

Konuralp Journal of Mathematics

Research Paper

Index and Equality Conditions of the Subgroups $\Gamma_{0,n}(N)$ and

 $\Lambda_n(N)$

Aziz Büyükkaragöz^{1*}, Erdal Ünlüyol¹ and Mehmet Akbas²

¹Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey

²Department of Mathematics, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey

*Corresponding author

Abstract

In this paper, we find conditions on the natural number n that the subgroups $\Gamma_{0,n}(N)$ and $\Lambda_n(N)$ of modular group are different. And then, by defining an $\Lambda_n(N)$ invariant equivalence relation on the subset $\hat{\mathbb{Q}}_n(N)$, we calculate the index formula for $\Gamma_{0,n}(N)$ in $\Lambda_n(N)$.

Keywords: Congruence subgroup of modular group, transitivity, conjugateness, stabilizing, infinite cycle group, index formula 2010 Mathematics Subject Classification: 05C20, 20E07, 20F38.

1. Introduction

Definition 1.1. [1] Let G be a group and also a topology. If the functions $F: G \times G \longrightarrow G$, F(x,y) := xy and $f: G \longrightarrow G$, $f(x) := x^{-1}$ functions are continuous, then G is called a topological group.

Definition 1.2. [2] Let G be a group and $X \neq \emptyset$ be a set. In this case, if the function $\Psi : G \times X \longrightarrow X$ satisfies the following conditions,

- *i.*) $\Psi(g_1g_2,x) = \Psi(g_1,\Psi(g_2,x))$ for $g_1,g_2 \in G$ and $x \in X$,
- *ii.*) $\Psi(1,x) = x$ for $1 \in G$ is unit element and $x \in X$,

then G is called an act group according to the left product on X.

Here, we shortly write gx instead of $\Psi(g,x)$. Hence, $(g_1g_2)x = g_1(g_2x)$ and 1x = x. An act group expression will mean an act group with respect to the left product. Moreover, if G is a topological group, X is a topology and the transformation Ψ is continuous, then the pair of [G,X] is called topological transformation group.

Definition 1.3. [2] Let [G,X] be a topological transformation group. If Gx = X for $x \in X$, then the pair of [G,X] is called transitive topological transformation group. It is clearly, if there is a element $g \in G$, such that gx = y for $x, y \in X$, then the pair of [G,X] is transitive topological transformation group.

Definition 1.4. [3] Let [G,X] be any topological transformation group. In this case,

- i.) For $x \in X$, the set of $Sb_G(x) = G_x := \{g \in G : gx = x\}$ is called stabilizing x in G.
- ii.) For $g \in G$, the set of $Sb(g;X) := \{x \in X : gx = x\}$ is called constant point set g in X.

Now, we give some information for subgroups act.

$$\mp \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad a, b, c, d \in \mathbb{Z}, ad - bc = 1. \tag{1.1}$$

Here we omit the symbol \mp , and identify each matrix with its negatives. As usual, Γ and its subgroups act on the extended rational $\hat{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$ by

$$z \to \frac{az+b}{cz+d}$$

where
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 is as in (1.1).

Throughout the paper we use the following subgroups

$$\Gamma_{0,n}(N) = \left\{ \left(\begin{array}{cc} a & b \\ cN & d \end{array} \right) \in \Gamma : a^2 \equiv 1 \bmod n \right\}$$

and

$$\Lambda_n(N) = \left\{ \left(\begin{array}{cc} a & b \\ cN & d \end{array} \right) \in \Gamma : a^4 \equiv 1 \bmod n \right\}.$$

where N, n be positive integers with $n \mid N$. Then We now give the notion, as in [3], an imprimitive action for a permutation group (G, Ω) , where G is the group acting on the set Ω transitively. The equivalence relation \approx is called G-invariant if and only if

$$x \approx y$$
 gives $g(x) \approx g(y)$ for all $g \in G$.

