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Abstract 

In this paper, Parseval-Goldstein type theorems involving the �̃�n-integral transform which is 

modified from 𝒢2𝑛-integral transform [7] and the -integral transform [8] are examined. Then, 

theorems in this paper are shown to yield a number of new identities involving several well-

known integral transforms. Using these theorems and their corollaries, a number of interesting 

infinite integrals of elementary and special functions are presented. Generalizations of Riemann-

Liouville and Weyl fractional integral operators are also defined. Some theorems relating 

generalized Laplace transform, generalized Widder Potential transform, generalized Hankel 

transform and generalized Bessel transform are obtained. Some illustrative examples are given as 

applications of these theorems and their results. 
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1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES 

 

Stieltjes and Widder Potential transforms are well-known and used in many areas such as mathematical 

analysis, mathematical physics, applied mathematics and engineering sciences. Fractional derivative and 

integral were firstly discussed on a letter sent by Leibniz to L’Hospital, in which he wrote about the meaning 

of D the derivative of half-order. In the following centuries, the theory of fractional derivatives and integrals 

were developed by different authors that emerged new fractional derivative operators and their applications 

such as Riemann, Liouville, Weyl and Caputo [1-3]. Recently, the relations between fractional integral 

operators and classical integral transforms were given. New Parseval-Goldstein type identities were 

obtained [4-6].  

 

In this paper, new relations are obtained using �̃�n-integral transform which is modified from 𝒢2𝑛-integral 

transform [7] and �̃�𝑛-integral transform [8]. Two generalizations of fractional integrals are defined. New 

identities for two new generalized fractional integrals and generalized integral transforms [4,8] are 

obtained. Some definitions will be given, before the main results. For the convergence of the mentioned 

integrals in this manuscript, the class of the functions were considered in the related cited manuscripts, 

respectively.  
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The generalizations of the Widder-Potential transform and the Glasser transform where 𝒫2n and 𝒢2n which 

are defined in [7,8], are given as follows:  

 

�̃�n{f(x); y} = 𝒫2n{f(x); y} = ∫
∞

0

x2n−1f(x)

x2n+y2n dx,               (1) 

 

�̃�n{f(x); y} = 𝒢2n{xn−1f(x); y} = ∫
∞

0

xn−1f(x)

√x2n+y2n
dx.              (2) 

Replacing 𝑛 with 2𝑛 in (1) and (2), the following definitions of integral transforms are obtained,  

 

 �̃�2n{f(x); y} = ∫
∞

0

x4n−1f(x)

x4n+y4n dx,              (3) 

 

�̃�2n{f(x); y} = ∫
∞

0

x2n−1f(x)

√x4n+y4n
dx,              (4) 

respectively. The �̃�2n-integral transform is related to the Glasser transform and generalized Stieltjes 

transform by means of,  

 

 2n�̃�2n{f(x); y} = 𝒢{f(x1/2n); y2n},              (5) 

 

 4n�̃�2n{f(x); y} = 𝒮1/2{x−1/2f(x1/4n); y4n},              (6) 

where generalized Stieltjes transform is defined in [9]. The Stieltjes integral transform and Widder-Potential 

transform and Glasser transform are defined by [9-11],  

 

 𝒮{f(x); y} = ∫
∞

0

f(x)

x+y
dx,              (7) 

 

 𝒫{f(x); y} = ∫
∞

0

xf(x)

x2+y2 dx,              (8) 

 

 𝒢{f(x); y} = ∫
∞

0

f(x)

√x2+y2
dx,              (9) 

respectively. The Widder Potential transform and the Stieltjes transform are related by the following 

relation [9],  

 

 𝒫{f(x); y} =
1

2
𝒮{f(x1/2); y2}.            (10) 

Another generalization of the Widder Potential transform of f(x) is defined for ν ∈ ℂ, n ∈ ℕ in [4], as 

follows:  

 

�̃�ν,n{f(x); y} = 𝒫ν,2n{f(x); y} = ∫
∞

0

x2n−1f(x)

(x2n+y2n)ν dx.            (11) 

The �̃�n-transform and the Stieltjes transform, the 𝒫ν,2n-transform and the generalized Stieltjes transform 

are related by, respectively,  

 

�̃�n{f(x); y} =
1

2n
𝒮{f(x1/2n); y2n},            (12) 

 

�̃�ν,n{f(x); y} =
1

2n
𝒮ν{f(x1/2n); y2n}.                        (13) 

The Laplace transform [1], the ℒ2n-transform, the ℒ4n-transform [8] are defined by  

 

 ℒ{f(x); y} = ∫
∞

0
e−yxf(x)dx,                                                                                         (14) 

 

 ℒ2n{f(x); y} = ∫
∞

0
x2n−1e−y2nx2n

f(x)dx,            (15) 

 

 ℒ4n{f(x); y} = ∫
∞

0
x4n−1e−x4ny4n

f(x)dx,            (16) 
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respectively. The ℒ4n-transform, the ℒ2n-transform and the Laplace transform are related with the 

following relations [8]:  

 

 ℒ4n{f(x); y} =
1

2
ℒ2n{f(x1/2); y2} =

1

4n
ℒ{f(x1/2n); y2n}.            (17) 

The Hankel transform of order ν [1] and generalized Hankel transform [4,9] are defined by  

 

 ℋν{f(x); y} = ∫
∞

0
(xy)1/2𝒥ν(xy)f(x)dx,            (18) 

 

 ℋν,n{f(x); y} = ∫
∞

0
xn−1(xnyn)1/2𝒥ν(xnyn)f(x)dx,            (19) 

where ν ∈ ℂ, n ∈ ℕ, Re(𝜈) > −1/2  and 𝒥ν(x) is the Bessel function of the first kind of order ν [12,13] 

that has the following series representation,  

 

𝒥ν(x) = ∑∞
n=0

(−1)n

n!Γ(1+ν+n)
(

x

2
)

ν+2n
,    Re(ν) > −1.            (20) 

Replacing 𝑛 with 2𝑛 in (19), the ℋν,2n-transform which is defined in [4] is obtained.  

The Hankel transform and generalized Hankel transform are related by the following relation:  

 

 nℋν,n{f(x); y} = ℋν{f(x1/n); yn}.            (21) 

The Bessel transform of order ν [1] and generalized Bessel transform [4] are defined by  

 

 𝒦ν{f(x); y} = ∫
∞

0
(xy)1/2𝒦ν(xy)f(x)dx,            (22) 

 

 𝒦ν,n{f(x); y} = ∫
∞

0
xn−1(xnyn)1/2𝒦ν(xnyn)f(x)dx,            (23) 

where ν ∈ ℂ, n ∈ ℕ, and 𝒦ν(x) is the modified Bessel function of the second kind of order ν [12,13] and is 

defined as: 

 

𝒦ν(x) =
π

2

ℐ−ν(x)−ℐν(x)

sin(πν)
,                                                      (24) 

 

ℐν(x) = ∑∞
n=0

1

n!Γ(1+ν+n)
(

x

2
)

ν+2n
,    Re(ν) > −1.            (25) 

The Bessel transform and generalized Bessel transform are related by the following relation:  

 

 n𝒦ν,n{f(x); y} = 𝒦ν{f(x1/n); yn}.                       (26) 

Also, the following relation could be obtained easily from (23) and the formula [13, p.10, Entry(42)]:  

 

𝒦1/2,2n{f(x); y} = √
π

2
ℒ2n{f(x); y}.            (27) 

The ℱc,2n- and ℱs,2n-integral transforms [8] are defined by  

 

 ℱc,2n{f(x); y} = ∫
∞

0
x2n−1cos(x2ny2n)f(x)dx,            (28) 

 

 ℱs,2n{f(x); y} = ∫
∞

0
x2n−1sin(x2ny2n)f(x)dx,        (∀n ∈ ℕ)            (29) 

which are related to the Fourier-cosine and Fourier-sine transforms [1] by means of the following relations:  

 

 2nℱc,2n{f(x); y} = ℱc{f(x1/2n); y2n},            (30) 

 

 2nℱs,2n{f(x); y} = ℱs{f(x1/2n); y2n}.            (31) 

The following identity is easily obtained from (28) and known formula [14, p.7. Entry(1)],  

 

ℱc,2n{ℱc,2n{f(x); y}; x} =
π

8n2 f(x).            (32)  

Weyl fractional integral operator of order μ is defined as follows:  
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𝒲−μ{f(x); y} =
1

Γ(μ)
∫

∞

y
(x − y)μ−1f(x)dx,            (33)  

where y ≥ 0, μ ∈ ℂ, Re(μ) > 0 [1-3]. 

Riemann-Liouville fractional integral operator of order μ is defined as follows:  

  

𝒟−μ{f(x); y} =
1

Γ(μ)
∫

y

0
(y − x)μ−1f(x)dx,            (34)  

where y ≥ 0, μ ∈ ℂ, Re(μ) > 0 [1-3].  

  

Now, two new fractional integrals called the n-generalized Weyl fractional integral and the n-generalized 

Riemann-Liouville fractional integral are introduced. 

 

The generalized Weyl fractional integral is defined as follows:  

  

𝒲μ,2n{f(x); y} =
1

Γ(μ)
∫

∞

y
x2n−1(x2n − y2n)μ−1f(x)dx,            (35) 

where y ≥ 0, μ ∈ ℂ, Re(μ) > 0. 

The generalized Riemann-Liouville fractional integral is defined as follows:  

 

ℛμ,2n{f(x); y} =
1

Γ(μ)
∫

y

0
x2n−1(y2n − x2n)μ−1f(x)dx,            (36) 

where y ≥ 0, μ ∈ ℂ, Re(μ) > 0. 

Weyl fractional derivative of order α is defined as follows:  

 

𝒲αf(x) =
dn

dxn 𝒲−(n−α)f(x),            (37) 

where n ∈ ℕ, α ∈ ℂ, Re(α) > 0 and n − 1 < Re(α) ≤ n [1-3]. 

