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Highlights
« This paper gives some new integral transforms and Parseval-Goldstein type relations.
A number of interesting infinite integrals are presented.
» Theorems on generalized Riemann-Liouville and Weyl fractional integral operators are obtained.

Article Info Abstract

In this paper, Parseval-Goldstein type theorems involving the Gr-integral transform which is
Received: 20 Oct 2020 modified from G, -integral transform [7] and the Pr-integral transform [8] are examined. Then,
Accepted: 18 Feb 2022 theorems in this paper are shown to yield a number of new identities involving several well-

known integral transforms. Using these theorems and their corollaries, a number of interesting
infinite integrals of elementary and special functions are presented. Generalizations of Riemann-

Keywords Liouville and Weyl fractional integral operators are also defined. Some theorems relating
Laplace transform, generalized Laplace transform, generalized Widder Potential transform, generalized Hankel
Widder Potential transform and generalized Bessel transform are obtained. Some illustrative examples are given as
transform, applications of these theorems and their results.

Hankel transform,
Riemann-Liouville
fractional integral,
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1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Stieltjes and Widder Potential transforms are well-known and used in many areas such as mathematical
analysis, mathematical physics, applied mathematics and engineering sciences. Fractional derivative and
integral were firstly discussed on a letter sent by Leibniz to L Hospital, in which he wrote about the meaning
of D the derivative of half-order. In the following centuries, the theory of fractional derivatives and integrals
were developed by different authors that emerged new fractional derivative operators and their applications
such as Riemann, Liouville, Weyl and Caputo [1-3]. Recently, the relations between fractional integral
operators and classical integral transforms were given. New Parseval-Goldstein type identities were
obtained [4-6].

In this paper, new relations are obtained using Gn-integral transform which is modified from G,,,-integral
transform [7] and P,-integral transform [8]. Two generalizations of fractional integrals are defined. New
identities for two new generalized fractional integrals and generalized integral transforms [4,8] are
obtained. Some definitions will be given, before the main results. For the convergence of the mentioned
integrals in this manuscript, the class of the functions were considered in the related cited manuscripts,
respectively.
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The generalizations of the Widder-Potential transform and the Glasser transform where 2,,, and G,,, which
are defined in [7,8], are given as follows

PAK); ¥} = Pondf(); ) = [ o)

X2n+y2n

. ®
Gal003 ¥} = Ganfx™ (03} = J;” T

0 Ty dx. (2
Replacing n with 2n in (1) and (2), the following definitions of integral transforms are obtained

PonlC0s v} = [ S 10 gy

X4n+y4n

3)

- [} XZn—lf(X)
Gontf(x);y} = fo \de'

(4)
respectively. The G,,-integral transform is related to the Glasser transform and generalized Stieltjes
transform by means of,

2nG,, (f(x); y} = G{f(x*/"); y2"},

)
4nG,n {f(x); v} = 51/2{X_1/2f(xl/4n)i Y4n}r

(6)
where generalized Stieltjes transform is defined in [9]. The Stieltjes integral transform and Widder-Potential
transform and Glasser transform are defined by [9-11]

Sy = [

0 x+y X, (7)
PO} = f, o dx, ®)

GlEC; v} = 7 L

x2+y?

(9)
respectively. The Widder Potential transform and the Stieltjes transform are related by the following
relation [9],

PLECO; v} = 5 S{A(xY/2)y2).

(10)
Another generalization of the Widder Potential transform of f(x) is defined for ve C, n € N in [4], as
follows:

“H(x)
Ponlf005y} = PoanlfC03y) = J; o dx. (11)
The P, -transform and the Stieltjes transform, the P, ,,-transform and the generalized Stieltjes transform
are related by, respectively,

Pf(x);y} = i S{f(xl/Zn); yzn},

(12)
Ponlf(0;y} = - S {I(x1/7m); y21). (13)
The Laplace transform [1], the £,,-transform, the L,,-transform [8] are defined by
L{f(x); y} —f e Y*f(x)dx, (14)
Lon{fGOsy} = [y 3" 1e V(0 dx, (15)

Lan{f);y} = [ x* e "V f(x)dx, (16)
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respectively. The L,,-transform, the L£,,-transform and the Laplace transform are related with the
following relations [8]:

Lan{f(); ¥} = 5 Lon{f(x/2);y2} = — L{F(x1/2"); y27). (17)
The Hankel transform of order v [1] and generalized Hankel transform [4,9] are defined by

H{EE); v} = [, Gy) M2, xy)f(x)dx, (18)