Then we immediately have two trivial equivalence relations Ω as

- i.) For all $x, y \in \Omega$ $x \approx y$,
- ii.) For all $x \in \Omega$ $x \approx x$.

If there is an equivalence relation on Ω other than the above two we say that the group G acts on Ω imprimitively.

Let H be a subgroup of G with $H \neq G$ and G_{α} be stabilizer of $\alpha \in \Omega$ and that $G_{\alpha} \lneq H \lneq G$. In this case we define a G-invariant imprimitive action as follows. Since G acts on Ω transitively there exist $g, h \in G$ such that, for any given x and y in Ω

$$x = g(\alpha), y = h(\alpha).$$

Let $x \approx y \Leftrightarrow gh^{-1} \in H$. Then the relation \approx on Ω is a *G*-invariant primitive equivalence relation. As in [3], in this case the index |G:H| is the number of equivalence classes. You can find the fundamental concepts and information in [4]-[8].

Lemma 1.5. [6] Let $n \in \mathbb{Z}^+$, $x \le n$ and (x,n) = 1. In this case, the solution of the congruence $x^2 \equiv 1 \mod n$ consists of 2^{r+s} values for

$$n = 2^{\alpha_1} p_2^{\alpha_2} \dots p_{r+1}^{\alpha_{r+1}} \text{ and } s = \begin{cases} 0, & \text{if } \alpha_1 = 1\\ 1, & \text{if } \alpha_1 = 2\\ 2, & \text{if } \alpha_1 \ge 3 \end{cases}$$

The paper is organized as follows.

First of all we will get conditions on the natural number n so that the equality

$$\Lambda_n(N) = \Gamma_{0,n}(N)$$

is satisfied. Then we calculate the index

$$|\Lambda_n(N):\Gamma_{0,n}(N)|$$
.

2. Main Calculations

We again write the groups as

$$\Gamma_{0,n}(N) = \left\{ \left(\begin{array}{cc} a & b \\ cN & d \end{array} \right) \in \Gamma : a^2 \equiv 1 \bmod n \quad \text{or} \quad a \equiv d \bmod n \right\}$$

and

$$\Lambda_n(N) = \left\{ \left(\begin{array}{cc} a & b \\ cN & d \end{array} \right) \in \Gamma : a^4 \equiv 1 \bmod n \quad \text{or} \quad a^2 \equiv d^2 \bmod n \right\}.$$

Then it is clear that $\Gamma_{0,n}(N) \leq \Lambda_n(N)$.

Let us define the subset of $\hat{\mathbb{Q}}$ as

$$\hat{\mathbb{Q}}_n(N) = \left\{ \frac{a}{cN} \in \hat{\mathbb{Q}} : a^4 \equiv 1 \bmod n \quad \text{and} \quad (a, cN) = 1 \right\}.$$

Then it is easily seen that this is one of the largest subset of \mathbb{Q} on which the group $\Lambda_n(N)$ acts transitively.

Theorem 2.1. We suppose that $m, N \in \mathbb{Z}^+$, $p \in \mathbb{P}$, p|N and $p \neq 4m+1$. Then

$$\Lambda_p(N) = \Gamma_{0,p}(N).$$

Proof. If $a \equiv d \bmod p$, then $a^2 \equiv d^2 \bmod p$. From this, it is clear that $\Gamma_{0,p}(N) \subset \Lambda_p(N)$. Now, let we show that $\Lambda_p(N) \subset \Gamma_{0,p}(N)$. Firstly, let we take $\begin{pmatrix} a & b \\ cN & d \end{pmatrix} \in \Lambda_p(N)$. Then, we obtain ad - bcN = 1 and $a^2 \equiv d^2 \bmod p$. Hence, we establish $ad \equiv 1 \bmod p$ according to p|N. Therefore, $d \equiv a^{-1} \bmod p$. And then $a^4 \equiv 1 \bmod p$ from $a^2 \equiv (a^{-1})^2 \bmod p$. If $m \in \mathbb{Z}^+$ and $p \neq 4m+1$, then we have $a^2 \equiv 1 \bmod p$. Namely, we find $a \equiv d \bmod p$ in the group $\Gamma_{o,p}(N)$. This is also means that $\begin{pmatrix} a & b \\ cN & d \end{pmatrix} \in \Gamma_{0,p}(N)$. Thus, we get $\Lambda_p(N) \subset \Gamma_{0,p}(N)$. Consequently, we obtain $\Lambda_p(N) = \Gamma_{0,p}(N)$ under the conditions of $p \neq 4m+1$ and $m \in \mathbb{Z}^+$. Clearly, if $p \equiv -1 \bmod 4$, then we prove $\Lambda_p(N) = \Gamma_{0,p}(N)$.

