
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 51 (1) (2022), 327 – 337

DOI : 10.15672/hujms.812606

Research Article

Two-sided sampling plan for exponential
distribution under type II censored samples

Hacène Belbachir1, Mohamed Benahmed∗1,2,3
1USTHB, Faculty of Mathematics, RECITS Laboratory, BP 32 El-Alia Bab-Ezzouar 16111, Algiers,

Algeria
2Higher National School of Statistics and Applied Economics, Koléa 42003, Tipaza, Algeria

3CERIST, Research Center on Scientific and Technical Information, Ben Aknoun 16028, Algiers, Algeria

Abstract
Acceptance sampling plan paid the attention of many researchers in the last few years,
their works focused basically on Bayesian sampling plans under one-sided decision function
and different forms of censoring. In the present paper, a single variable sampling plan
for exponential distribution based on type II censored samples under random decision
function is developed. For a polynomial loss function, an explicit expression for the Bayes
risk is determined. To obtain an approximation for the optimal sampling plan, a simple
algorithm based on a discretization method is presented. Finally, an illustrative example
and a simulation study followed by extensive tables for the proposed sampling plan are
provided.
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1. Introduction
Acceptance sampling plan is an important issue for quality control engineers, to deter-

mine whether the outcome of products or process are of high quality, the main purpose is
to draw the optimal number of items and to determine as much as possible the quality of a
batch. Different criteria can be applied for designing sampling plans, such as the decision
theory approach and the operating characteristic curve (see e.g. [5, 7]). Decision theory
approach is suited to quality control in the sense that the sampling plan is established
by making an optimal decision. Extensive researches in different fields have been studied
along with this approach, such as [10,11,18,19].

In reliability analysis, the life test experiment is usually censored, which is a random
phenomenon. Recently, considerable literature around acceptance sampling plans has
been investigated by several authors, including [9,13,14,16] derived the exact distribution
of the maximum likelihood estimator (MLE) of the expected lifetime for the case when
the lifetime of components follows exponential distribution based on type I and type II
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hybrid censored samples. Lin et al. [15] have discussed Bayesian sampling plans under
the type I and type II hybrid censoring based on the results of [9]. Chen et al. [8]
developed a Bayesian sampling plan for type II censoring based on a curtailed Bayes
decision function. Yang et al. [20] proposed a modified type II hybrid censoring such as
the life test experiment interrupted at the time τ = min

{
max

(
X(m), t

)
, X(n)

}
. Prajapati

et al. [17] developed a new shrinkage estimator for the expected lifetime of exponential
distribution under type I censoring and type I hybrid censoring which always exists even
if no failure occurs at the censoring time τ = min

(
X(m), t

)
. In addition, Prajapati and

his colleagues claimed that the construction of the Bayes decision function (as in [8],
which is based on the posterior expectation) is quite difficult, when the loss function is
a polynomial with a higher degree or if it is not a polynomial. Balamurali et al. [6]
provided a mixed double sampling plan based on process capability index. The case of
acceptance sampling plan under nonparametric distribution has been investigate by [3].
Aslam et al. [4] considered the designing of modified multiple dependent state sampling
plan under Weibull and Birnbaum-Saunders distributions. Aslam [1, 2] have proposed
acceptance sampling plan for variable and attribute using the neutrosophic statistics. Işık
and Kaya [12] have developed double acceptance sampling plan for Binomial distribution
based on neutrosophic statistics. The previous studies have focused on Bayesian sampling
plan under one-sided decision function. However, the decision function may be one-sided
or two-sided, the first original aspect of the problem is illustrated in Figure 1.

T0T1

d0

d1

doubt zone

Figure 1. Schematic representation of a decision function with doubt zone.

where d0 and d1 represent respectively the decisions of accepting and rejecting the batch.
T0 and T1 denote respectively the minimum acceptable and the maximum rejectable sur-
viving time. The doubt zone is a family of regular functions that will be chosen according
to the suitability of various models. In the classic case, we pass from d1 to d0 with a
discontinuity i.e. T0 = T1. Nevertheless, it is crucial to be addressed to the situation when
T1 < T0. With this goal, this paper provides an alternative approach to design a two-sided
decision function with a linear doubt zone, such that the transition from d1 to d0 is done
by a linear random function, as shown in Figure 2.