Riemann-Liouville fractional derivative of order α is defined as follows:  

 

 0𝒟y
αf(x) =

dn

dxn 𝒟−(n−α)f(x),            (38) 

where n ∈ ℕ, α ∈ ℂ, Re(α) > 0 and n − 1 < Re(α) ≤ n [1-3]. 

 

In the formulas (37) and (38), fractional derivatives are defined by means of fractional integral operators. 

 

In definitions (33)-(36), Γ(z) is the Gamma Euler function given by the following formula [12],  

 

Γ(z) = ∫
∞

0
e−ttz−1dt,            (39) 

where z ∈ ℂ, Re(z) > 0. 
Incomplete gamma and complementary incomplete gamma functions are defined as follows [13]:  

 

γ(a, x) = ∫
x

0
ta−1e−tdt,            (40) 

 

Γ(a, x) = ∫
∞

x
ta−1e−tdt.            (41) 

The error and the complementary error functions are defined as follows [13]:  

 

erf(x) =
2

√π
∫

x

0
e−t2

dt,            (42) 

 

erfc(x) =
2

√π
∫

∞

x
e−t2

dt,            (43)  

where we have  

 

erf(x) + erfc(x) = 1.                    (44) 
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2. MAIN THEOREMS 

 

In the theorems and lemmas of this section, Parseval-Goldstein type new identities which show the 

relationship between the known integral transforms and the newly defined integral transforms and integral 

operators are given. 

 

Theorem 1. If the integrals involved converge absolutely and n ∈ ℕ, −1 < Reν < 1/2, then the following 

identities hold true:  

 

 �̃�2n{u2nν+nℋν,2n{xnf(x); u}; y} =
y2nν

n√2π
𝒦ν+1/2,2n{f(x); y},            (45) 

 

 ℋν,2n{u2nν+n�̃�2n{f(x); u}; y} =
y−n

n√2π
𝒦ν+1/2,2n{x2nνf(x); y},            (46) 

 

 �̃�2n{u2nν+nℋν,2n{x2nν+nf(x); u}; y} = y2nν+nℋν,2n{u2nν+n�̃�2n{f(x); u}; y}.           (47) 

 

Proof. Using the definitions (4) of the �̃�2n-transform, the definition of the ℋν,2n-transform obtained by 

replacing 𝑛 with 2𝑛 in (19), and changing the order of integration, which is permissible by absolute 

convergence of the integrals involved, it is found that  

 

�̃�2n{u2nν+nℋν,2n{xnf(x); u}; y} = ∫
∞

0
x4n−1f(x)�̃�2n{u2nν+2n𝒥ν(x2nu2n); y}dx.      (48) 

Using the relation (5) and the following known formula [11, p.174, (h)],  

 

𝒢{uν+1𝒥ν(xu); y} = √
2

πx
yν+1/2𝒦ν+1/2(xy),    − 1 < Reν <

1

2
,          (49) 

it is obtained that  

 

�̃�2n{u2nν+nℋν,2n{xnf(x); u}; y} =
1

n√2π
y2nν ∫

∞

0
x2n−1xnyn𝒦ν+1/2(x2ny2n)f(x)dx. (50) 

Now, the assertion (45) follows from definition (23) of the 𝒦ν,2n-integral transform with replacing 𝑛 with 

2𝑛.  

 

Similarly, the proof of (46) would be given using definitions (4) of the �̃�2n-transform, the definition of the 

ℋν,2n-transform obtained by replacing 𝑛 with 2𝑛 in (19), the known formula [11, p.174, (h)], and the 

definition of the 𝒦ν,2n-integral transform obtained by replacing 𝑛 with 2𝑛 in (23), respectively. The 

assertion (47) immediately follows from (45) and (46). Thus, the proof of theorem is completed.    

 

Remark 2. If ν = 0 is set into (45) and (46) and the relation (27) is used, then the following relations are 

obtained:  

 

 �̃�2n{unℋ0,2n{xnf(x); u}; y} =
1

2n
ℒ2n{f(x); y},            (51) 

 

 ℋ0,2n{un�̃�2n{f(x); u}; y} =
y−n

2n
ℒ2n{f(x); y}.            (52) 

 

Corollary 3. The following identity  

 

�̃�2n{u2nν+ng(u); y} =
2√2n

√π
y2nν𝒦ν+1/2,2n{x−nℋν,2n{g(u); x}; y},          (53) 

holds true, provided that n ∈ ℕ, Reν > 0 and the integrals involved converge absolutely.  
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Proof. Putting  

 

ℋν,2n{xnf(x); u} = g(u)            (54) 

in (45) of Theorem 1 and using the relation obtained by replacing 𝑛 with 2𝑛 in (21), we get  

 

 ℋν,2n{xnf(x); u} =
1

2n
ℋν{x1/2f(x1/2n); u2n} = g(u), 

 

 ℋν{x1/2f(x1/2n); u} = 2ng(u1/2n).            (55) 

Using the definition of inverse Hankel transform, it is derived that 

 

 x1/2f(x1/2n) = ℋν{2ng(u1/2n); x}, 
 

 f(x) = x−nℋν{2ng(u1/2n); x2n}.            (56) 

Utilizing the relation obtained by replacing 𝑛 with 2𝑛 in (21), it is found that 

 

 f(x) = 4n2x−nℋν,2n{g(u); x}.            (57) 

Substituting (57) into (45), the assertion (53) is obtained. 

 

Theorem 4. The Parseval-Goldstein type relations  

 

∫
∞

0
u2nν+3n−1�̃�2n{g(y); u}ℋν,2n{xnf(x); u}du =

1

n√2π
∫

∞

0
y2nv+2n−1g(y)𝒦ν+1/2,2n{f(x); y}dy,          (58) 

 

∫
∞

0
u2nν+3n−1�̃�2n{g(y); u}ℋν,2n{xnf(x); u}du =

1

n√2π
∫

∞

0
x2n−1f(x)𝒦ν+1/2,2n{y2nνg(y); x}dx,          (59) 

 

∫
∞

0
y2nv+2n−1g(y)𝒦ν+1/2,2n{f(x); y}dy = ∫

∞

0
x2n−1f(x)𝒦ν+1/2,2n{y2nνg(y); x}dx,                             (60) 

hold true, provided that each of the integrals involved converges absolutely.  

 

Proof. Making use of definition (4) of the �̃�2n-transform and changing the order of integration, we have 

 

∫
∞

0
u2nν+3n−1�̃�2n{g(y); u}ℋν,2n{xnf(x); u}du = ∫

∞

0
y2n−1g(y)�̃�2n{u2nν+nℋν,2n{xnf(x); u}, y}dy.    (61) 

Utilizing the relation (45), we arrive at (58).  

 

Similarly, using the definition of the ℋν,2n-transform obtained by replacing 𝑛 with 2𝑛 in (19), changing 

the order integration and using the assertion (46) of Theorem 1, (59) is obtained. The assertion (60) follows 

from (58) and (59). This completes the proof of Theorem 4 under the hypothesis stated.    

 

Corollary 5. If the conditions of Theorem 4 are satisfied, then identities  

 

∫
∞

0
u2nα+n−1ℋν,2n{xnf(x); u}du =

2√2

Γ(
α−ν

2
)Γ(

1−α+ν

2
)

∫
∞

0
y2nα−1𝒦ν+1/2,2n{f(x); y}dy,                              (62) 

 

∫
∞

0
u2nα+n−1ℋν,2n{xnf(x); u}du =

2α−1

n

Γ(
1+α+ν

2
)

Γ(
1−α+ν

2
)

∫
∞

0
x2n−1−2nαf(x)dx,                                                 (63) 

 

∫
∞

0
y2nα−1𝒦ν+1/2,2n{f(x); y}dy =

2α−5/2

n
Γ (

1+α+ν

2
) Γ (

α−ν

2
) ∫

∞

0
x2n−1−2nαf(x)dx,                                (64) 

hold true, where n ∈ ℕ, 0 < Re(α − ν) < 1 and Re(α) > |Re(ν +
1

2
)| −

1

2
.  

 

Proof. Putting  

 

g(y) = y2n(α−ν−1)  
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in Theorem 4 and using the relation (5) and the known formula [11, p.174,Entry(m)], the following holds 

true for 0 < Re(α − ν) < 1,  

 

�̃�2n{y2n(α−ν−1); u} =
u2n(α−ν−1)

4n
B (

α−ν

2
,

1−α+ν

2
).            (65) 

Using relation (26) for n = 2n and the known formula [9, p.127, 10.2(1)], we get for Re(α) > |Re(ν +
1

2
)| −

1

2
,  

  

𝒦ν+1/2,2n{y2n(α−1); x} =
2α−3/2

2nx2nα Γ (
α

2
+

ν

2
+

1

2
) Γ (

α

2
−

ν

2
).            (66) 

Substituting (65) and (66) into (58 ), (59) and (60), respectively, we arrive at (62), (63) and (64). Thus, the 

proof is completed.    

 

Remark 6. Setting ν = 0 in (64), it is obtained that 

 

 ∫
∞

0
y2nα−1𝒦1/2,2n{f(x); y}dy =

2α−5/2

n
Γ (

α

2
+

1

2
) Γ (

α

2
) ∫

∞

0
x2n−1−2nαf(x)dx.             (67) 

Using the relation (27) and Legendre’s duplication formula for the gamma function [12, p.5, (15)], it is 

derived that 

  

∫
∞

0
y2nα−1ℒ2n{f(x); y}dy =

Γ(α)

2n
∫

∞

0
x2n−1−2nαf(x)dx.            (68) 

 

Theorem 7. The identities  

 

 2nℱc,2n{�̃�2n{xnf(x); u}; y} = y−n𝒦0,2n{f(x); y},            (69) 

 

 �̃�2𝑛{𝑥𝑛𝑓(𝑥); 𝑢} =
4𝑛

𝜋
ℱ𝑐,2𝑛{𝑦−𝑛𝒦0,2𝑛{𝑓(𝑥); 𝑦}; 𝑢},            (70) 

 

 2𝑛�̃�2𝑛{ℱ𝑐,2𝑛{𝑥𝑛𝑓(𝑥); 𝑢}; 𝑦} = 𝑦−𝑛𝒦0,2𝑛{𝑓(𝑥); 𝑦},            (71) 

 

 �̃�2𝑛{𝑓(𝑥); 𝑢} =
4𝑛

𝜋
𝑢−𝑛𝒦0,2𝑛{𝑦−𝑛ℱ𝑐,2𝑛{𝑓(𝑥); 𝑦}; 𝑢},            (72) 

hold true, provided that the integrals involved converge absolutely.  