As a start we now give the following important theorem.

Theorem 2.2. Let p be a prime with p > 2 and suppose that $\left(\frac{-1}{p}\right)$, namely there exists an $x \in \mathbb{Z}$ such that $x^2 \equiv -1 \mod p$. Then, with the same understanding, $\left(\frac{-1}{p^n}\right) = 1$ if and only if $p \equiv 1 \mod 4$ for all $n \in \mathbb{N}$.

Proof. Take n to be 1, we get $\left(\frac{-1}{p}\right) = 1$. Then, $p \equiv 1 \mod 4$. Conversely, suppose $p \equiv 1 \mod 4$ and n is an arbitrary natural number. We here use the principle of Mathematical Induction.

It is true for n=1. Suppose it is true for $\ell \in \mathbb{N}$, that is, there exists $y \in \mathbb{Z}$ such that $y^2 \equiv -1 \mod p^{\ell}$. We will show that the claim is true for the number $\ell+1$.

Since (y, p) = 1, then there exists $z \in \mathbb{Z}$ such that $2yz \equiv 1 \mod p$. Then

$$\frac{1+y^2}{p^{\ell}} - 2yz \frac{1+y^2}{p^{\ell}} \equiv 0 \bmod p.$$

So, $1 + y^2 - 2yz(1 + y^2) \equiv 0 \mod p^{\ell+1}$. Let $k = -z \frac{1 + y^2}{p^{\ell}}$. Then we get

$$1 + y^2 + 2ykp^{\ell} \equiv 0 \bmod p^{\ell+1}.$$

Therefore we have $\left(y+kp^{\ell}\right)^2 \equiv -1 \bmod p^{\ell+1}$. That is, $\left(\frac{-1}{p^{\ell+1}}\right) = 1$, which completes the proof.

Theorem 2.3. Let $n = 2^{\alpha} \cdot p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot p_3^{\alpha_3} \cdot \cdots \cdot p_r^{\alpha_r}$ be the prime power decomposition of n with $n \mid N$. Then, for $\alpha \leq 3$ and $1 \leq k \leq r$,

$$p_k \equiv -1 \mod 4 \quad \Leftrightarrow \quad \Gamma_{0,n}(N) = \Lambda_n(N).$$

Proof. It is already known that $\Gamma_{0,n}(N) \leq \Lambda_n(N)$. Now we take an arbitrary $T = \begin{pmatrix} a & b \\ cN & d \end{pmatrix} \in \Lambda_n(N)$. Thus, we have $a^4 \equiv 1 \mod n$. So, we find $n \mid (a^2-1)(a^2+1)$. This gives that $p_k^{\alpha_k} \mid (a^2-1)(a^2+1)$ for $1 \leq k \leq r$. Since $p \equiv -1 \mod 4$, $p_k \nmid (a^2+1)$. Therefore we have $p_k^{\alpha_k} \mid (a^2-1)$ for $1 \leq k \leq r$. On the other hand we know that $a^2 \equiv 1 \mod 2^{\alpha}$ with $\alpha \leq 3$. Consequently, $n \mid (a^2-1)$, that is, $a^2 \equiv 1 \mod n$ which gives that $T \in \Gamma_{0,n}(N)$. Hence, $\Gamma_{0,n}(N) = \Lambda_n(N)$.