T0T1
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d1

Figure 2. Schematic representation of a decision function with linear doubt zone.

Our aim is to develop a single variable sampling plan when the lifetime of product
follows the exponential distribution. The sampling plan is achieved by using a two-sided
decision function and under type II censoring. The remainder of this paper is organized
as follows. In Section 2, we describe the proposed model and all necessary assumptions.
Further, we obtain an explicit expression for the Bayes risk based on a polynomial loss
function. In Section 3 we determine an upper bound of the sample size and we suggest
an algorithm with an approximation method for finding a local optimal sampling plan. In
Section 4, we introduce some numerical results followed by some extensive tables. Finally,
Section 5 concludes with a summary.
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2. Model
Assume that we have a batch of components presented for life testing. The lifetime of

each item is a random variable X which follows a exponential distribution Exp(λ) with
expected lifetime 1/λ and the probability density function (pdf)

f(x|λ) =
{

λ exp(−λx), for x ≥ 0,

0, otherwise,
(2.1)

with the scale parameter λ is unknown. We suppose also that λ has a prior distribution
Γ(α, β), where α and β are known, with the pdf

g(λ) =
{

λα−1 exp(−βλ)βα/Γ(α), for λ > 0,

0, otherwise.
(2.2)

A random sample (X1, X2, . . . , Xn) of size n is taken from a batch for life testing. Let
(X(1), X(2), . . . , X(n)) be the order statistic of (X1, X2, . . . , Xn). Assume that the type II
censoring is adopted, the life test is interrupted after a certain number m(≤ n) of failed
items, where we only observe X =

(
X(1), X(2), . . . , X(m)

)
. Then, the MLE of the expected

lifetime θ = 1/λ is given by

θ̂ =
∑m

i=1 X(i) + (n − m)X(m)
m

. (2.3)

Remark 2.1. θ̂ defined by Equation (2.3) follows a Γ(m, mλ) distribution.
Note that the proof of Remark 2.1. is existed in the literature. However, to make this
paper a self value contain, the following proof is presented:
Let (X1, X2, . . . , Xn) a sample is selected from Exp(λ), and (X(1), X(2), . . . , X(n)) is the
order statistic, then the joint pdf of (X(1), X(2), . . . , X(m)) is

g(x(1), x(2), . . . , x(m)) = n!
(n − m)!

λm exp
(

−λ

[
m∑

i=1
X(i) + (n − m)X(m)

])
.

According to the transformation Y1 = X(1) Yi = X(i) − X(i−1) for i = 2, . . . , n we have

X(1) = Y1
X(2) = Y1 + Y2
X(3) = Y1 + Y2 + Y3
...
X(m) = Y1 + Y2 + Y3 + · · · + Ym.

Therefore,
m∑

i=1
X(i) + (n − m)X(m) =

m∑
i=1

(n − i + 1)Yi

and

g(x(1), x(2), . . . ,x(m)) = f(y1, y2, . . . , ym) = n!
(n − m)!

λm exp
(

−λ
m∑

i=1
(n − i + 1)yi

)
=nλe−λny1(n − 1)λe−λ(n−1)y2 . . . (n − m + 2)λe−2λyn−1(n − m + 1)λe−λym .

Thus, the Y1, . . . , Ym are mutually independent, such that Yi  Exp((n − i + 1)λ) for
(i = 1, . . . , m), and therefore,

m∑
i=1

X(i) + (n − m)X(m)

m
 Γ(m, mλ).

The proof is completed.
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2.1. Decision role
Based on the observed data x = (x(1), x(2), . . . , x(m)), a decision function δ(x) is made.