 

Proof. From the definition (28) of the generalized Fourier-cosine transform and definition (4) of the �̃�2n-

transform, we have  

 

 2𝑛ℱ𝑐,2𝑛{�̃�2𝑛{𝑥𝑛𝑓(𝑥); 𝑢}; 𝑦} = 2𝑛 ∫
∞

0
𝑢2𝑛−1𝑐𝑜𝑠(𝑢2𝑛𝑦2𝑛) (∫

∞

0

𝑥2𝑛−1𝑥𝑛𝑓(𝑥)

√𝑥4𝑛+𝑢4𝑛
𝑑𝑥) 𝑑𝑢. (73) 

Changing the order of integration, which is permissible by absolute convergence of the integrals involved 

and using definition (4) once again, it follows from (73) that  

 

 2𝑛ℱ𝑐,2𝑛{�̃�2𝑛{𝑥𝑛𝑓(𝑥); 𝑢}; 𝑦} = 2𝑛 ∫
∞

0
𝑥3𝑛−1𝑓(𝑥) (∫

∞

0

𝑢2𝑛−1𝑐𝑜𝑠(𝑢2𝑛𝑦2𝑛)

√𝑥4𝑛+𝑢4𝑛
𝑑𝑥) 𝑑𝑢 

 

                                                = 2𝑛 ∫
∞

0
𝑥3𝑛−1𝑓(𝑥)�̃�2𝑛{𝑐𝑜𝑠(𝑢2𝑛𝑦2𝑛); 𝑥}𝑑𝑥.         (74) 

Using the relation (5) and the known following formula [11, p.174,(b)]  

 

 𝒢{𝑐𝑜𝑠(𝑎𝑥); 𝑦} = 𝒦0(𝑎𝑦),            (75) 

we have  

 

 2𝑛ℱ𝑐,2𝑛{�̃�2𝑛{𝑥𝑛𝑓(𝑥); 𝑢}; 𝑦} = ∫
∞

0
𝑥3𝑛−1𝑓(𝑥)𝒢{𝑐𝑜𝑠(𝑢𝑦2𝑛); 𝑥2𝑛}𝑑𝑥 

 

                                                = 𝑦−𝑛 ∫
∞

0
𝑥2𝑛−1𝑥𝑛𝑦𝑛𝒦0(𝑥2𝑛𝑦2𝑛)𝑓(𝑥)𝑑𝑥.         (76) 
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Making use of the definition of the 𝒦𝜈,2𝑛-transform obtained by replacing 𝑛 with 2𝑛 (23), we arrive at (69). 

Applying the ℱ𝑐,2𝑛-integral transform to both sides of (69) and using the relation (32), (70) is obtained. 

Using the definitions of the �̃�2𝑛-transform and the ℱ𝑐,2𝑛-transform and changing the order of integration, 

which is permissible under the hypothesis of Theorem 7, we get  

 

 2n�̃�2n{ℱc,2n{xnf(x); u}; y} = 2n ∫
∞

0
x2n−1xnf(x)�̃�2n{cos(x2nu2n); y}dx.                 (77) 

 

Using the relations (5) and (75) and the definition of the 𝒦ν,2n-transform obtained by replacing 𝑛 with 2𝑛 

in (23), we arrive at (71). Setting  

 

𝑔(𝑢) = 2𝑛ℱ𝑐,2𝑛{𝑥𝑛𝑓(𝑥); 𝑢}            (78) 

 

in (71) and applying ℱ𝑐,2𝑛-transform to both sides of (78), it is found that  

 

ℱ𝑐,2𝑛{𝑔(𝑢); 𝑥} = 2𝑛ℱ𝑐,2𝑛{ℱ𝑐,2𝑛{𝑥𝑛𝑓(𝑥); 𝑢}; 𝑥}.            (79) 

Using the relation (32), the following is derived: 

 
4𝑛

𝜋
𝑥−𝑛ℱ𝑐,2𝑛{𝑔(𝑢); 𝑥} = 𝑓(𝑥).            (80) 

Now, the assertion (72) of Theorem 7 easily follows upon inserting (78) and (80) into (71). Then, it is found 

that  

 

�̃�2𝑛{𝑔(𝑢); 𝑦} =
4𝑛

𝜋
𝑦−𝑛𝒦0,2𝑛{𝑥−𝑛ℱ𝑐,2𝑛{𝑔(𝑢); 𝑥}; 𝑦}.            (81) 

Replacing the variables 𝑢 by 𝑥, 𝑦 by 𝑢, 𝑥 by 𝑦 and the function 𝑔(𝑢) by f(x), we arrive at (72). Thus, the 

proof of Theorem 7 is completed. 

 

Theorem 8. The Parseval-Goldstein type relations  

 

∫
∞

0
u2n−1�̃�2n{g(y); u}ℱc,2n{xnf(x); u}du =

1

2n
∫

∞

0
yn−1g(y)𝒦0,2n{f(x); y}dy,                                      (82) 

 

∫
∞

0
u2n−1�̃�2n{g(y); u}ℱc,2n{xnf(x); u}du =

1

2n
∫

∞

0
x2n−1f(x)𝒦0,2n{y−ng(y); x}dx,                              (83) 

 

∫
∞

0
yn−1g(y)𝒦0,2n{f(x); y}dy = ∫

∞

0
x2n−1f(x)𝒦0,2n{y−ng(y); x}dx,                                                    (84) 

hold true, provided that each of the integrals involved converges absolutely.  

 

Proof. Using the definition (4) of the �̃�2𝑛-transfrom and changing the order of integration, it is found that  

 

∫
∞

0
𝑢2𝑛−1�̃�2𝑛{𝑔(𝑦); 𝑢}ℱ𝑐,2𝑛{𝑥𝑛𝑓(𝑥); 𝑢}𝑑𝑢 = ∫

∞

0
𝑦2𝑛−1𝑔(𝑦)�̃�2𝑛{ℱ𝑐,2𝑛{𝑥𝑛𝑓(𝑥); 𝑢}; 𝑦}𝑑𝑦.                (85) 

Using the relation (71) of Theorem 7, (82) is obtained. The proof of (83) is similar. The proof of assertion 

(84) follows from relations (82) and (83). This completes the proof of Theorem 8 under the hypothesis 

stated. 

 

Corollary 9. The following identity  

 

𝑠2𝑛�̃�2𝑛{𝑢−2𝑛�̃�2𝑛{𝑔(𝑦); 𝑢}; 𝑠} = ℒ2𝑛{𝑥−𝑛𝒦0,2𝑛{𝑦−𝑛𝑔(𝑦); 𝑥}; 𝑠},                             (86) 

holds true, provided that the integrals involved converge absolutely.  

 

Proof. Substituting  

 

 𝑓(𝑥) = 𝑥−𝑛𝑒−𝑠2𝑛𝑥2𝑛
            (87) 

into (83) of Theorem 8, we get  
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∫
∞

0
𝑢2𝑛−1�̃�2𝑛{𝑔(𝑦); 𝑢}ℱ𝑐,2𝑛{𝑒−𝑠2𝑛𝑥2𝑛

; 𝑢}𝑑𝑢 =
1

2𝑛
∫

∞

0
𝑥2𝑛−1𝑥−𝑛𝑒−𝑠2𝑛𝑥2𝑛

𝒦0,2𝑛{𝑦−𝑛𝑔(𝑦); 𝑥}𝑑𝑥.       (88) 

Using the relation (30) and the formula [14, p.14, Entry(1)], we have  

 

 ℱ𝑐,2𝑛{𝑒−𝑠2𝑛𝑥2𝑛
; 𝑢} =

1

2𝑛

𝑠2𝑛

𝑠4𝑛+𝑢4𝑛.            (89) 

Setting (89) into (88), it is found that 

 

 ∫
∞

0
u2n−1 s2n

s4n+u4n �̃�2n{g(y); u}du = ∫
∞

0
xn−1e−s2nx2n

𝒦0,2n{y−ng(y); x}dx.              (90) 

Using the definitions (3) and (15) in the relation (90), we arrive at the assertion (86).  

 

Corollary 10. The following identities for 0 < Reμ < 1  

 

∫
∞

0
𝑢2𝑛𝜇−1�̃�2𝑛{𝑔(𝑦); 𝑢}𝑑𝑢 =

𝐵(
𝜇

2
,
1−𝜇

2
)

4𝑛
∫

∞

0
𝑦2𝑛𝜇−1𝑔(𝑦)𝑑𝑦,            (91) 

 

∫
∞

0
𝑢2𝑛𝜇−1�̃�2𝑛{𝑔(𝑦); 𝑢}𝑑𝑢 =

2𝜇𝛤(
𝜇

2
)

√𝜋𝛤(
1−𝜇

2
)

∫
∞

0
𝑥−2𝑛𝜇+𝑛−1𝒦0,2𝑛{𝑦−𝑛𝑔(𝑦); 𝑥}𝑑𝑥,                       (92) 

 

∫
∞

0
y2nμ−1g(y)dy =

2μ+2n

[Γ(
1−μ

2
)]

2 ∫
∞

0
x−2nμ+n−1𝒦0,2n{y−ng(y); x}dx                         (93) 

hold true, provided that each of the integrals involved converges absolutely.  