Hynlf(;y} = [ x" 71 xy™ 27, (x"y™f(x)dx, (19)

wherev € C, n € N, Re(v) > —1/2 and J,(x) is the Bessel function of the first kind of order v [12,13]
that has the following series representation,

3,0 = Xm0 o (5", Re(v) > —1. (20)

n!T'(1+v+n) \2
Replacing n with 2n in (19), the H,, ,,-transform which is defined in [4] is obtained.
The Hankel transform and generalized Hankel transform are related by the following relation:

nH, n{f(0; v} = H{f(x/"); y"}. (21)
The Bessel transform of order v [1] and generalized Bessel transform [4] are defined by

K {fC; v} = fy G2, ()0 dx, (22)

Ky n{fx);y} = fooo X171 (xMy™) V25, (xMy™)f(x)dx, (23)

where v € C, n € N, and K, (x) is the modified Bessel function of the second kind of order v [12,13] and is
defined as:

_ I, ®)-%X)
Ko () = 2 sin(mv) (24)
o 1 X v+2n

(X)) = Xt m(g) , Re(v) >-—1. (25)
The Bessel transform and generalized Bessel transform are related by the following relation:

ng{v,n{f(x);y} = :Kv{f(xl/n);yn}- (26)
Also, the following relation could be obtained easily from (23) and the formula [13, p.10, Entry(42)]:

3611208033 = [F LanlG0i3). @)
The F 5~ and F ,q-integral transforms [8] are defined by

Feanlf();y} = [J° x*"Leos(x2My?Mf(x)dx, (28)

Foonlf)y} = ) x? 1sin(x?y?M)f(x)dx,  (vn € N) (29)
which are related to the Fourier-cosine and Fourier-sine transforms [1] by means of the following relations:

ZnTc,Zn{f(X); y} = Tc{f(xl/zn); yzn}; (30)

20F on{f(x); v} = Fff(x/?"); y2"}. (31)

The following identity is easily obtained from (28) and known formula [14, p.7. Entry(1)],

Fean{Feanlf00; vl x} = (0. (32)
Weyl fractional integral operator of order p is defined as follows:
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1

WGy} = 55
wherey > 0, u € C, Re(p) > 0 [1-3].
Riemann-Liouville fractional integral operator of order p is defined as follows:

J; =P HGodx, (33)

D)} = g Jy & =~ 9P, (34)

wherey > 0, p € C, Re(p) > 0 [1-3].

Now, two new fractional integrals called the n-generalized Weyl fractional integral and the n-generalized
Riemann-Liouville fractional integral are introduced.

The generalized Weyl fractional integral is defined as follows:

1 e} — —
WianlfC0s v} = o5 Jy X2 — PR () dx, (35)
wherey > 0, u € C, Re(pn) > 0.
The generalized Riemann-Liouville fractional integral is defined as follows:
1

o fy X2n—1(y2n _ in)“_lf(x)dx, (36)

Ru,Zn{f(X); y} = 0

wherey > 0, u € C, Re(p) > 0.
Weyl fractional derivative of order o is defined as follows:

W) = W= 9f(x), (37)
wheren € N, a € C, Re(a) > 0andn — 1 < Re(a) < n [1-3].
Riemann-Liouville fractional derivative of order « is defined as follows:

oDE(x) = S D~ -f(x), (38)
wheren € N, a € C, Re(a) > 0andn — 1 < Re(a) < n [1-3].

In the formulas (37) and (38), fractional derivatives are defined by means of fractional integral operators.

In definitions (33)-(36), I'(z) is the Gamma Euler function given by the following formula [12],

(z) = [, e7tt*dt, (39)
where z € C, Re(z) > 0.
Incomplete gamma and complementary incomplete gamma functions are defined as follows [13]:

v(a,x) = fg( ta~le tdt, (40)
I'(a,x) = [, t*"te7'dt. (41)
The error and the complementary error functions are defined as follows [13]:
2 —
erf(x) = ﬁf(;( e tdt, (42)
erfc(x) = %fxoo e tdt, (43)

where we have

erf(x) + erfc(x) = 1. (44)
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2. MAIN THEOREMS

In the theorems and lemmas of this section, Parseval-Goldstein type new identities which show the
relationship between the known integral transforms and the newly defined integral transforms and integral
operators are given.