We consider the following two-sided decision function

δ(x) =


d0, for θ̂ ≥ T0,{

d1, with probability pθ̂

d0, with probability 1 − pθ̂

for T1 ≤ θ̂ < T0,

d1, for θ̂ < T1,

(2.4)

where, pθ̂ = T0 − θ̂

T0 − T1
. The loss to make a decision between d0 and d1, and select the

sampling plan (n, m, T0, T1) is defined as follows:

L(λ, δ(x)) =

nCs − (n − m)vs + τCt +
k∑

i=0
aiλ

i, if δ(x) = δ0,

nCs − (n − m)vs + τCt + Cr, if δ(x) = δ1,
(2.5)

where, the random variable X(m) is the censoring time and m is the number of failure,
the parameters Cs, Ct and Cr are positive constants and represent respectively the unit
inspection cost, the cost per unit of time used for the test and the loss due to rejection of
the batch, the quantity a0 + a1λ + · · · + akλk denotes the loss of accepting the batch and
be positive and increasing in λ. When the life test was finished, the unfailure items can
be reused and therefore have the salvage value vs, where 0 ≤ vs < Cs.

To derive the sampling plan (n, m, T0, T1) based on the decision function δ(x), we carried
out the following procedure:

(1) Select a random sample of size n from the batch for life testing based on type II
censored samples.

(2) Interrupt the test until the m-th failure is observed with m ≤ n, and record the
value of x(1), x(2), . . . , x(m).

(3) Compute the quantity θ̂ as

θ̂ =

m∑
i=1

x(i) + (n − m)x(m)

m
.

(4) Accept the batch if θ̂ ≥ T0, and reject the batch if θ̂ < T1. If T1 ≤ θ̂ < T0 the
batch is rejected and accepted with probability pθ̂ = (T0 − θ̂)/(T0 − T1) and 1 − pθ̂
respectively.

Theorem 2.2. The Bayes risk can be described by the following equation:

R (n, m, T0, T1) = nCs − (n − m)vs + Ct
β
α

( n
m−1

)m−1∑
j=0

(−1)j
(m−1

j

)
n−m+1

(n+j−m+1)2 + Cr

+
k∑

i=0
Ai

Γ(α+i)
βiΓ(α)

{
1 − Iq1(m, α + i) − T0

T0−T1
[Iq0(m, α + i) − Iq1(m, α + i)]

+ β
(α+i−1)(T0−T1) [Iq0(m + 1, α + i − 1) − Iq1(m + 1, α + i − 1)]

}
,

where qi = mTi/ (mTi + β) for i = 0, 1, and Bx (a, b), Ix (a, b) denote the incomplete Beta
function and the incomplete Beta ratio respectively.

Ai =
{

a0 − Cr, for i = 0,

ai, for i = 1, . . . , k
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Proof. Based on the loss function defined in Equation (2.5), the expression of the risk
can be computed as follows:

R (n, m, T0, T1) = E{E [L(λ, δ(x))]}

= E

{
E

[
nCs + Ctτ − (n − m)vs + (1 − d0) Cr + d0

k∑
i=0

aiλ
i|λ
]}

= nCs − (n − m)vs + CtE
{

E
[
X(m)

]
|λ
}

+ Cr + r(n, m|d0)

Such as

r(n, m, |d0) = E

{
E

[
d0

(
k∑

i=0
aiλ

i − Cr

)
|λ
]}

= E

{
E

[
k∑

i=0
Aiλ

i(1 θ̂>T1
− pθ̂1T1≤θ̂<T0

)|λ
]}

=
k∑

i=0
Ai

βα

Γ(α)

∞∫
0

e−βλλα+i−1
[

T1∫
0

fθ̂ (y) dy +
T0∫
T1

T0−y
T0−T1

fθ̂ (y) dy

]
dλ

=
k∑

i=0
Ai

∞∫
0

mmβα

Γ(α)Γ(m)λm+α+i−1
{

∞∫
T1

e−(my+β)λym−1dy −
T0∫
T1

T0−y
T0−T1

e−(my+β)λym−1dy

}
dλ

=
k∑

i=0
Ai

mmβαΓ(m+α+i)
Γ(α)Γ(m)

{
∞∫

T1

ym−1

(my+β)m+α+i dy −
T0∫
T1

T0−y
T0−T1

ym−1

(my+β)m+α+i dy

}
.