 

Proof. Setting 

 

𝑓(𝑥) = 𝑥−𝑛−2𝑛𝜇 ,        0 < 𝑅𝑒𝜇 < 1              (94) 

in Theorem 8, then it is obtained that 

 

∫
∞

0
𝑢2𝑛−1�̃�2𝑛{𝑔(𝑦); 𝑢}ℱ𝑐,2𝑛{𝑥−2𝑛𝜇; 𝑢}𝑑𝑢 =

1

2𝑛
∫

∞

0
𝑦𝑛−1𝑔(𝑦)𝒦0,2𝑛{𝑥−𝑛−2𝑛𝜇; 𝑦}𝑑𝑦,                          (95) 

 

∫
∞

0
𝑢2𝑛−1�̃�2𝑛{𝑔(𝑦); 𝑢}ℱ𝑐,2𝑛{𝑥−2𝑛𝜇; 𝑢}𝑑𝑢 =

1

2𝑛
∫

∞

0
𝑥𝑛−1−2𝑛𝜇𝒦0,2𝑛{𝑦−𝑛𝑔(𝑦); 𝑥}𝑑𝑥,                          (96) 

 

∫
∞

0
𝑦𝑛−1𝑔(𝑦)𝒦0,2𝑛{𝑥−𝑛−2𝑛𝜇; 𝑦}𝑑𝑦 = ∫

∞

0
𝑥𝑛−1−2𝑛𝜇𝒦0,2𝑛{𝑦−𝑛𝑔(𝑦); 𝑥}𝑑𝑥.                                          (97) 

Using the relations obtained by replacing 𝑛 with 2𝑛 in (26) and (30) and the formulas [14, p.10, Entry(1)], 

[9, p.127, Entry(1)] for 0 < Reμ < 1, we have  

 

ℱc,2n{x−2nμ; u} =
π

4n

1

Γ(μ)
sec (

πμ

2
) u2nμ−2n,            (98) 

 

𝒦0,2n{x−n−2nμ; y} =
1

2n
2−μ−1y2nμ−n [Γ (

1−μ

2
)]

2
.            (99) 

Using the known identities for Gamma function [12, p.3, Entry(7)] and [12, p.5, Entry(15)]  

 

πsec (
πμ

2
) = Γ (

1 − μ

2
) Γ (

1 + μ

2
), 

 

Γ(μ) = 2μ−1π−1/2Γ (
μ

2
) Γ (

μ + 1

2
), 

and substituting (98), (99) into the Equations (95), (96), (97), respectively, we get (91)-(93). 

 

Theorem 11. If each of the integrals involved converges absolutely for |𝑦 = 𝑎𝑟𝑔(𝑦4𝑛)| < 𝜋, 𝑎 =
𝑅𝑒𝑥4𝑛 > 0, then we have the following identities hold true:  
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�̃�2𝑛{ℒ4𝑛{𝑓(𝑡); 𝑥}; 𝑦} =
1

4𝑛
∫

∞

0
𝑡4𝑛−1𝑒

𝑡4𝑛𝑥4𝑛

2 𝒦0 (
𝑡4𝑛𝑦4𝑛

2
) 𝑓(𝑡)𝑑𝑡,                                  (100) 

 

�̃�2𝑛{𝑥2𝑛ℒ4𝑛{𝑓(𝑡); 𝑥}; 𝑦} =
√𝜋

4𝑛
∫

∞

0
𝑡2𝑛−1𝑒𝑡4𝑛𝑥4𝑛

𝑒𝑟𝑓𝑐(𝑡2𝑛𝑦2𝑛)𝑓(𝑡)𝑑𝑡.                                  (101) 

 

Proof. Using the definitions (4) of the �̃�2𝑛-transform, (16) of the ℒ4𝑛-transform and changing the order of 

integration, which is permissible by absolute convergence of the integrals involved, we have  

 

�̃�2𝑛{ℒ4𝑛{𝑓(𝑡); 𝑥}; 𝑦} = ∫
∞

0
𝑡4𝑛−1𝑓(𝑡)�̃�2𝑛{𝑒−𝑡4𝑛𝑥4𝑛

; 𝑦}𝑑𝑡.          (102) 

Using the relation (6) and the following formula [9, p.233, Entry(11)]  

 

 𝒮1/2{𝑡−1/2𝑒−𝑎𝑡; 𝑦} = 𝑒𝑎𝑦/2𝒦0(𝑎𝑦/2)          (103) 

for |y = arg(y4n)| < π, a = Rex4n > 0, we arrive at (100). Using definitions (4) of the �̃�2n-transform, 

(16) of the ℒ4n-transform and changing the order of integration, which is permissible by absolute 

convergence of the integrals involved, we have  

 

�̃�2n{x2nℒ4n{f(t); x}; y} = ∫
∞

0
t4n−1f(t)�̃�2n{x4ne−t4nx4n

; y}dt.                                  (104) 

Using the relation (6) and the following formula [9, p.233, Entry(10)]  

 

𝒮1/2{𝑒−𝑎𝑡; 𝑦} = 𝑎−1/2𝑒𝑎𝑦𝛤(1/2, 𝑎𝑦)          (105) 

for |𝑦 = 𝑎𝑟𝑔(𝑦4𝑛)| < 𝜋, 𝑎 = 𝑅𝑒𝑥4𝑛 > 0 and considering definitions (43) and (41), we arrive at (101).  

By the following Lemma, a relation between the generalized Weyl fractional integral and the generalized 

Laplace transform is given. 

 

Lemma 12. The following identity  

 

𝒲𝜇,2𝑛{ℒ2𝑛{𝑓(𝑥); 𝑢}; 𝑦} =
1

2𝑛
ℒ2𝑛{𝑥−2𝑛𝜇𝑓(𝑥); 𝑦},                                    (106) 

holds true, provided that the integrals involved converge absolutely, where Re(μ) > 0, μ ∈ ℂ.  

 

Proof. Using definitions (35) and (15), we get  

 

𝒲𝜇,2𝑛{ℒ2𝑛{𝑓(𝑥); 𝑢}; 𝑦} =
1

𝛤(𝜇)
∫

∞

𝑦
𝑢2𝑛−1(𝑢2𝑛 − 𝑦2𝑛)𝜇−1 × [∫

∞

0
𝑥2𝑛−1𝑒−𝑢2𝑛𝑥2𝑛

𝑓(𝑥)𝑑𝑥]𝑑𝑢.            (107) 

Making the change of variable 𝑢2𝑛 − 𝑦2𝑛 = 𝑡2𝑛 in (107), we have  

 

𝒲𝜇,2𝑛{ℒ2𝑛{𝑓(𝑥); 𝑢}; 𝑦} =
1

𝛤(𝜇)
∫

∞

0

𝑡2𝑛−1𝑡2𝑛(𝜇−1) [∫
∞

0

𝑥2𝑛−1𝑒−(𝑡2𝑛+𝑦2𝑛)𝑥2𝑛
𝑓(𝑥)𝑑𝑥] 𝑑𝑡. 

Changing the order of integration that is permissible by absolute convergence of the integrals involved, and 

using the definition (15) and the relation (17), (106) is obtained. 

 

Theorem 13. The following Parseval-Goldstein type relation  

 

∫
∞

0
𝑡2𝑛−1ℛ𝜇,2𝑛{𝑓(𝑥); 𝑡}ℒ2𝑛{𝑔(𝑢); 𝑡}𝑑𝑡 =

1

2𝑛
∫

∞

0
𝑓(𝑥)𝑥2𝑛−1ℒ2𝑛{𝑔(𝑢)𝑢−2𝑛𝜇; 𝑥}𝑑𝑥,                          (108) 

holds true, provided that the integrals involved converge absolutely, where 𝑅𝑒𝜇 > 0, 𝜇 ∈ ℂ.  

 

Proof. By the definition (36), we have  

 

 ∫
∞

0
𝑡2𝑛−1ℛ𝜇,2𝑛{𝑓(𝑥); 𝑡}ℒ2𝑛{𝑔(𝑢); 𝑡}𝑑𝑡 

 

 = ∫
∞

0
𝑡2𝑛−1 [

1

𝛤(𝜇)
∫

𝑡

0
𝑥2𝑛−1(𝑡2𝑛 − 𝑥2𝑛)𝜇−1𝑓(𝑥)𝑑𝑥] ℒ2𝑛{𝑔(𝑢); 𝑡}𝑑𝑡 
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 = ∫
∞

0
x2n−1f(x) [

1

Γ(μ)
∫

∞

x
t2n−1(t2n − x2n)μ−1ℒ2n{g(u); t}dt] dx. 

Then, by using the definition (35) and Lemma 12, we get  

 

∫
∞

0

𝑡2𝑛−1ℛ𝜇,2𝑛{𝑓(𝑥); 𝑡}ℒ2𝑛{𝑔(𝑢); 𝑡}𝑑𝑡 =
1

2𝑛
∫

∞

0

𝑥2𝑛−1𝑓(𝑥)ℒ2𝑛{𝑢−2𝑛𝜇𝑔(𝑢); 𝑥}𝑑𝑥. 

 

Corollary 14. The following Parseval-Goldstein type relation  

 

ℒ2𝑛 {𝑢−𝑛ℛ1,2𝑛 {𝑓(𝑥);
1

𝑢
} ; 𝑦} =

√𝜋

2𝑛𝑦𝑛 ∫
∞

0
𝑥2𝑛−1𝑓(𝑥)𝑒𝑟𝑓 (

𝑦𝑛

𝑥𝑛) 𝑑𝑥,                            (109) 

holds true, provided that each of the integrals involved converges absolutely.  