Conversely, we will show that $\alpha \le 3$ and $p \equiv -1 \mod 4$ for $1 \le k \le r$.

Suppose that, $\alpha \ge 4$. Let $n = 2^{\alpha} n_1$ and $N = 2^{\beta} N_1$ with $(2, N_1) = 1$. Take $a = 2^{\alpha - 2} N_1 + 1$. Then, there exist b and d in \mathbb{Z} due to (a, N) = 1, so that $A = \begin{pmatrix} a & b \\ N & d \end{pmatrix}$ is in $\Gamma_0(N)$. Because $\alpha \ge 4$ it is easily seen that $a^4 \equiv 1 \mod n$ and $a^2 \not\equiv 1 \mod n$. Hence $A \in \Lambda_n(N)$ but $A \not\in \Gamma_{0,n}(N)$. This shows that $\alpha \le 3$.

Now, we suppose that $n = p^{\alpha}n_0$ with $(p, n_0) = 1$, and that $p \equiv 1 \mod 4$. In this case, by theorem 2.2, there exists $a \in \mathbb{Z}$ such that $a^2 \equiv -1 \mod p^{\alpha}$.

Let $N = p^{\beta} \cdot p_1^{\beta_1} \cdot p_2^{\beta_2} \cdot \cdots \cdot p_r^{\beta_r}$ and $n = p^{\alpha} \cdot p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \cdots \cdot p_\ell^{\alpha_\ell}$ be the prime power decomposition of N and n respectively, and $n \mid N$.

i.) Let $(a, N_0) = 1$, where $N_0 = p_1^{\beta_1} \cdots p_r^{\beta_r}$. Due to $(ap^{\alpha}, N_0) = 1$, there exists $k \in \mathbb{Z}$ such that

$$kap^{\alpha} \equiv 1 - a \mod N_0$$
 or $a + kap^{\alpha} \equiv 1 \mod N_0$.

It is clear that

$$(a+kap^{\alpha})^2 \equiv 1 \mod p^{\alpha}$$
 and $(a+kap^{\alpha})^4 \equiv 1 \mod p^{\alpha}$.

Hence $(a+kap^{\alpha})^2 \equiv -1 \mod p^{\alpha}$ we have $(a+kap^{\alpha})^2 \not\equiv 1 \mod n$. In this case, again, there exist $u,v \in \mathbb{Z}$ such that

$$\left(\begin{array}{cc} a+kap^{\alpha} & u \\ N & v \end{array}\right) \in \Lambda_n(N) \backslash \Gamma_{0,n}(N).$$

This contradicts the equality of the groups $\Gamma_{0,n}(N)$ and $\Lambda_n(N)$. Therefore, we must have $p \equiv -1 \mod 4$.

ii.) Let $(a, N_0) \neq 1$ and $N_0 = p_1^{\beta_1} \dots p_r^{\beta_r}$. Suppose that, $p_1 \mid a, \dots, p_\ell \mid a$ and $p_{\ell+1} \nmid a, \dots, p_r \nmid a$. Let $b = a + p_{\ell+1} \dots p_r p^{\alpha}$. Then

$$b^2 \equiv a^2 \equiv -1 \mod p^{\alpha}$$
 and $(b, N_0) = 1$.

So, if we repeat the calculations as in *i*.), we get a contradiction as $\Gamma_{0,n}(N) \neq \Lambda_n(N)$. Hence, in this case as well, we have $p \equiv -1 \mod 4$. Consequently, the proof of theorem 2.3 is completed.

We now continue to define a $\Lambda_n(N)$ -invariant equivalence relation on the set

$$\hat{\mathbb{Q}}_n(N) = \left\{ \frac{a}{cN} \in \hat{\mathbb{Q}} : a^4 \equiv 1 \bmod n \quad \text{and} \quad (a, cN) = 1 \right\}.$$

This will be used in the index calculation of $\Gamma_{0,n}(N)$ in $\Lambda_n(N)$.