For z = my

my + β
, therefore we have

r(n, m|d0) =
k∑

i=0
Ai

Γ(m+α+i)
Γ(α)Γ(m)βi

1∫
q1

zm−1 (1 − z)α+i−1 dz −
q0∫
q1

T0− βz
m(1−z)

T0−T1
zm−1 (1 − z)α+i−1 dz

=
k∑

i=0
Ai

Γ(α+i)
βiΓ(α)

{
1 − Iq1(m, α + i) − T0

T0−T1
[Iq0(m, α + i) − Iq1(m, α + i)]

+ β
(α+i−1)(T0−T1) [Iq0(m + 1, α + i − 1) − Iq1(m + 1, α + i − 1)]

}
,

and, by a standard computation, the expression of the expected censoring time is given
by

E
{

E
[
X(m)

]
|λ
}

= β
α

( n
m−1

)m−1∑
j=0

(−1)j
(m−1

j

)
n−m+1

(n+j−m+1)2 ,

therefore

R (n, m, T0, T1) = nCs − (n − m)vs + Ct
β
α

( n
m−1

)m−1∑
j=0

(−1)j
(m−1

j

)
n−m+1

(n+j−m+1)2 + Cr

+
k∑

i=0
Ai

Γ(α+i)
βiΓ(α)

{
1 − Iq1(m, α + i) − T0

T0−T1
[Iq0(m, α + i) − Iq1(m, α + i)]

+ β
(α+i−1)(T0−T1) [Iq0(m + 1, α + i − 1) − Iq1(m + 1, α + i − 1)]

}
.

Thus, the proof is completed. �

3. Algorithm and numerical approximation
The expression of R (n, m, T0, T1) is quite complicated, so we cannot evaluate it analyti-

cally, based on an approximation method by considering T1 = lT0, where 0 < l < 1, we can
obtain local optimal sampling plan numerically. By using the Lagrange polynomials for
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the interpolation points x0 = 0.5, x1 = 1.0 and x2 = 1.5, the derivative of R (n, m, T0, lT0)
with respect to T0 reduces to a quadratic equation which is given by

2∑
i=0

[
h (xi)

∏2
j=0,j ̸=i

T0−xj

xi−xj

]
= 0, (3.1)

where h (T0) = ∂R(n,r,T0,lT0)
∂T0

.

3.1. An upper bound for the optimal sample size
In order to obtain the optimal sampling plan, we suggest an upper bound for the optimal

sample size i.e. we can get a local optimal sampling plan in a finite number of search steps.

Theorem 3.1. The optimal size of the sample is bounded by

N = min
{[

Cr

Cs − vs

]
,

[∑k
i=0 aiγi

Cs − vs

]}
, (3.2)

where [x] is the integer part of x, and γi represent the i-th moment of λ.

Proof. Let (0, 0, 0, 0) and (0, 0, ∞, ∞) be the sampling plans that accepts and rejects the
batch at no sampling case. For (n′, m′, T ′

0, T ′
1) an optimal sampling plan, then

R (n′, m′, T ′
0, T ′

1) ≤ R(0, 0, 0, 0) =
∑k

i=0 aiγi. and R (n′, m′, T ′
0, T ′

1) ≤ R(0, 0, ∞, ∞) = Cr.
As n (Cs − vs) ≤ R (n′, m′, T ′

0, T ′
1), therefore we have

n (Cs − vs) ≤ min
{

Cr,
k∑

i=0
aiγi

}

n ≤ min
{[

Cr

Cs − vs

]
,

[∑k
i=0 aiγi

Cs − vs

]}
.

Thus, the proof is completed. �

3.2. Derivation of the optimal sampling plan
In this subsection we determine local optimal sampling plans for two situations, when

T1 is fixed in the interval (0, T0) for fixed l, we denote its related local optimal sampling
plan by (n0, m0, T0, T1), and when T1 is flexible in the interval (0, T0), the correspondent
local optimal sampling plan is (nB, mB, T0, T1). To derive the local optimal sampling plan
under the two situations, the following two schemes are proposed

Scheme 1:
(1) Start with (n, m) = (0, 0), compute N from Equation (3.2), and compute

R(0, 0, T0(n, m), T1(n, m)) = min
{

R (0, 0, ∞, ∞) = Cr, R (0, 0, 0, 0) =
∑k

i=0 aiγi

}
.