 

Proof. Setting 𝜇 = 1 and 𝑔(𝑢) = 𝑠𝑖𝑛(2𝑢𝑛𝑦𝑛) in (108), it is obtained that 

 

∫
∞

0
𝑡2𝑛−1ℛ1,2𝑛{𝑓(𝑥); 𝑡}ℒ2𝑛{𝑠𝑖𝑛(2𝑢𝑛𝑦𝑛); 𝑡}𝑑𝑡 =

1

2𝑛
∫

∞

0
𝑓(𝑥)𝑥2𝑛−1ℒ2𝑛{𝑢−2𝑛𝑠𝑖𝑛(2𝑢𝑛𝑦𝑛); 𝑥}𝑑𝑥.    (110) 

Using the relation (17) and the formulas [14, p.153,Entry(32)], [14, p.154, Entry(34)], we get  

 

ℒ2𝑛{𝑠𝑖𝑛(2𝑢𝑛𝑦𝑛); 𝑡} =
1

2𝑛
ℒ{𝑠𝑖𝑛(2√𝑢𝑦𝑛); 𝑡2𝑛} =

√𝜋

2𝑛
𝑦𝑛𝑡−3𝑛𝑒−𝑦2𝑛/𝑡2𝑛

                   (111) 

 

ℒ2𝑛{𝑢−2𝑛𝑠𝑖𝑛(2𝑢𝑛𝑦𝑛); 𝑥} =
1

2𝑛
ℒ{𝑢−1𝑠𝑖𝑛(2√𝑢𝑦𝑛); 𝑥2𝑛} =

𝜋

2𝑛
𝑒𝑟𝑓 (

𝑦𝑛

𝑥𝑛).                (112) 

Substituting (111) and (112) into (110), it is found that 

 

∫
∞

0
𝑡2𝑛−1ℛ1,2𝑛{𝑓(𝑥); 𝑡}𝑡−3𝑛𝑒−𝑦2𝑛/𝑡2𝑛

𝑑𝑡 =
√𝜋

2𝑛𝑦𝑛 ∫
∞

0
𝑥2𝑛−1𝑒𝑟𝑓 (

𝑦𝑛

𝑥𝑛) 𝑓(𝑥)𝑑𝑥.         (113) 

Finally, by making change of variable t = 𝑢−1 on the left-hand side of the Equation (113) and using the 

definition (15), we arrive at (109). 

 

Corollary 15. The following Parseval-Goldstein type relation  

 

∫
∞

0
t2n−1ey2nt2n

E1(y2nt2n)ℛμ,2n{f(x); t}dt =
Γ(1−μ)

2ny2μn ∫
∞

0
x2n−1ey2nx2n

Γ(μ, y2nx2n)f(x)dx,               (114) 

holds true, provided that each of the integrals involved converges absolutely for |𝑎𝑟𝑔𝑦| <
𝜋

2𝑛
, 0 < 𝑅𝑒𝜇 <

1 and 𝐸1(𝑥) is the exponential integral function which is defined by the following identity [12,13],  

 

𝐸1(𝑥) = ∫
∞

𝑥

𝑒−𝑢

𝑢
𝑑𝑢.                          (115) 

 

Proof. Setting 𝑔(𝑢) = (𝑦2𝑛 + 𝑢2𝑛)−1 into (108), we have 

∫
∞

0

𝑡2𝑛−1ℛ𝜇,2𝑛{𝑓(𝑥); 𝑡}ℒ2𝑛{(𝑦2𝑛 + 𝑢2𝑛)−1; 𝑡}𝑑𝑡 

                  =
1

2𝑛
∫

∞

0
𝑓(𝑥)𝑥2𝑛−1ℒ2𝑛{𝑢−2𝜇𝑛(𝑦2𝑛 + 𝑢2𝑛)−1; 𝑥}𝑑𝑥.                               (116) 

Using the relation (17) and the formulas [14, p.137, Entry(4) and Entry(7)], we get  

 

 ℒ2𝑛{(𝑦2𝑛 + 𝑢2𝑛)−1; 𝑡} =
𝑒𝑦2𝑛𝑡2𝑛

2𝑛
𝐸1(𝑦2𝑛𝑡2𝑛),          (117) 

 

 ℒ2n{u−2μn(y2n + u2n)−1; x} =
Γ(1−μ)

2ny2μn ey2nx2n
Γ(μ, y2nx2n).          (118) 

Substituting (117) and (118) into (116), we arrive at (114). 
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Theorem 16. The following identity  

 

�̃�2𝑛{𝑡−2𝑛ℛ1,2𝑛{𝑓(𝑥); 𝑡}; 𝑦} =
1

2𝑛𝑦2𝑛 ∫
∞

0
𝑥2𝑛−1𝑓(𝑥)𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑦2𝑛

𝑥2𝑛) 𝑑𝑥,                     (119) 

holds true, provided that each of the integrals involved converges absolutely, where 𝑅𝑒(𝑡2𝑛) > |𝐼𝑚(𝑦2𝑛)|.  
 

Proof. By setting 𝜇 = 1 and 𝑔(𝑢) = 𝑠𝑖𝑛(𝑢2𝑛𝑦2𝑛) in (108), we get  

 

∫
∞

0
𝑡2𝑛−1ℛ1,2𝑛{𝑓(𝑥); 𝑡}ℒ2𝑛{𝑠𝑖𝑛(𝑢2𝑛𝑦2𝑛); 𝑡}𝑑𝑡 =

1

2𝑛
∫

∞

0
𝑓(𝑥)𝑥2𝑛−1ℒ2𝑛{𝑢−2𝑛𝑠𝑖𝑛(𝑢2𝑛𝑦2𝑛); 𝑥}𝑑𝑥.  (120) 

Using the relation (17) and the formulas [14, p.150, Entry(1)], [14, p.152, Entry(16)], we have  

 

 ℒ2𝑛{𝑠𝑖𝑛(𝑢2𝑛𝑦2𝑛); 𝑡} =
1

2𝑛

𝑦2𝑛

𝑦4𝑛+𝑡4𝑛,          (121) 

 

 ℒ2𝑛{𝑢−2𝑛𝑠𝑖𝑛(𝑢2𝑛𝑦2𝑛); 𝑥} =
1

2𝑛
𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑦2𝑛

𝑥2𝑛).          (122) 

Substituting (121) and (122) into (120) and using the definition (3), we arrive at (119). 

 

Lemma 17. The identity for 𝑅𝑒𝜇 < 1, 𝑅𝑒(𝑡2𝑛) > −𝑅𝑒(𝑠2𝑛), and 𝑅𝑒(𝑥2𝑛) > −𝑅𝑒(𝑠2𝑛),  
 

�̃�𝑛{ℛ𝜇,2𝑛{𝑓(𝑥); 𝑡}; 𝑠}3 =
𝛤(1−𝜇)

2𝑛
�̃�1−𝜇,𝑛{𝑓(𝑥); 𝑠},                      (123) 

holds true, provided that each of the integrals involved converges absolutely.  

 

Proof. Setting g(u) = e−s2nu2n
 in (108), we get  

 

∫
∞

0
𝑡2𝑛−1ℛ𝜇,2𝑛{𝑓(𝑥); 𝑡}ℒ2𝑛{𝑒−𝑠2𝑛𝑢2𝑛

; 𝑡}𝑑𝑡 =
1

2𝑛
∫

∞

0
𝑥2𝑛−1𝑓(𝑥)ℒ2𝑛{𝑢−2𝑛𝜇𝑒−𝑠2𝑛𝑢2𝑛

; 𝑥}𝑑𝑥.              (124) 

Using the relation (17) and the formulas [14, p.143, Entry(1)], [14, p.144, Entry(3)], we have  

 

 ℒ2n{e−s2nu2n
; t} =

1

2n

1

s2n+t2n ,    Re(t2n) > −Re(s2n),          (125) 

 

 ℒ2n{u−2nμe−s2nu2n
; x} =

1

2n

Γ(1−μ)

(x2n+s2n)1−μ ,    Re(x2n) > −Re(s2n).                            (126) 

Substituting results (125) and (126) into (124) and using the definitions (1) and (11), we arrive at (123). 

 

Theorem 18. The following Parseval-Goldstein type identity  

 

∫
∞

0
𝑡2𝑛−1�̃�𝑛{𝑓(𝑥); 𝑡}ℛ𝜇,2𝑛{𝑔(𝑢); 𝑡}𝑑𝑡 =

𝛤(1−𝜇)

2𝑛
∫

∞

0
𝑥2𝑛−1𝑓(𝑥)�̃�1−𝜇,𝑛{𝑔(𝑢); 𝑥}𝑑𝑥,                           (127) 

holds true, provided that each of the integrals involved converges absolutely, where 𝑅𝑒𝜇 < 1, 𝑅𝑒(𝑡2𝑛) >
−𝑅𝑒(𝑠2𝑛), 𝑎𝑛𝑑 𝑅𝑒(𝑥2𝑛) > −𝑅𝑒(𝑠2𝑛), 𝜇, 𝑡 ∈ ℂ.  

 

Proof. Applying the definition (1) and then changing the order of integration under the absolute 

convergence condition, we get  

 

 ∫
∞

0
𝑡2𝑛−1�̃�𝑛{𝑓(𝑥); 𝑡}ℛ𝜇,2𝑛{𝑔(𝑢); 𝑡}𝑑𝑡 

 

 = ∫
∞

0
𝑡2𝑛−1 (∫

∞

0

𝑥2𝑛−1𝑓(𝑥)

𝑥2𝑛+𝑡2𝑛 𝑑𝑥) ℛ𝜇,2𝑛{𝑔(𝑢); 𝑡}𝑑𝑡 

 

 = ∫
∞

0
𝑥2𝑛−1𝑓(𝑥)�̃�𝑛{ℛ𝜇,2𝑛{𝑔(𝑢); 𝑡}; 𝑥}𝑑𝑥.          (128) 

Using Lemma 17 on the right-hand side of (128), the relation (127) is obtained. 
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Corollary 19. The following equation holds true under the hyphothesis of Theorem 18,  

 

𝛤(1 − 𝜇)ℒ2𝑛{�̃�1−𝜇,𝑛{𝑔(𝑢); 𝑥}; 𝑦} = ∫
∞

0
𝑡2𝑛−1𝑒𝑦2𝑛𝑡2𝑛

𝐸1(𝑦2𝑛𝑡2𝑛)ℛ𝜇,2𝑛{𝑔(𝑢); 𝑡}𝑑𝑡,                         (129) 

where 0 < 𝑅𝑒𝜇 < 1 and 𝐸1(𝑥) as defined in (115).  

