 0.01 1288 5.513*** 4.206** 1.665

0.995 0.698 0.12 0.0118 0.011 0.005 0.011 0.64 1.038 0.015

0.9975 2.336 0.5908 0.5908 0.172 0.0025 0.062 0.319 0.319 0.319

PLATINIUM PLATINIUM

0.95 1.832 2.777* 1.627 .015 0.05 4.078 2.991* 4.998** 2.508

0.975 2.404 5.481*** 1.485 .321 0.025 2.277 .238 2.277 .350

0.99 1.017 2.974* .696 .103 0.01 2.087 .673 2.553 .673

0.995 1.184 3.549*** 1.814 .346 0.005 .334 .015 1.038 .124

0.9975 .590 1.296 .590 .172 0.0025 .172 1.296 0 5.730***

Notes: The table reports the Kupiec test statistics. *, ** and *** indicate that statistics are significance at the 10%, 5% and 

1% level of significant respectively. The best model is the one with the least rejections.
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Table 17: Expected Shortfalls based on in-sample Value-at-Risk

Short positions

α quantile
GARCH GARCH FIGARCH FIGARCH FIAPARCH FIAPARCH 

FIAPARCH 

skewed

FIAPARCH 

skewed

  ESF1 ESF2 ESF1 ESF2 ESF1 ESF2 ESF1 ESF2

GOLD

0.95 2.42 1.3 2.38 1.28 2.41 1.3 2.39 1.31

0.975 2.82 1.2 2.82 1.19 2.88 1.22 2.84 1.23

0.99 3.95 1.22 3.9 1.17 3.9 1.19 3.9 1.23

0.995 4.55 1.1 4.49 1.11 4.64 1.14 4.43 1.15

0.9975 5.11 1.02 3.66 1 5.84 1.07 5.32 1.06

COPPER

0.95 3.53 1.3 3.4 1.31 3.43 1.3 3.48 1.31

0.975 4.1 1.21 3.98 1.23 3.96 1.22 4.07 1.21

0.99 5.07 1.13 4.69 1.15 4.83 1.16 5.01 1.17

0.995 5.71 1.11 4.83 1.12 5.16 1.14 5.02 1.1

0.9975 7.14 1.04 7.14 1.12 7.15 1.08 7.14 1.1

SILVER

0.95 4.17 1.34 3.91 1.37 4.17 1.36 4.07 1.37

0.975 5.05 1.28 4.55 1.29 5 1.27 4.76 1.26

0.99 6.07 1.18 5.37 1.22 5.67 1.18 5.49 1.19

0.995 8 1.06 6.61 1.16 8.05 1.1 6.91 1.11

0.9975 .NaN  .NaN 5.48 1.08 4.7 1.03 9.18 1.07

CRUDE OIL

0.95 4.9 1.31 4.78 1.31 4.86 1.29 4.76 1.29

0.975 5.91 1.24 5.56 1.24 5.68 1.23 5.61 1.24

0.99 7.31 1.29 6.63 1.22 7.2 1.24 6.93 1.23

0.995 8.86 1.38 8.82 1.37 9.14 1.34 8.16 1.29

0.9975 9.66 1.28 9.14 1.27 9.62 1.26 9.62 1.31

PALLADIUM

0.95 4.23 1.44 4.21 1.43 4.18 1.43 4.12 1.44

0.975 5.15 1.37 5.24 1.39 5.27 1.4 5.09 1.4

0.99 6.56 1.42 6.54 1.43 6.55 1.45 6.34 1.43

0.995 7.21 1.37 7.1 1.35 6.99 1.35 6.99 1.39

0.9975 8.24 1.58 8.67 1.45 8.67 1.47 8.06 1.45

PLATINIUM

0.95 2.87 1.38 2.81 1.38 2.9 1.39 2.82 1.39

0.975 3.47 1.33 3.48 1.34 3.44 1.33 3.37 1.34

0.99 4.16 1.28 4.17 1.29 4.26 1.28 4.12 1.29

0.995 4.98 1.29 5.27 1.31 5.14 1.31 4.79 1.29

0.9975 5.4 1.29 5.52 1.27 5.4 1.28 5.78 1.29
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Table 18: Expected Shortfalls based on in-sample Value-at-Risk