(2) For each n = 1, . . . , N and m = 1, . . . , n, compute the optimal T0(n, m) and
T1(n, m) = lT0(n, m) such that T0(n, m) = min

1≤i≤2

{
R
(
n, m, T

(i)
0 , lT

(i)
0

)
|T (i)

0 > 0
}

,

T
(i)
0 is the i-th solution of Equation (3.1).

(3) By comparison, choose (n0, m0, T0, T1) which corresponds to the smallest value of
the Bayes risks R (n, m, T0(n, m), T1(n, m)).

Scheme 2:
(1) Start with (n, m) = (0, 0), compute N from Equation (3.2), and compute

R(0, 0, T0(n, m), T1(n, m)) = min
{

R (0, 0, ∞, ∞) = Cr, R (0, 0, 0, 0) =
∑k

i=0 aiγi

}
.



Two-sided sampling plan 333

(2) For each n = 1, . . . , N and m = 1, . . . , n, compute the optimal T0(n, m) such that
T0(n, m) = min

1≤i≤2

{
R
(
n, m, T

(i)
0 , lT

(i)
0

)
|T (i)

0 > 0
}

, T
(i)
0 is the i-th solution Equation

(3.1). Compute T1(n, m) using grid search method with grid size T0(n, m)/1000.
(3) By comparison, choose (nB, mB, T0, T1) which corresponds to the smallest value

of the Bayes risks R (n, m, T0(n, m), T1(n, m)).

4. Numerical results
To illustrate the proposed model, we assume that the loss is a quadratic function with

(k = 2). Various numerical examples are depicted in Tables 1-6. In each table we denote
(nB, mB, T0, T1) ≡ SB and (n0, m0, T0, T1) ≡ S0, and their minimum Bayes risk respec-
tively R(nB, mB, T0, T1) ≡ RB and R(n0, m0, T0, T1) ≡ R0. To examine the behavior of
the Bayes risk function, we vary one(two) parameter(s) or coefficient(s) while the others
keep fixed. So, as the true values of parameters and coefficients of the model for which
we made the calculations, we take: α = 2.5, β = 1, a0 = a1 = a2 = 5, Cs = 0.5, vs = 0.2,
Ct = 2 and Cr = 50. For the sampling plan (n0, m0, T0, T1) we take l = 2/3. Furher, the
standard values are indicated by ’*’, and the corresponding local optimal sampling plan
and the minimum Bayes risk are in bold. The efficiency values in Tables 1-6 defined by
eff= 100R0/RB is the ratio of the minimum Bayes risks R0 and RB.

The local optimal sampling plan for the standard values of parameters and coefficients
mentioned above for (nB, mB, T0, T1) = (6, 4, 0.4860, 0.3611), which means: we put 6
items for life testing and the life test terminates after the 4-th failure. We may ac-
cept the batch if the estimator of the average lifetime θ̂ is greater than 0.4860. For
θ̂ is between 0.4860 and 0.3611, the batch is rejected and accepted with probability
pθ̂ = 0.4860−θ̂

0.4860−0.3611 and 1 − pθ̂, with the Byes risk RB = 43.1853. Further, correspond-
ing to (α, β, a0, a1, a2, Cs, vs, Ct, Cr) = (2.5, 1, 5, 5, 5, 0.5, 0.2, 2, 50), the local optimal sam-
pling plan (n0, m0, T0, T1) is given by (6, 4, 0.5638, 0.3759), the correspondent Bayes risk
is R0 = 43.3182.

Table 1. Local optimal sampling plans and their minimum Bayes risks for α and
β
vary.