 

Proof. Setting 𝑓(𝑥) = 𝑒−𝑥2𝑛𝑦2𝑛
 in Equation (127), and using the definition (15), we have  

 

 ∫
∞

0
t2n−1�̃�n{e−x2ny2n

; t}ℛμ,2n{g(u); t}dt 

 

 =
𝛤(1−𝜇)

2𝑛
∫

∞

0
𝑥2𝑛−1𝑒−𝑥2𝑛𝑦2𝑛

�̃�1−𝜇,𝑛{𝑔(𝑢); 𝑥}𝑑𝑥 

 

 =
𝛤(1−𝜇)

2𝑛
ℒ2𝑛{�̃�1−𝜇,𝑛{𝑔(𝑢); 𝑥}; 𝑦}.          (130) 

Using relation (12) and the formulas [9, p.217, Entry(11)], we get 

 

�̃�𝑛{𝑒−𝑥2𝑛𝑦2𝑛
; 𝑡} =

1

2𝑛
𝒮{𝑒−𝑥2𝑛𝑦; 𝑡2𝑛} =

1

2𝑛
𝑒𝑦2𝑛𝑡2𝑛

𝐸1(𝑦2𝑛𝑡2𝑛).                                                            (131) 

Substituting (131) into (130), we arrive at (129). 

 

Remark 20. Using relations (129) and (114), it is derived that  

 

ℒ2𝑛{�̃�1−𝜇,𝑛{𝑔(𝑢); 𝑥}; 𝑦} =
1

2𝑛𝑦2𝜇𝑛 ∫
∞

0
𝑢2𝑛−1𝑒𝑦2𝑛𝑢2𝑛

𝛤(𝜇, 𝑦2𝑛𝑢2𝑛)𝑔(𝑢)𝑑𝑢,                                        (132) 

which holds true, provided that each of the integrals involved converges absolutely for |𝑎𝑟𝑔𝑦| <
𝜋

2𝑛
, 0 <

𝑅𝑒𝜇 < 1.  

 

Corollary 21. The following identity  

 

 ℒ𝑛{𝑡𝑛ℛ𝜇,2𝑛{𝑔(𝑢); 𝑡}; 𝑦} =
𝛤(1−𝜇)

𝜋
ℱ𝑠,𝑛{𝑥𝑛�̃�1−𝜇,𝑛{𝑔(𝑢); 𝑥}; 𝑦},                                 (133) 

holds true, provided that each of the integrals involved converges absolutely.  

 

Proof. Taking 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥𝑛𝑦𝑛) in Theorem 18, the following identity is found:  

 

∫
∞

0
𝑡2𝑛−1�̃�𝑛{𝑠𝑖𝑛(𝑥𝑛𝑦𝑛); 𝑡}ℛ𝜇,2𝑛{𝑔(𝑢); 𝑡}𝑑𝑡 =

Γ(1−μ)

2n
∫

∞

0
x2n−1sin(xnyn)�̃�1−μ,n{g(u); x}dx.           (134) 

Using relation (12) and the formula [9, p.219, Entry(36)], we get  

 

 �̃�n{sin(xnyn); t} =
π

2n
e−yntn

.          (135) 

Setting (135) into (134) and using the definitions (19), (23), we arrive at (133). 

 

Corollary 22. The following identity  

 
2(−1)𝑘

𝛤(1−𝜇)
𝒦𝜐,𝑛 {𝑡

𝑛(𝜐+2𝑘+
1

2
)
ℛ𝜇,2𝑛{𝑔(𝑢); 𝑡}; 𝑦} = ℋ𝜐,𝑛 {𝑥

𝑛(𝜐+2𝑘+
1

2
)
�̃�1−𝜇,𝑛{𝑔(𝑢); 𝑡}; 𝑦},                            (136) 

holds true, provided that each of the integrals involved converges absolutely, where 𝑦 > 0, −𝑘 − 1 <
𝑅𝑒𝜐 < −2𝑘 + 3/2, 𝑅𝑒𝜇 < 1.  
 

Proof. Taking 𝑓(𝑥) = 𝑥𝑛𝜐+2𝑛𝑘𝒥𝑣(𝑥𝑛𝑦𝑛) in Theorem 18, the following identity is found:  

∫
∞

0

𝑡2𝑛−1�̃�𝑛{𝑥𝑛𝜐+2𝑛𝑘𝒥𝑣(𝑥𝑛𝑦𝑛); 𝑡}ℛ𝜇,2𝑛{𝑔(𝑢); 𝑡}𝑑𝑡 

                                           =
𝛤(1−𝜇)

2𝑛
∫

∞

0
𝑥2𝑛−1𝑥𝑛𝜐+2𝑛𝑘𝒥𝑣(𝑥𝑛𝑦𝑛)�̃�1−𝜇,𝑛{𝑔(𝑢); 𝑥}𝑑𝑥.                         (137) 

Using relation (12) and the formula [9, p.225, Entry(10)], we get  
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 �̃�𝑛{𝑥𝑛𝜐+2𝑛𝑘𝒥𝑣(𝑥𝑛𝑦𝑛); 𝑡} =
2(−1)𝑘

2𝑛
𝑡𝑛𝜐+2𝑛𝑘𝒦𝑣(𝑦𝑛𝑡𝑛).          (138) 

Setting (138) into (137) and using the definitions (19) and (23), we arrive at (136).    

 

3. SOME ILLUSTRATIVE EXAMPLES 

 

Example 23. It is shown that for 𝑅𝑒𝑎2𝑛 > 0, 𝑅𝑒𝜈 > −1, −1 < 𝑅𝑒𝛼 < 0,  

 

∫
∞

0
𝑢2𝑛𝛼+2𝑛−1ℐ𝜈/2(𝑎2𝑛𝑢2𝑛)𝒦𝜈/2(𝑎2𝑛𝑢2𝑛)𝑑𝑢 =

𝐵(−
𝛼

2
,
1+𝛼

2
)

8𝑛𝑎2𝑛𝛼+2𝑛

𝛤(
1+𝛼+𝜈

2
)

𝛤(
1−𝛼+𝜈

2
)
,                       (139) 

where ℐ𝜈 [13, p.5, Entry(12)] and 𝒦𝜈 [13, p.5, Entry(13)] are Modified Bessel functions of first and second 

kind of order 𝜈, respectively and 𝐵(𝑥, 𝑦) is the beta function [12, p.9, Entry(1)].  

 

Demonstration. Setting 

 

𝑓(𝑥) =
1

𝑥2𝑛(𝑥4𝑛+4𝑎4𝑛)1/2                      (140) 

in relation (63) of Corollary 5, and using the relationship obtained by replacing 𝑛 with 2𝑛 in (21) and the 

known formula [9, p.23, Entry(11)], for 𝑅𝑒𝑎2𝑛 > 0, 𝑅𝑒𝜈 > −1, we have  

 

 ℋ𝜈,2𝑛 {
1

𝑥𝑛(𝑥4𝑛+4𝑎4𝑛)1/2 ; 𝑢} =
𝑢𝑛

2𝑛
ℐ𝜈/2(𝑎2𝑛𝑢2𝑛)𝒦𝜈/2(𝑎2𝑛𝑢2𝑛).                                   (141) 

Using relationship (5) and the known formula [11, p.174, Entry(m)], for −1 < 𝑅𝑒𝛼 < 0, we get  

 

 �̃�2𝑛{𝑥−2𝑛−2𝑛𝛼; 21/2𝑛𝑎} =
𝑎−2𝑛𝛼−2𝑛

2𝛼+3𝑛
𝐵 (−

𝛼

2
,

1+𝛼

2
).          (142) 

Substituting (140), (141) and (142) into (63), assertion (139) is obtained. 

 

Example 24. It is shown that for 𝑅𝑒𝜈 > 0,  

 

𝒦𝜈,2𝑛{𝑥−2𝑛(𝜈−1/2)(𝑥4𝑛 − 𝑎4𝑛)𝜈−1𝐻(𝑥2𝑛 − 𝑎2𝑛); 𝑦} 

 

 =
2ν−2Γ(ν)

n
y−2n(ν−1/2)𝒦0(a2ny2n),          (143) 

where H is the Heaviside function [1, p.15, Entry(2.3.9)].  

 

Demonstration. Putting  

 

 𝑔(𝑢) = 𝑢−2𝑛(𝜈+1/2)𝑐𝑜𝑠(𝑎2𝑛𝑢2𝑛)          (144) 

in identity (53) of Corollary 3 and using relation (5) and the known formula [11, p.174, Entry(b)], we have  

 

�̃�2𝑛{𝑐𝑜𝑠(𝑎2𝑛𝑢2𝑛); 𝑦} =
𝒦0(𝑎2𝑛𝑦2𝑛)

2𝑛
.          (145) 

Using the relationship obtained by replacing 𝑛 with 2𝑛 in (21) and the formula [9, p.37,Entry(30)] for 

𝑅𝑒𝜈 > −1/2, it is found that 

 

ℋ𝜈,2𝑛{𝑢−2𝑛(𝜈+1/2)𝑐𝑜𝑠(𝑎2𝑛𝑢2𝑛); 𝑥} =
1

2𝑛

√𝜋(𝑥4𝑛−𝑎4𝑛)
𝜈−1/2

2𝜈𝑥2𝑛𝜈−𝑛𝛤(𝜈+1/2)
𝐻(𝑥2𝑛 − 𝑎2𝑛),              (146) 

where 𝐻 is the Heaviside function. Substituting (144), (145) and (146) into (53) and setting ν = ν − 1/2, 

we arrive at (143).    

 

Example 25. It is shown that for −1/2 < 𝑅𝑒𝜈 < 0,  

 

�̃�2𝑛{𝑢2𝑛(𝜈+1)[ℐ𝜈(𝑎2𝑛𝑢2𝑛) − 𝑳𝜈(𝑎2𝑛𝑢2𝑛)]; 𝑦} 

                                                      = √
𝜋

2

𝑦2𝑛𝜈+𝑛

2𝑛𝑎𝑛𝑠𝑖𝑛(𝜋𝜈)
[𝑌𝜈+1/2(𝑎2𝑛𝑦2𝑛) − 𝑯𝜈+1/2(𝑎2𝑛𝑦2𝑛)]                        (147) 
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where ℐ𝜈 is the modified Bessel function [9, p.5, Entry(12)], 𝑳𝜈 is the Modified Struve function [13, p.38, 

Entry(52)], 𝑌𝜈 is Bessel function of order of 𝜈 [12, p.4, Entry(4)] and 𝑯𝜈 is the Struve function [13, p.38, 

Entry(55)].  