Theorem 1. If the integrals involved converge absolutely and n € N, —1 < Rev < 1/2, then the following
identities hold true:

Q~2n{u2nv+n7{ 2n{X f(x); u}; Y} v+1/2 () ¥}, (45)
Ty an{02™ G (EG); uh v} = %ml/un{xsz(x); ) (46)
Gon{UZ™V NI, 50 (KEVR(x); uk v} = YAV, 50 (PG, (F(X); Uk ) (47)

Proof. Using the definitions (4) of the G, -transform, the definition of the 71, ,,,-transform obtained by
replacing n with 2n in (19), and changing the order of integration, which is permissible by absolute
convergence of the integrals involved, it is found that

Gon{uPVIH, o XM ) uh v} = ) xR Gon (02N, (k302 yidx.  (48)
Using the relation (5) and the following known formula [11, p.174, (h)],

G 1,6y} = 2y, (), — 1< Rev < (49)
it is obtained that
Gon{uB™V I o (XPFCOs Uk v} = =y [ XETIXIY NI 4 0 (6P M) dx. (50)

Now, the assertion (45) follows from definition (23) of the X, ,,,-integral transform with replacing n with
2n.

Similarly, the proof of (46) would be given using definitions (4) of the G, ,-transform, the definition of the
H, on-transform obtained by replacing n with 2n in (19), the known formula [11, p.174, (h)], and the
definition of the X, ,,-integral transform obtained by replacing n with 2n in (23), respectively. The
assertion (47) immediately follows from (45) and (46). Thus, the proof of theorem is completed.

Remark 2. If v = 0 is set into (45) and (46) and the relation (27) is used, then the following relations are
obtained:

Gan{unHo 2 xP(0); by} = - Lon{f(X); ¥}, (51)
}(0 2n{u an{f(X) u} Y} _LZn{f(X) Y} (52)
Corollary 3. The following identity

an{uznv+ng(u) Y} = \/— y2nv7CV+1/2 Zn{X H, V,ZH{g(u);X}; Y}' (53)
holds true, provided that n € N, Rev > 0 and the integrals involved converge absolutely.
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Proof. Putting

Hy,2n{x"); u} = g(u) (54)
in (45) of Theorem 1 and using the relation obtained by replacing n with 2n in (21), we get

3y 2n (XG5 U} = o= H (x/26(x1/21); w2} = g(u),

M, {x/2f(x1/?"); u} = 2ng(ul/?"). (55)
Using the definition of inverse Hankel transform, it is derived that

x1/2 f(xl/zn) = }[\,{an(ul/zn); X},

f(x) = x "#,{2ng(ul/?"); x2"}. (56)
Utilizing the relation obtained by replacing n with 2n in (21), it is found that

f(x) = 4n*x"H, 5, {g(w); x}. (57)
Substituting (57) into (45), the assertion (53) is obtained.

Theorem 4. The Parseval-Goldstein type relations

Jy uPmrEnT1G, {g(y); ulHy an (X"00; wdu = —= [ y22 V201G (1)K, 11 00 (00; v}y, (58)

7 w2 EIG (a(3); W o M C0; wldu = —= [ XG0 120V E@ K, (59)

fooo yznv+2n_1g(Y)7Cv+1/2,2n{f(X)i y}dy = fooo in_1f(x).7€\,+1/2,2n{y2n"g(y);x}dx, (60)
hold true, provided that each of the integrals involved converges absolutely.

Proof. Making use of definition (4) of the G,,-transform and changing the order of integration, we have

Jy uBnvEEnig, €o(y); ulHy, 2n xR uldu = [7 y2 g (1) Gon {uZ VN, 5 (X F(x); ud y}dy.  (61)
Utilizing the relation (45), we arrive at (58).

Similarly, using the definition of the , ,,-transform obtained by replacing n with 2n in (19), changing
the order integration and using the assertion (46) of Theorem 1, (59) is obtained. The assertion (60) follows
from (58) and (59). This completes the proof of Theorem 4 under the hypothesis stated.

Corollary 5. If the conditions of Theorem 4 are satisfied, then identities

o] _ \/_ o -
fo uznen 1}(V‘2n{x“f(x);u}du =Wﬁ) y2ne 17(v+1/2,2n{f(X);Y}dy, (62)

2 2

f°° y2nat+n-1igqr {an(X)' u}du — EF(HZW)I
0 v,2n ) n

(=)

0 _ 2a—5/2 1 _ oo .
fo y2n(x 17Cv+1/2,zn{f(x);y}dy= - F( +Z+V)F(%) fo x2n-1 Znaf(X)dX’ (64)

hold true, where n € N, 0 < Re(a — v) < 1 and Re(a) > [Re(v +3)| — 5.