α β nB mB T0 T1 RB n0 m0 T0 T1 R0 eff(%)
1.5 0.2 2 1 0.9941 0.9135 49.4396 3 2 0.9495 0.6330 49.4692 100.06
1.5 0.4 5 3 0.5381 0.5375 45.3279 5 3 0.7794 0.5196 45.8101 101.06
1.5 0.6 6 3 0.4883 0.3862 40.5936 7 4 0.5702 0.3801 40.7736 100.44
1.5 0.8 7 3 0.4532 0.2624 36.1097 7 3 0.3671 0.2448 36.3404 100.64
2.0 0.2 0 0 ∞ ∞ 50.0000 0 0 ∞ ∞ 50.0000 100.00
2.0 0.4 3 2 0.9503 0.6063 49.2325 3 2 0.9425 0.6284 49.2339 100.00
2.0 0.6 6 4 0.4974 0.4591 45.8774 5 3 0.7731 0.5154 46.3920 101.12
2.0 0.8 7 4 0.4864 0.3629 42.0000 7 4 0.5670 0.3780 42.1410 100.34
0.0 0.0 0 0 ∞ ∞ 50.0000 0 0 ∞ ∞ 50.0000 100.00
2.5 0.6 3 2 0.9425 0.6088 49.3219 3 2 0.9367 0.6245 49.3227 100.00
2.5 0.8 6 4 0.4977 0.4579 46.4831 5 3 0.7676 0.5118 47.0093 101.13

2.5* 1.0* 6 4 0.4860 0.3611 43.1853 6 4 0.5638 0.3759 43.3182 100.3
3.0 0.8 3 2 0.9355 0.6109 49.4788 3 2 0.9316 0.6211 49.4792 100.00
3.0 1.0 6 4 0.4979 0.4565 47.0288 4 3 0.7628 0.5085 47.5362 101.08
3.0 1.2 6 4 0.4867 0.3597 44.1567 6 4 0.5608 0.3738 44.2800 100.28
0.0 0.0 0 0 ∞ ∞ 50.0000 0 0 ∞ ∞ 50.0000 100.00
3.5 1.0 3 2 0.9294 0.6125 49.6417 3 2 0.9271 0.6181 49.6418 100.00
3.5 1.2 6 4 0.4980 0.4552 47.5008 4 3 0.7585 0.5057 47.9645 100.98
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In Table 1, it is easy to see that RB is less than R0 for each variation of (α, β) and we
observe that the difference between RB and R0 becomes small for α is fixed and β decreases.
Further, for (α, β) = (2.0, 0.2), (2.5, 0.4), (3.5, 0.8), the batch is rejected without take any
sample cost, with SB = S0 = (0, 0, ∞, ∞) and RB = R0 = 50. On the other hand, nB and
mB in most cases are greater than or equal to n0 and m0 respectively, so by the sampling
plan (nB, mB, T0, T1) we can observe more information about the expected lifetime 1/λ
of the items set in life testing. So, based on these data, the decision function δ (x) can
be an appropriate decision with a smaller risk. In Tables 2-4, we observe that, the Bayes
risk for both cases is nondecreasing in a0 ,a1 and a2. As expected, in each table, we can
see that RB is always less than R0, while in most cases the efficiency values are close to
1 and in general less than 101%. Furthermore, there are some cases where the sampling
plans SB and S0 occur at no sampling case, as can be seen from Table 4, when a2 = 2,
the optimal sampling plans take the form (0, 0, 0, 0), which means the batch is accepted
without take any sample cost with the Bayes risk RB = R0 = 35. In Table 5, it can be
seen that, the number of observed failures is equal to the optimal sample size when Ct

closes to 0. Otherwise, when Ct increases, the number of observed failures decreases and
the optimal sample size increases, and this is due to the effect of Ct value on behavior of
the Bayes risk. In Table 6, as expected the Bayes risk of SB and S0 is increasing when Cr

increase with RB < R0.