Let $n = 2^{\alpha} \cdot p_1^{\alpha_1} \dots p_{\ell}^{\alpha_{\ell}}$, $\alpha \ge 4$ or $p_i \equiv 1 \mod 4$ for some $1 \le i \le \ell$. Only, in this case, we have $\Gamma_{0,n}(N) \not \le \Lambda_n(N)$ with n > 1. The stabilizer $\Lambda_n(N)_{\infty}$ of ∞ in $\Lambda_n(N)$ is the group $\left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle$. Then, we get

$$\Lambda_n(N)_{\infty} \leq \Gamma_{0,n}(N) \leq \Lambda_n(N).$$

Let $\frac{r}{sN}$, $\frac{x}{yN}$ be in $\hat{\mathbb{Q}}_n(N)$. Since $\Lambda_n(N)$ act transitively on $\hat{\mathbb{Q}}_n(N)$, there exist $g,h\in\Lambda_n(N)$ such that $g(\infty)=\frac{r}{sN}$ and $h(\infty)=\frac{x}{yN}$. In this case, we can define an equivalence relation as

$$\frac{r}{sN} \approx \frac{x}{vN} \Leftrightarrow gh^{-1} \in \Gamma_{0,n}(N).$$

So, If we take the T and M for the convenient $g = \begin{pmatrix} r & k \\ sN & \ell \end{pmatrix}$ and $h = \begin{pmatrix} x & t \\ yN & m \end{pmatrix}$ respectively, then we get

$$TM^{-1} = \begin{pmatrix} rm - kyN & * \\ * & * \end{pmatrix}.$$

 $TM^{-1} \in \Gamma_{0,n}(N)$ if $(rm - kyN)^2 \equiv r^2m^2 \equiv 1 \mod n$. Since detM = 1, $xm \equiv 1 \mod n$ or $x \equiv m^{-1} \mod n$. Therefore,

$$r^2x^{-2} \equiv 1 \mod n \text{ or } r^2 \equiv x^2 \mod n.$$

Hence.

$$\frac{r}{sN} \approx \frac{x}{vN} \Leftrightarrow r^2 \equiv x^2 \mod n.$$

The relation \approx is a Γ -invariant primitive equivalence relation. Then, the number of equivalence classes, denoted by $\Psi_N(n)$, will give the index

$$|\Lambda_n(N):\Gamma_{0,n}(N)|$$
.

Therefore, we must calculate the number $\Psi_N(n)$. First of all we give the following theorem.

Theorem 2.4. The function $\Psi_N : E \to \mathbb{N}$ is a multiplicative function. That is, let E be the exact divisors of $n := k \cdot \ell$ for $k, \ell \in E$ with $(k, \ell) = 1$. Then

$$\Psi_N(n) = \Psi_N(k.\ell) = \Psi_N(k).\Psi_N(\ell).$$

Proof. Without loss of generality, it is sufficient to prove only the case, where $n = k.\ell$ for $k, \ell \in E$ with $(k, \ell) = 1$. It is clear that if $x \approx y$, then $x \approx y$ and $x \approx y$.

Conversely, we show that if $a \approx b$ and $c \approx d$, then exists $x \approx y$, such that

$$\left\{ \begin{array}{ll} x \equiv a \mod k, \\ y \equiv b \mod k, \end{array} \right. \text{ and } \left\{ \begin{array}{ll} x \equiv c \mod \ell, \\ y \equiv d \mod \ell. \end{array} \right.$$

Therefore, let $a \approx b$ and $c \approx d$. Then, $a \approx b$ and $c \approx d$. Then

$$\left\{ \begin{array}{ll} a^4 \equiv 1 \mod k, \\ b^4 \equiv 1 \mod k, \end{array} \right. \text{ and } \left\{ \begin{array}{ll} c^4 \equiv 1 \mod \ell, \\ d^4 \equiv 1 \mod \ell. \end{array} \right.$$

Since $(k, \ell) = 1$, then there exist $x, y \in \mathbb{Z}$ such that $a + kx = c + \ell y$

$$(a+kx)^4 \equiv a^4 \equiv 1 \mod k$$
 and $(a+kx)^4 \equiv (c+\ell y)^4 \equiv c^4 \equiv 1 \mod \ell$.