L x2TImInaf(x) dx, (63)

Proof. Putting

2n(a—v-1)

gy) =y
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in Theorem 4 and using the relation (5) and the known formula [11, p.174,Entry(m)], the following holds
true for 0 < Re(a —v) < 1,

Gonfy?@V=D; u} = *B(azv'l Z+v) (65)

Usmg relation (26) for n = 2n and the known formula [9, p.127, 10.2(1)], we get for Re(a) > |Re(v +
=2
2 2

a-3/2
Koy Vi =S (G431 +5)1 (5 -3) (66)

Substituting (65) and (66) into (58 ), (59) and (60), respectively, we arrive at (62), (63) and (64). Thus, the
proof is completed.

Remark 6. Setting v = 0 in (64), it is obtained that

00 _ 20-5/2 1 0 i
Jo Y panlfC0iyldy = ST (G 43) T (5) )7 Rl (60)

Using the relation (27) and Legendre’s duplication formula for the gamma function [12, p.5, (15)], it is
derived that
[y Ly {£G0); yhdy = D2 [ x2n-1-2naf(x) dx. (69)

Theorem 7. The identities

20F ¢ on{Gan XM (X); ul; v} = y 2K 2n{f(); v}, (69)
Gon{x™f ()51} = 2 Fem{y Ko anlf (s v} ), (70)
2nG o {Feon{x™f (x);ul; v} = y Ko 2n{f (x); ¥}, (71)
Gan{f ()i u} = ZUT Ko oy " Foanlf (); v} 1), (72)

hold true, provided that the integrals involved converge absolutely.

Proof. From the definition (28) of the generalized Fourier-cosine transform and definition (4) of the G,,-
transform, we have

~ 0 _ n-1
2nF o on{Gon{x™f (x);ul; vy} = 2n Jo wtcos(umy*™) (f %dx) du. (73)
Changing the order of integration, which is permissible by absolute convergence of the integrals involved
and using definition (4) once again, it follows from (73) that

uZn—lcos(uZ‘rlyZ‘n)

ZnTc,zn{an{xnf(x);u}; 3’} =2n fooo x3n—1f(x) (fooo de) du

=2n fooo 3L (%) G {cos(u?my?™); x}dx. (74)
Using the relation (5) and the known following formula [11, p.174,(b)]

G{cos(ax); ¥} = Ky (ay), (75)
we have

20F (Gl F QO Uk v} = J) %31 f(0)Gcos (uy®™); x2M}dx

=y J‘0°° x2n—1,m YK (x2ny2n)f(x)dx (76)
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Making use of the definition of the X, ,,,-transform obtained by replacing n with 2n (23), we arrive at (69).
Applying the F. ,,-integral transform to both sides of (69) and using the relation (32), (70) is obtained.
Using the definitions of the G,,-transform and the F_ ,,-transform and changing the order of integration,
which is permissible under the hypothesis of Theorem 7, we get

20Gon{Fean X (0; uksy} = 20 [ x*MX()Gon{cos (x* Mu2); y}dx, (77)

Using the relations (5) and (75) and the definition of the X, ,,,-transform obtained by replacing n with 2n
in (23), we arrive at (71). Setting

g(u) = ZnTc,Zn{xnf(x);u} (78)
in (71) and applying F ,,,-transform to both sides of (78), it is found that

?C,Zn{g(u)i x} = Zn:Fc,Zn{?c,Zn{xnf(x); u}; x}- (79)
Using the relation (32), the following is derived:

X F e anlg (W) x} = f(x). (80)
Now, the assertion (72) of Theorem 7 easily follows upon inserting (78) and (80) into (71). Then, it is found
that

Gonfg @)y} = Y Ko anfx " F e anlg () x}; v} (81)
Replacing the variables u by x,y by u, x by y and the function g(u) by f(x), we arrive at (72). Thus, the
proof of Theorem 7 is completed.

Theorem 8. The Parseval-Goldstein type relations

Iy 022G {g(); WP o (M E(); ubdu = —— [° P Lg(y) Ko 2n{f(X); y}dy, (82)
Iy U226 n{g(); U}Fean (X3 ubdu = - [ k2K 2nly () K}, (83)
Jy Y 8 Ko an{f(); yYdy = [ X2 () Ko 2nly g(); x}dx, (84)

hold true, provided that each of the integrals involved converges absolutely.

Proof. Using the definition (4) of the §,,,-transfrom and changing the order of integration, it is found that

Jy WG {g 0 W Feonfx™ () uddu = [ Y2 g0 Gon{Feanlx™f (x); ul; y}dy. (85)
Using the relation (71) of Theorem 7, (82) is obtained. The proof of (83) is similar. The proof of assertion
(84) follows from relations (82) and (83). This completes the proof of Theorem 8 under the hypothesis
stated.