Table 2. Local optimal sampling plans and their minimum Bayes risks for a0
varies.

a0 nB mB T0 T1 RB n0 m0 T0 T1 R0 eff(%)
0 6 4 0.4736 0.2884 40.7881 5 3 0.4317 0.2878 41.0116 100.55
1 6 4 0.4770 0.3020 41.2778 6 4 0.4348 0.2899 41.3476 100.17
2 6 4 0.4792 0.3158 41.7626 6 4 0.4700 0.3133 41.7655 100.01
3 6 4 0.4813 0.3302 42.2422 6 4 0.5031 0.3354 42.2557 100.03
4 6 4 0.4847 0.3456 42.7165 6 4 0.5343 0.3562 42.7810 100.15
5* 6 4 0.4860 0.3611 43.1853 6 4 0.5638 0.3759 43.3182 100.31
6 6 4 0.4889 0.3779 43.6483 6 4 0.5918 0.3945 43.8531 100.47
8 6 4 0.4931 0.4137 44.5566 6 4 0.6435 0.4290 44.8853 100.74
10 5 3 0.4988 0.4898 45.4289 5 3 0.7155 0.4770 45.7791 100.77
15 5 3 0.6685 0.6678 47.5853 4 2 0.8579 0.5720 47.6792 100.20
20 4 2 0.9183 0.6897 49.0483 4 2 0.9443 0.6295 49.0575 100.02
25 0 0 ∞ ∞ ∞ 0 0 ∞ ∞ 50.0000 100.00

Table 3. Local optimal sampling plans and their minimum Bayes risks for a1
varies.

a1 nB mB T0 T1 RB n0 m0 T0 T1 R0 eff(%)
0 6 4 0.4429 0.1873 39.2967 2 1 0.1493 0.0995 43.7406 111.31
1 6 4 0.4559 0.2197 40.1363 2 1 0.3334 0.2222 42.7147 106.42
2 6 4 0.4660 0.2530 40.9466 4 2 0.3758 0.2505 41.8472 102.20
3 6 4 0.4735 0.2874 41.7254 5 3 0.4300 0.2867 41.8943 100.40
4 6 4 0.4806 0.3235 42.4716 6 4 0.4880 0.3253 42.4733 100.00
5* 6 4 0.4860 0.3611 43.1853 6 4 0.5638 0.3759 43.3182 100.31
6 6 4 0.4915 0.4011 43.8664 6 4 0.6259 0.4173 44.1644 100.68
8 6 4 0.4989 0.4875 45.1330 5 3 0.7454 0.4970 45.5426 100.91
10 6 4 0.6242 0.6236 46.4597 5 3 0.8163 0.5442 46.5692 100.24
15 4 2 0.9444 0.7546 48.3618 4 2 0.9831 0.6554 48.3910 100.06
20 4 2 0.9944 0.9606 49.4869 4 2 1.0698 0.7132 49.6149 100.26
25 0 0 ∞ ∞ 50.0000 0 0 ∞ ∞ 50.0000 100.00
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Table 4. Local optimal sampling plans and their minimum Bayes risks for a2
varies.

a2 nB mB T0 T1 RB n0 m0 T0 T1 R0 eff(%)
2 0 0 0.0000 0.0000 35.0000 0 0 0.0000 0.0000 35.0000 100.00
3 5 3 0.3906 0.1160 39.8685 0 0 0.0000 0.0000 43.7500 109.74
4 6 4 0.4637 0.2513 41.6877 4 2 0.3617 0.2411 42.4664 101.87
5* 6 4 0.4860 0.3611 43.1853 6 4 0.5638 0.3759 43.3182 100.31
6 6 4 0.4979 0.4675 44.4318 6 4 0.7057 0.4705 44.9243 101.11
7 6 4 0.6141 0.6135 45.6829 5 3 0.8154 0.5436 45.9398 100.56
8 5 3 0.8648 0.5976 46.6689 5 3 0.8732 0.5822 46.6700 100.00
9 5 3 0.9065 0.6309 47.2430 5 3 0.9157 0.6105 47.2452 100.00
10 5 3 0.9327 0.6725 47.7162 5 3 0.9484 0.6323 47.7250 100.02
12 5 3 0.9646 0.7630 48.4671 5 3 0.9960 0.6640 48.5151 100.10
15 5 3 0.9899 0.9028 49.2940 5 3 1.0425 0.6950 49.4732 100.36
20 0 0 ∞ ∞ 50.0000 0 0 ∞ ∞ 50.0000 100.00

Table 5. Local optimal sampling plans and their minimum Bayes risks for Ct

varies.