 

Demonstration. Setting  

 

 𝑓(𝑥) = 𝑥−2𝑛𝜈−2𝑛(𝑥4𝑛 + 𝑎4𝑛)−1          (148) 

in identity (45) of Theorem 1 and using the relation obtained by replacing 𝑛 with 2𝑛 in (21) and known 

formula [9, p.23,(14)] for 𝑅𝑒(𝜈) > −1/2, 𝑅𝑒𝑎2𝑛 > 0, we have  

 

ℋ𝜈,2𝑛 {
𝑥−2𝑛𝜈−𝑛

𝑥4𝑛+𝑎4𝑛 ; 𝑢} =
1

2𝑛

𝜋

2
𝑎−2𝑛𝜈−2𝑛𝑢𝑛[ℐ𝜈(𝑎2𝑛𝑢2𝑛) − 𝑳𝜈(𝑎2𝑛𝑢2𝑛)].        (149) 

Using the relation obtained by replacing 𝑛 with 2𝑛 in (26) and the formula [9, p.128,Entry(7)] for Reν < 0, 

Rea2n > 0, Rey2n > 0, we get 

 

𝒦ν+1/2,2n {
x−2nν−2n

x4n+a4n ; y} =
π2

8n

yncsc(πν)

a2nν+n [Yν+1/2(a2ny2n) − 𝐇ν+1/2(a2ny2n)].           (150) 

Setting (148), (149) and (150) in (45), we arrive at (147).    

 

Example 26. It is shown that 

 

ℋ𝜈,2𝑛{𝑢2𝑛(𝜈+1/2)𝑒−𝑎2𝑛𝑢2𝑛
; 𝑦} = √

2

𝜋

𝑎2𝑛

2𝑛

(2𝑦2𝑛)
𝜈+1/2

(𝑦4𝑛+𝑎4𝑛)𝜈+3/2 𝛤 (𝜈 +
3

2
),        (151) 

where 𝑅𝑒𝜈 > −3/2, 𝑅𝑒𝑦2𝑛 > |𝐼𝑚𝑎2𝑛|.  
 

Demonstration. Putting  

 

𝑓(𝑥) = 𝑥2𝑛𝒥0(𝑎2𝑛𝑥2𝑛)          (152) 

in relation (46) of Theorem 1 and using (5) and the formula [11, p.174, Entry(f)], we have  

 

�̃�2𝑛{𝑥2𝑛𝒥0(𝑎2𝑛𝑥2𝑛); 𝑢} =
𝑒−𝑎2𝑛𝑢2𝑛

2𝑛𝑎2𝑛 .          (153) 

Using the relation obtained by replacing 𝑛 with 2𝑛 in (26) and the known formula [9, p.137, Entry(17)] for 

𝑅𝑒𝜈 > −3/2, we get  

 

𝒦𝜈+1/2,2𝑛{𝑥2𝑛𝜈+2𝑛𝒥0(𝑎2𝑛𝑥2𝑛); 𝑦} =
1

2𝑛

2𝜈+1/2𝑦2𝑛𝜈+2𝑛

(𝑦4𝑛+𝑎4𝑛)𝜈+3/2 𝛤 (𝜈 +
3

2
).        (154) 

Substituting (152), (153) and (154) into (46) of Theorem 1, the assertion (151) is obtained.    

 

Example 27. It is shown that 

 

∫
∞

0

𝑦2𝑛(𝜈+𝛼+1)−1

(𝑦4𝑛+𝑎4𝑛)𝜈+3/2 𝑑𝑦 =
𝑎2𝑛(𝛼−𝜈−2)

4𝑛

𝛤(
𝛼

2
+

𝜈

2
+

1

2
)𝛤(1−

𝛼

2
+

𝜈

2
)

𝛤(𝜈+
3

2
)

,          (155) 

where 0 < 𝑅𝑒(2 − 𝛼 + 𝜈) < 3/2 and Reν > −3/2.  

 

Demonstration. Setting  

 

 𝑓(𝑥) = 𝑥2𝑛𝜈+2𝑛𝒥0(𝑎2𝑛𝑥2𝑛)          (156) 

in relation (64) of Corollary 5 and using the formula (154), we have  

 

∫
∞

0

𝑦2𝑛(𝜈+𝛼+1)−1

(𝑦4𝑛+𝑎4𝑛)𝜈+3/2 𝑑𝑦 =
2𝛼−𝜈−2𝛤(

𝛼

2
+

𝜈

2
+

1

2
)𝛤(

𝛼

2
−

𝜈

2
)

𝛤(𝜈+
3

2
)

ℳ{𝒥0(𝑎2𝑛𝑥2𝑛); 2𝑛(2 − 𝛼 + 𝜈)},     (157) 

where ℳ is the Mellin Transform [14, p.305]. Using the formulas [14, p.307 Entry(5)] for ℎ = 2𝑛 and [14, 

p.326, Entry(1)], we get  
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ℳ{𝒥0(𝑎2𝑛𝑥2𝑛); 2𝑛(2 − 𝛼 + 𝜈)} =
1

𝑛

2𝜈−𝛼𝛤(1−
𝛼

2
+

𝜈

2
)

𝑎2𝑛(2−𝛼+𝜈)𝛤(
𝛼

2
−

𝜈

2
)
,           (158) 

where 0 < 𝑅𝑒(2 − 𝛼 + 𝜈) < 3/2. Substituting (158) into (157), (155) is obtained.    

 

Example 28. It is shown that 

 

∫
∞

0
𝑦2𝑛𝜇−1𝑐𝑜𝑠(𝑎2𝑛𝑦2𝑛)𝑑𝑦 =

𝑎−2𝑛𝜇

2𝑛𝜋
𝛤(𝜇)𝑐𝑜𝑠 (

𝜇𝜋

2
),          (159) 

where 0 < 𝑅𝑒𝜇 < 1.  

 

Demonstration. Putting  

 

 𝑔(𝑦) = 𝑐𝑜𝑠(𝑎2𝑛𝑦2𝑛)          (160) 

in relation (93) of Corollary 10, we get 

 

∫
∞

0
𝑦2𝑛𝜇−1𝑐𝑜𝑠(𝑎2𝑛𝑦2𝑛)𝑑𝑦 =

2μ+2n

[Γ(
1−μ

2
)]

2 ∫
∞

0
x−2nμ+n−1𝒦0,2n{y−ncos(a2ny2n); x}dx.             (161) 

Using the relation obtained by replacing 𝑛 with 2𝑛 in (26), the formulas [13, p.79, Entry(15)] and [9, p.137, 

Entry(17)], we have  

 

 𝒦0,2𝑛{𝑦−𝑛𝑐𝑜𝑠(𝑎2𝑛𝑦2𝑛); 𝑥} =
𝜋

4𝑛

𝑥𝑛

(𝑥4𝑛+𝑎4𝑛)1/2.          (162) 

Setting (162) in (161), it is found that 

 

 ∫
∞

0
𝑦2𝑛𝜇−1𝑐𝑜𝑠(𝑎2𝑛𝑦2𝑛)𝑑𝑦 =

2𝜇𝜋

[𝛤(
1−𝜇

2
)]

2 �̃�2𝑛{𝑥−2𝑛𝜇; 𝑎}.          (163) 

Using the relation (65) for 0 < 𝑅𝑒(𝜇) < 1, 𝛼 = 1, 𝜈 = 𝜇 and 𝑢 = 𝑎, (159) is obtained.    

 

Example 29. It is shown that for 𝑅𝑒(𝜈) > −1/2 and −𝑅𝑒2𝜈 < 𝑅𝑒𝜇 < 3/2  

 

∫
∞

0
𝑢2𝑛𝜇−1ℐ𝜈(𝑎2𝑛𝑢2𝑛)𝒦𝜈(𝑎2𝑛𝑢2𝑛)𝑑𝑢 =

𝐵(
𝜇

2
,
1−𝜇

2
)𝛤(𝜈+

𝜇

2
)

8𝑛𝑎2𝑛𝜇𝛤(1+𝜈−
𝜇

2
)
,          (164) 

where ℐ𝜈 [13, p.5, Entry(12)] and 𝒦𝜈 [13, p.5, Entry(13)] are Modified Bessel functions of first and second 

kind of order 𝜈, respectively.  

 

Demonstration. Putting  

 

𝑔(𝑦) = 𝒥2𝜈(2𝑎2𝑛𝑦2𝑛)           (165) 

in relation (91) of Corollary 10 and using relation (5) and the formula [11, p.174, Entry(g)] for 𝑅𝑒(𝜈) >
−1/2, we get 

 

 ∫
∞

0
𝑢2𝑛𝜇−1ℐ𝜈(𝑎2𝑛𝑢2𝑛)𝒦𝜈(𝑎2𝑛𝑢2𝑛)𝑑𝑢 =

𝐵(
𝜇

2
,
1−𝜇

2
)

2
ℳ{𝒥2𝜈(2𝑎2𝑛𝑦2𝑛); 2𝑛𝜇}.             (166) 

Using the formulas [14, p.307 Entry(5)] for ℎ = 2𝑛 and [14, p.326 Entry(1)], it is found that 

 

 ℳ{𝒥2𝜈(2𝑎2𝑛𝑦2𝑛); 2𝑛𝜇} =
1

4𝑛

𝛤(𝜈+
𝜇

2
)

𝑎2𝑛𝜇𝛤(1+𝜈−
𝜇

2
)
,          (167) 

where −𝑅𝑒2𝜈 < 𝑅𝑒𝜇 < 3/2. Setting (167) in (166), (164) is obtained.   