So, we get that $(a+kx)^4 \equiv 1 \mod n$. Therefore, if $[a]_k$ and $[c]_\ell$ are the equivalence classes of a and c respectively, then we get a unique equivalence class $[a+kx]_n$ with respect to the number n. Consequently, this means that $\Psi_N(n) = \Psi_N(k).\Psi_N(\ell)$. This proves the theorem. \square

Now we give the below important theorem.

Theorem 2.5. Let $N, n \in \mathbb{N}$ with $n \mid N$ and $n = 2^{\alpha} \cdot p_1^{\alpha_1} \cdot \dots \cdot p_r^{\alpha_r} \cdot q_1^{\beta_1} \cdot \dots \cdot q_\ell^{\beta_\ell}$, where $p_i \equiv -1 \mod 4$ for $1 \leq i \leq r$ and $q_j \equiv 1 \mod 4$ for $1 \le j \le \ell$. Then the index $|\Lambda_n(N) : \Gamma_{0,n}(N)|$ is

$$\Psi_N(n) = \left\{ egin{array}{ll} 2^\ell, & lpha \leq 3, \ 2^{\ell+1}, & lpha > 3. \end{array}
ight.$$

Proof. Since the function Ψ_N is transitive, we can take n as a prime power as follows.

i.) Let $n = 2^{\alpha}$ with $\alpha \le 3$. Then, it is easy to see that

$$\Psi_N(2) = \Psi_N(2^2) = \Psi_N(2^3) = 1,$$

as expected.

ii.) Let $n = 2^{\alpha}$ with $\alpha > 3$. For the solution $x^4 \equiv 1 \mod 2^{\alpha}$, we must check the numbers $1, 3, 5, \dots, 2^{\alpha} - 1$. These numbers are not solutions of the congruence $x^2 + 1 \equiv 0 \mod 2^{\alpha}$ by solutions of $x^2 + 1 \equiv 0 \mod 2$. Therefore, the solutions of the congruence $x^4 \equiv 1 \mod 2^{\alpha}$ comes from the congruence $x^2 - 1 \equiv 0 \mod 2^{\alpha-1}$, since

$$x^4 - 1 \equiv (x^2 - 1)(x^2 + 1) \equiv 0 \mod 2^{\alpha}$$
.

(x-1,x+1)=2 gives that $x-1\equiv 0 \mod 2^{\alpha}-2$ or $x+1\equiv 0 \mod 2^{\alpha}-2$. Then, there exist natural numbers k and ℓ such that $x = 1 + k \cdot 2^{\alpha} - 2$ or $x = -1 + \ell \cdot 2^{\alpha} - 2$. Since $x < 2^{\alpha}$, we have k = 1, 2, 3 and $\ell = 1, 2, 3, 4$. Therefore, all these x are as follows,

$$\begin{cases} x_1 = 1 + 2^{\alpha} - 2, & \text{for } k = 1, \\ x_2 = 1 + 2^{\alpha} - 1, & \text{for } k = 2, \\ x_3 = 1 + 3.2^{\alpha} - 2, & \text{for } k = 3, \end{cases}$$

$$\begin{cases} x_4 = -1 + 2^{\alpha} - 2, & \text{for } \ell = 1, \\ x_5 = -1 + 2^{\alpha} - 1, & \text{for } \ell = 2, \\ x_6 = -1 + 3.2^{\alpha} - 2, & \text{for } \ell = 3, \\ x_7 = -1 + 2^{\alpha}, & \text{for } \ell = 4, \end{cases}$$

and of course we have $x_8 = 1$. From the above solutions we have

$$\left\{ \begin{array}{ll} x_2^2 \equiv x_5^2 \equiv x_7^2 \equiv x_8^2 \equiv 1 & mod \, 2^\alpha \, and, \\ x_1^2 \equiv x_3^2 \equiv x_4^2 \equiv x_6^2 \not\equiv 1 & mod \, 2^\alpha \, and \, that, \\ x_1^4 \equiv x_3^4 \equiv x_4^4 \equiv x_6^4 \equiv 1 & mod \, 2^\alpha. \end{array} \right.$$