Long positions

α quantile
GARCH GARCH FIGARCH FIGARCH FIAPARCH FIAPARCH 

FIAPARCH 

skewed

FIAPARCH 

skewed

  ESF1 ESF2 ESF1 ESF2 ESF1 ESF2 ESF1 ESF2

GOLD

0.05 -2.46 1.45 -2.5 1.46 -2.46 1.45 -2.49 1.45

0.025 -3.01 1.35 -3.02 1.36 -2.95 1.36 -3.01 1.36

0.01 -3.83 1.29 -3.85 1.31 -3.77 1.26 -3.83 1.26

0.005 -4.72 1.41 -4.81 1.44 -4.85 1.4 -4.99 1.44

0.0025 -5.55 1.39 -5.45 1.42 -5.59 1.49 -5.48 1.54

COPPER

0.05 -3.6 1.41 -3.5 1.43 -3.54 1.4 -3.6 1.39

0.025 -4.06 1.34 -4.01 1.37 -4.1 1.34 -4.28 1.33

0.01 -4.95 1.31 -4.58 1.29 -4.64 1.28 -4.97 1.31

0.005 -5.67 1.4 -5.35 1.36 -5.5 1.39 -5.66 1.35

0.0025 -6.17 1.32 -5.87 1.37 -6.23 1.38 -6.23 1.35

SILVER

0.05 -4.54 1.55 -4.31 1.57 -4.45 1.53 -4.61 1.51

0.025 -5.63 1.44 -5.03 1.43 -5.51 1.43 -5.73 1.42

0.01 -7.34 1.43 -6.58 1.43 -6.9 1.39 -7.45 1.43

0.005 -8.25 1.35 -7.54 1.38 -8.15 1.38 -8.74 1.38

0.0025 -9.97 1.39 -8.24 1.35 -9.51 1.33 -9.9 1.29

CRUDE OIL

0.05 -4.6 1.38 -4.54 1.41 -4.71 1.41 -4.86 1.4

0.025 -5.39 1.34 -5.3 1.34 -5.67 1.34 -5.7 1.34

0.01 -6.01 1.31 -5.53 1.34 -6.05 1.34 -6.52 1.33

0.005 -6.93 1.3 -6.31 1.34 -6.56 1.3 -7.08 1.31

0.0025 -8.15 1.28 -7.24 1.33 -7.64 1.3 -8.27 1.31

PALLADIUM

0.05 -4.64 1.51 -4.56 1.49 -4.57 1.49 -4.64 1.48

0.025 -5.54 1.43 -5.74 1.44 -5.74 1.43 -5.9 1.43

0.01 -6.95 1.31 -6.56 1.29 -6.69 1.29 -6.87 1.29

0.005 -8.95 1.3 -7.95 1.26 -7.89 1.25 -8.22 1.26

0.0025 -9.67 1.21 -9.88 1.22 -9.88 1.21 -9.88 1.18

PLATINIUM

0.05 -3 1.4 -3 1.39 -2.99 1.41 -3.05 1.39

0.025 -3.73 1.33 -3.7 1.33 -3.7 1.33 -3.88 1.33

0.01 -4.57 1.23 -4.61 1.21 -4.64 1.24 -4.67 1.23

0.005 -5.39 1.18 -5.48 1.15 -5.36 1.17 -5.6 1.16

0.0025 -6.42 1.14 -6.37 1.14 -6.42 1.15 -9.05 1.35
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5.4 Out of Sample Forecast Results

As mentioned above, the FIAPARCH model with skewed t seems to outperforms 

the others in terms of forecasting performance.  Moreover, 95 % the value at risk 

obtained from that model passes the backtesting (Kupiec test) and confirms that 

value at risk captures well the losses and gains for short and long positions respec-

tively. Based on these considerations we perform out of sample forecasts for con-

ditional mean, conditional variance and value at risk. The findings are illustrated in 

figures 4-9. As seen there are major differences in volatility and VaR among markets. 

It seems that gold and platinum have similar volatility and VaR patterns. In both 

markets, volatility diminishes over the forecast period and risk of losses decreases. In 

contrast, the volatility of silver copper and palladium tends to increase rapidly over 

time. As a result, in those markets value at risk for short positions tend to increase. 

With respect to oil we have a somewhat different picture. As shown in figure 7 oil 

volatility is much higher than the others. Moreover, the dynamic value at risk plot 

also confirms that oil market risk is considerably large compared with other com-

modities.

Figure 4: Skewed-student FIAPARCH forecasting for Gold
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Figure 5: Skewed-student FIAPARCH forecasting for Copper

Figure 6: Skewed-student FIAPARCH forecasting for Silver
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Figure 7: Skewed-student FIAPARCH forecasting for Crude oil

Figure 8: Skewed-student FIAPARCH forecasting for Palladium
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Figure 9: Skewed-student FIAPARCH forecasting for Platinum

6. Conclusion

Risk measurement of an asset is essential for investors in portfolio allocation, hed-

ging and risk management. In this paper using various GARCH models, the riskiness 

of gold, silver, copper, crude oil, palladium, and platinum are modelled and forecas-

ted. Volatility, value at risk, and expected shortfall are employed as risk measures. 

All risk measures are comparable as they are all based on the same GARCH model. 

It turns out that among existing GARCH models those allowing for long memory 

and asymmetry outperform the others in terms of out of sample forecast. Moreover, 

it seems that those models perform better in backtesting. In other words, the value 

at risk and expected shortfall risk measures are more credible. More specifically for 

most of these commodities, FIAPARCH model appears to be the best model not only 

in terms of goodness of fit measures such as AIC, SW, SB and H-Quinn criteria, and 

Log likelihood but also in terms of predicting volatility and value at risk. It seems that 

taking into account asymmetry and long memory also improves the performance 

of out of sample forecasts. In this respect, the FIAPARCH model outperforms in 

most of the cases except for palladium and platinum. Other studies dealing with 
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commodity markets also attain almost identical results. For instance Aloui and Mab-

rouk (2010) found that considering for long-range memory, fat-tails and asymmetry 

performs better in predicting a one-day-ahead VaR for both short and long trading 

positions. They also argue that the FIAPARCH model outperforms the other models 

in the VaR’s prediction. Chkili et al. (2014) suggest also that the FIAPARCH model 

is the best suited for estimating the VaR forecasts for both short and long trading 

positions of commodities’ returns. 

The results based on FIAPARCH model(with skewed t) suggest that oil volatility 

is high and the risk of oil measured by value at risk and expected shortfall is signifi-

cantly higher than the other commodities considered in the study. The finding is in 

contradiction to the findings obtained in previous studies. However, it is consistent 

with the reality. It is well known that oil price is very sensitive to political issues. 

Over recent years many political events such as the invasion of Iraq, sanctions on oil 

exporting countries like Iran, Russia, Venezuela and the slowdown of Chinese eco-

nomic growth cause oil price to fluctuate more. Moreover, after the improvement 

in shell gas technology, the USA becomes an oil exporting country affecting supply 

and the price of oil.

The above considerations suggest that oil is no longer safe heaven and cast do-

ubt on the use of oil as a hedging tool. The results on other commodities are more 

and less in accord with those obtained in earlier studies.
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