 

Remark 30. Example 29 could be obtained easily by setting 𝛼 = 𝜇 − 1 and 𝜈 = 2𝜈 in Example 23.  
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Example 31. It is shown that 

 

∫
∞

0
𝑥−2𝑛(𝜇+𝜈)−1

2𝐹1 (
𝜈+1

2
,

𝜈+1

2
; 𝜇 + 1; −

𝑎4𝑛

𝑥4𝑛) 𝑑𝑥 =
𝛤(𝜈+1)𝛤(

𝜈

2
+

𝜇

2
)[𝛤(

1−𝜇

2
)]

2

4𝑛𝑎2𝑛(𝜇+𝜈)𝛤(1+
𝜈

2
−

𝜇

2
)[𝛤(

𝜈+1

2
)]

2       (168) 

where 𝑅𝑒𝜈 > −1, −𝑅𝑒𝜈 < 𝑅𝑒𝜇 < 3/2, 𝑅𝑒𝑥2𝑛 > |𝐼𝑚𝑎2𝑛|.  
 

Demonstration. Setting  

 

 𝑔(𝑦) = 𝒥𝜈(𝑎2𝑛𝑦2𝑛)          (169) 

in relation (93) of Corollary 10, we get  

 

ℳ{𝒥𝜈(𝑎2𝑛𝑦2𝑛); 2𝑛𝜇} =
2𝜇+2𝑛

[𝛤(
1−𝜇

2
)]

2 ∫
∞

0
𝑥−2𝑛𝜇+𝑛−1𝒦0,2𝑛{𝑦−𝑛𝒥𝜈(𝑎2𝑛𝑦2𝑛); 𝑥}𝑑𝑥,    (170) 

where −𝑅𝑒𝜈 < 𝑅𝑒𝜇 < 3/2. Using the relation obtained by replacing 𝑛 with 2𝑛 in (26) and the formula [9, 

p.137, Entry(17)] for 𝑅𝑒𝜈 > −1, we have  

 

𝒦0,2𝑛{𝑦−𝑛𝒥𝜈(𝑎2𝑛𝑦2𝑛); 𝑥} =
1

2𝑛

𝑎2𝑛𝜈𝑥−2𝑛𝜈−𝑛[𝛤(
𝜈

2
+

1

2
)]

2

2𝛤(𝜈+1)
 2𝐹1 (

𝜈

2
+

1

2
,

𝜈

2
+

1

2
; 𝜈 + 1; −

𝑎4𝑛

𝑥4𝑛),                        (171) 

where 𝑅𝑒𝜈 > −1, 𝑅𝑒𝑥2𝑛 > |𝐼𝑚𝑎2𝑛|. Substituting the relation (167) for 𝜈 = 𝜈/2, 𝑎 = 21/2𝑛𝑎 and (171) 

into (170), (168) is obtained.    

 

Example 32. It is shown that 

  

�̃�2𝑛{𝑢−2𝑛𝒦0(𝑎2𝑛𝑢2𝑛); 𝑠} =
1

2𝑛

𝜋2

4𝑠2𝑛
[𝑯0(𝑎2𝑛𝑠2𝑛) − 𝑌0(𝑎2𝑛𝑠2𝑛)],                          (172) 

where 𝒦𝜈 is Modified Bessel functions of second kind of order 𝜈 [13, p.5, Entry(13)], 𝑌𝜈 is Bessel function 

of second kind order of 𝜈 [12, p.4, Entry(4)], 𝑯𝜈 is the Struve function [13, p.38, Entry(55)].  

 

Demonstration. Setting  

 

𝑔(𝑦) = 𝑐𝑜𝑠(𝑎2𝑛𝑦2𝑛)          (173) 

in (86) of Corollary 9 and using (17) and the formula [14, p.138, Entry(10)], we get 

 

 ℒ2𝑛 {
1

(𝑥4𝑛+𝑎4𝑛)1/2 ; 𝑠} =
1

2𝑛

𝜋

2
[𝑯0(𝑎2𝑛𝑠2𝑛) − 𝑌0(𝑎2𝑛𝑠2𝑛)].          (174) 

Substituting (145), (162), (173) and (174) into (86), we arrive at the assertion (172). 

 

Example 33. The following equation holds true under the hypothesis of Corollary 14,  

 

∫
∞

0
𝑥−𝑛(𝜈−1)−1𝑒𝑟𝑓 (

𝑦𝑛

𝑥𝑛) 𝑑𝑥 =
𝑦𝑛(1−𝜐)

√𝜋𝑛(1−𝜐)
𝛤 (

𝜈

2
) , (0 < 𝑅𝑒𝜈).                      (175) 

 

Demonstration. Setting 𝑓(𝑥) = 𝑥−𝑛(𝜐+1) in (109), we get  

 

ℒ2𝑛 {𝑢−𝑛ℛ1,2𝑛 {𝑥−𝑛(𝜐+1);
1

𝑢
} ; 𝑦} =

√𝜋

2𝑛𝑦𝑛 ∫
∞

0
𝑥−𝑛(𝜈−1)−1𝑒𝑟𝑓 (

𝑦𝑛

𝑥𝑛) 𝑑𝑥.                    (176) 

Using definitions (36) and (15) on the left-hand side of (109), we have  

 

 ℒ2𝑛 {𝑢−𝑛 [∫
1/𝑢

0
𝑥−𝑛(𝜐+1)−1𝑑𝑥] ; 𝑦} =

𝑦−𝑛𝜐

2𝑛2(1−𝜐)
𝛤 (

𝜈

2
).          (177) 

 

Substituting (177) into (176), (175) is obtained. 
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Example 34. The following equation holds true under the hypothesis of Theorem 16, 

 

∫
∞

0
𝑥𝑛(𝜈+1)−1𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑦2𝑛

𝑥2𝑛) 𝑑𝑥 =
−𝜋𝑦𝑛(𝜐+1)

2𝑛(𝜐+1)
𝑐𝑠𝑐 (

𝜋(𝜐−1)

4
),          (−3 < 𝑅𝑒𝜐 < 1).    (178) 

 

Demonstration. Setting 𝑓(𝑥) = 𝑥𝑛(𝜐−1) on the left-hand side of Equation (119) and using the formula [9, 

p.216, Entry(5)], we have  

 

�̃�2𝑛{𝑡−2𝑛ℛ1,2𝑛{𝑥𝑛(𝜐+1); 𝑡}; 𝑦} =
1

𝑛(𝜐+1)
�̃�2𝑛{𝑡𝑛(𝜐−1); 𝑦} =

−𝜋𝑦𝑛(𝜐−1)

4𝑛2(𝜐+1)
𝑐𝑠𝑐 (

𝜋(𝜐−1)

4
).                (179) 

Finally, by setting (179) into Equation (119), (178) is obtained.    

 

Example 35. The following equations hold true under the hypotheses of Theorem 18,  

 

∫
∞

0
𝑡3𝑛+𝛼−2𝑒𝑦2𝑛𝑡2𝑛

𝐸1(𝑦2𝑛𝑡2𝑛)𝑑𝑡 =
𝛤(

𝛼−1

2𝑛
+

3

2
)

2𝑛

𝜋

𝑠𝑖𝑛(𝜋(
𝛼−1

2𝑛
+

3

2
))

1

𝑦3𝑛+𝛼−1,                                                     (180) 

 

∫
∞

0
𝑢2𝑛+𝛼−2𝑒𝑦2𝑛𝑢2𝑛

𝛤(1/2; 𝑦2𝑛𝑢2𝑛)𝑑𝑢 =
√𝜋

𝑠𝑖𝑛(𝜋(
𝛼−1

2𝑛
+

3

2
))

𝛤(
𝛼−1

2𝑛
+

3

2
)

𝑦2𝑛+𝛼−1                                                          (181) 

where −
3

2
< 𝑅𝑒 (

𝛼−1

2𝑛
) < −

1

2
.  

 

Demonstration. Setting 𝜇 = 1/2 and 𝑔(𝑢) = 𝑢𝛼−1 into (129) and (132), we have  

 

𝛤(1/2)ℒ2𝑛{�̃�1/2,𝑛{𝑢𝛼−1; 𝑥}; 𝑦} = ∫
∞

0
𝑡2𝑛−1𝑒𝑦2𝑛𝑡2𝑛

𝐸1(𝑦2𝑛𝑡2𝑛)ℛ1/2,2𝑛{𝑢𝛼−1; 𝑡}𝑑𝑡.                          (182) 

Using the relations (13) and (17) and formulas [14, p.133,Entry(3)] and [9, p.233, Entry(8)], we get  

 

�̃�1/2,𝑛{𝑢𝛼−1; 𝑥} =
1

2𝑛

𝛤(
𝛼−1

2𝑛
+1)𝛤(

1

2
−

𝛼−1

2𝑛
)

√𝜋
𝑥𝑛+𝛼−1,      (−1 < 𝑅𝑒 (

𝛼−1

2𝑛
) < −

1

2
),                                        (183) 

 

ℒ2𝑛{𝑥𝑛+𝛼−1; 𝑦} =
1

2𝑛

𝛤(
3

2
+

𝛼−1

2𝑛
)

𝑦3𝑛+𝛼−1 (−
3

2
< 𝑅𝑒 (

𝛼−1

2𝑛
)).                                                      (184) 

In addition, using the definition of (35), we have  

 

ℛ1/2,2𝑛{𝑢𝛼−1; 𝑡} =
1

√𝜋
∫

𝑡

0
𝑢2𝑛−1(𝑡2𝑛 − 𝑢2𝑛)−1/2𝑢𝛼−1𝑑𝑢.                                        (185) 

Changing the variable in (185) to u = ty1/2n and using the definition of beta function, we get  

 

ℛ1/2,2𝑛{𝑢𝛼−1; 𝑡} =
𝑡𝑛+𝛼−1

2𝑛

𝛤(
𝛼−1

2𝑛
+1)

𝛤(
𝛼−1

2𝑛
+

3

2
)
.                                                                            (186) 

Substituting (183), (184) and (186) into (129) and (132), respectively, we arrive at (180) and (181). 

 

4. CONCLUSION 

 

It could be concluded that there are many other infinite integrals which could be evaluated in this manner 

by applying the Lemma, the theorems and its corollaries considered here. Also, the new equalities in this 

manuscript could be used in many other topics. Fractional calculus is frequently applied in other fields of 

sciences and medicine, as it could be seen that it was used for modeling in various areas [15-20]. We believe 

that the relations in this manuscript could be used in different disciplines in the future. 
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