Therefore, we get that $[x_1]_{2^{\alpha}} \neq [x_8]_{2^{\alpha}}$. Consequently, we have conclude that $\Psi_N(n) = 2$, where $n = 2^{\alpha}$ and $\alpha > 3$.

- iii.) Let $n = p^{\vartheta}$. In this case, there are two conditions:
 - (1.) Suppose that $p \equiv 1 \mod 4$. Then, the congruence $x^2 \equiv -1 \mod p^{\alpha}$ has a solution x_1 . And, the only other solution is $x_2 = p^{\alpha} x_1$. Also, the solutions of the congruence $x^2 \equiv 1 \mod p^{\alpha}$ are $x_3 = 1$ and $x_4 = p^{\alpha} - 1$. Hence, the congruence $x^4 \equiv 1 \mod p^{\alpha}$ has the solutions x_1, x_2, x_3 and x_4 . Since $x_1^2 \equiv x_2^2 \equiv -1 \mod p^{\alpha}$ we have $[x_1]_{p^{\vartheta}} = [x_2]_{p^{\vartheta}}$. Likewise, we have $[x_3]_{p^{\vartheta}} = [x_4]_{p^{\vartheta}}$. But it is easily seen that $[x_1]_{p^{\vartheta}} \neq [x_3]_{p^{\vartheta}}$. So, $\Psi_N(n) = 2$, as promised.
 - (2.) Now suppose that $p \equiv -1 \mod 4$. In this case, the congruence $x^2 \equiv -1 \mod p^{\vartheta}$ has no solution. Therefore, if the congruence $x^4 \equiv 1 \mod p^{\vartheta}$ has a solution x, then $x^2 \equiv 1 \mod p^{\vartheta}$. As in 1., the congruence $x^2 \equiv 1 \mod p^{\vartheta}$ has the solutions $x_1 = 1$ and $x_2 = p^{\vartheta} - 1$. It is clear that $[x_1]_{p^{\vartheta}} = [x_2]_{p^{\vartheta}}$. That is, $\Psi_N(n) = 1$, as claimed.

Consequently, from the above and theorem 2.4, the proof of theorem 2.5 is completed.

References

- [1] M. Akbaş, The Normalizer of Modular Subgroup, Ph. D. Thesis (1989), Faculty of Mathematical Studies, University of Southampton, Southampton, UK.
- J.S. Rose, A Course on Group Theory, Cambridge University Press (1978), Cambridge, UK.
- [3] G.A. Jones, D. Singerman, K. Wicks, The modular group and generalized Farey graphs, London Math. Soc. Lecture Notes Series 160 (1991), Cambridge University Press, Cambridge, UK.

 [4] N.L. Biggs, A.T. White, *Permutation Groups and Combinatorial Structures, 33rd edn.*, London Mathematical Society Lecture Note Series (1979),
- Cambridge University Press, Cambridge, UK.
- A. Büyükkaragöz, Signatures and graph connections of some subgroups of extended modular group, PhD Thesis (2019), Ordu University, Ordu, Turkey.
- G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, 5th edn, Oxford University Press (1979), Oxford, UK
- G.A. Jones, D. Singerman, Complex Functions: An Algebraic and Geometric Viewpoint Cambridge University Press (1997), UK.
- [8] C.C. Sims, Graphs and finite permutation groups, Math. Zeitschr, 95(1967), 76-86.