Ct nB mB T0 T1 RB n0 m0 T0 T1 R0 eff(%)
0.1 5 5 0.4859 0.3489 41.4131 5 5 0.5436 0.3624 41.5049 100.22
0.5 4 4 0.4860 0.3611 42.0130 5 5 0.5436 0.3624 42.1138 100.24
1.0 5 4 0.4860 0.3611 42.4742 5 4 0.5638 0.3759 42.6071 100.31
1.5 6 4 0.4860 0.3611 42.8686 6 4 0.5638 0.3759 43.0015 100.31
2.0* 6 4 0.4860 0.3611 43.1853 6 4 0.5638 0.3759 43.3182 100.31
2.5 7 4 0.4860 0.3611 43.4845 7 4 0.5638 0.3759 43.6174 100.31
3.0 7 4 0.4860 0.3611 43.7377 7 4 0.5638 0.3759 43.8706 100.30
4.0 6 3 0.4878 0.3824 44.1684 6 3 0.5919 0.3946 44.3425 100.39
5.0 7 3 0.4878 0.3824 44.5223 7 3 0.5919 0.3946 44.6965 100.39
10.0 9 3 0.4878 0.3824 45.9504 9 3 0.5919 0.3946 46.1245 100.38
15.0 9 2 0.4910 0.4261 46.8565 9 2 0.6359 0.4239 47.0473 100.41
20.0 10 2 0.4910 0.4261 47.6102 10 2 0.6359 0.4239 47.8010 100.40

Table 6. Local optimal sampling plans and their minimum Bayes risks for Cr

varies.

Cr nB mB T0 T1 RB n0 m0 T0 T1 R0 eff(%)
30 0 0 ∞ ∞ 30.0000 0 0 ∞ ∞ 30.0000 100.00
35 4 2 0.9183 0.6897 34.0483 4 2 0.9443 0.6295 34.0575 100.03
40 5 3 0.6685 0.6678 37.5853 4 2 0.8579 0.5720 37.6792 100.25
45 5 3 0.4988 0.4898 40.4289 5 3 0.7155 0.4770 40.7791 100.87

50* 6 4 0.4860 0.3611 43.1853 6 4 0.5638 0.3759 43.3182 100.31
55 6 4 0.4736 0.2884 45.7881 5 3 0.4317 0.2878 46.0116 100.49
60 6 4 0.4574 0.2282 48.2709 4 2 0.2697 0.1798 50.7146 105.06
65 7 5 0.4404 0.1797 50.6478 2 1 0.0229 0.0153 61.1168 120.67
70 7 5 0.4129 0.1362 52.9360 0 0 0.0000 0.0000 61.2500 115.71
75 7 5 0.3739 0.0946 55.2441 0 0 0.0000 0.0000 61.2500 110.87
80 8 6 0.3169 0.0621 57.9032 0 0 0.0000 0.0000 61.2500 105.78
85 0 0 0.0000 0.0000 61.2500 0 0 0.0000 0.0000 61.2500 100.00

5. Conclusion
With the Bayesian approach, we have determined single sampling plans, for exponential

distribution with type II censoring, we proposed a two-sided decision function with a
random doubt zone for which we suggest an approach to decide the quality of a batch with
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a suitable probability. Explicit expression for the Bayes risk is obtained for the polynomial
loss function which includes the unit inspection cost, the time-cost, the rejection cost, the
salvage value and the after-sales cost. To evaluate the Bayes risk, we assume that the
loss function is a quadratic function, such as the computations can be done in a similar
way for higher degree. Furthermore, after determining an upper bound for the optimal
size of sample, we developed a finite algorithm which allowed to simulate the risk function
numerically based on the grid search method. Also we introduce a comparison performance
and some optimal sampling plans followed by related Bayes risks for different values of
parameters. From the numerical presented above, we can see that the Bayes risk based on
the proposed random decision function have robust behavior with considering to changes
in the parameters and coefficients in the proposed sampling plan.

In some real cases, the quality characteristics data is derived from a complex process
or from an uncertain environment, so the use of the neutrosophic statistics can model the
uncertainty and handle the human’s assessments. To sum up, the current study can be
extended using the neutrosophic statistics based on appropriate approach for the doubt
zone in the decision function.
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