Corollary 9. The following identity

Sznszn{u—anZn{g »); uk; 5} = LZn{x_n:KO,Zn{y_ng O); x}; 5}' (86)
holds true, provided that the integrals involved converge absolutely.

Proof. Substituting

f(x) _ x_ne_sznxzn

into (83) of Theorem 8, we get

(87)
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Jy” W Gonlg Wi Feanle ™" s ufdu = - 7 22 me ™ Ky Mg () xYdx. (88)
Using the relation (30) and the formula [14, p.14, Entry(1)], we have

2n

—g2n,2n 1
Tc'zn{e SZ xz -u} = 554':_{_’“4—11' (89)
Setting (89) into (88), it is found that
Sy w2 Gon{g(y); uldu = [ x"71e SN 5 [y g (y); K dx, (90)
Using the definitions (3) and (15) in the relation (90), we arrive at the assertion (86).
Corollary 10. The following identities for 0 < Rep < 1
o e o(:2) o
Jy w16, {g(n); uddu = —2-2= [ y2nelg(y)dy, (91)
® 2nu—1F 2”1“(%) ®© —2nu+n-1 -n
Jy w16 {g(y); uldu = e Jo x Koanly "9 (y); x}dx, (92)
o) 2u+2n
Jy y*™tg(y)dy = pET )]2f X2 oy e (); x}dx (93)
hold true, provided that each of the integrals involved converges absolutely.
Proof. Setting
flx)=x"2"  0<Reu<1 (94)
in Theorem 8, then it is obtained that
Iy w0 WF e an{x ™2 udu = — [ YL g (1)Ko 2 {x T2 Y}y, (95)
Iy 421G {g () Wy F e am {2 wddu = o [ X172 5y g (v); 2}, (96)
Jy Y g Ko pnfx I yYdy = [T 2T L {y T g (v); xYdx. 97)

Using the relations obtained by replacing n with 2n in (26) and (30) and the formulas [14, p.10, Entry(1)],
[9, p.127, Entry(1)] for 0 < Reu < 1, we have

Feanfx 250} = f- s sec () uzni2n, (98)

Ko,2n {x~n-2nu; y} = _2 hot Znu " [F( )] (99)
Using the known identities for Gamma functlon [12, p.3, Entry(7)] and [12, p.5, Entry(15)]

we(2) =1 (172 (),

+1
[(w) = 24t /21 (;) r (—” > )

and substituting (98), (99) into the Equations (95), (96), (97), respectively, we get (91)-(93).

Theorem 11. If each of the integrals involved converges absolutely for |y = arg(y*™)| < m,a =
Rex*™ > 0, then we have the following identities hold true:
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LA—TL 4an

GonlLanlf (D 2y} = = 77 t4te 236 (525 Fyde, (100)
Gon P Lan{f (0 29} = 3E 7 e2ntet ™ erfe(e?y? ™) f (6)dt. (101)

Proof. Using the definitions (4) of the G,,-transform, (16) of the £,,,-transform and changing the order of
integration, which is permissible by absolute convergence of the integrals involved, we have

_An,an

Gon{Lan{f (O} ¥} =[] "7 F(O)Gonle ;yydt. (102)

Using the relation (6) and the following formula [9, p.233, Entry(11)]
C5‘1/2‘&_1/29_‘”2 v} = e®/?K,(ay/2) (103)
for |y = arg(y*")| < m, a = Rex*" > 0, we arrive at (100). Using definitions (4) of the G,,-transform,

(16) of the L£,,-transform and changing the order of integration, which is permissible by absolute
convergence of the integrals involved, we have

Gan{X* Lan{f(0; 33y} = J; tMH(OGon{x e ™ y)dt. (104)
Using the relation (6) and the following formula [9, p.233, Entry(10)]

S12{e7 %y} = a/2e™r(1/2,ay) (105)
for |y = arg(y*")| < m,a = Rex*™ > 0 and considering definitions (43) and (41), we arrive at (101).
By the following Lemma, a relation between the generalized Weyl fractional integral and the generalized
Laplace transform is given.

Lemma 12. The following identity

Wan{Lanlf (51} ¥} = o= Lon{x 2" f (2); 7}, (106)
holds true, provided that the integrals involved converge absolutely, where Re(pn) > 0, u € C.

Proof. Using definitions (35) and (15), we get

1 [ee]

Wy an{Lonlf (X);ul; v} = oo dy unTl(y?n — y2myu-l [fooo xzn‘le‘“znxznf(x)dx]du. (107)

Making the change of variable u?"™ — y?™ = t2" in (107), we have

1 ® @ n n n
Wyan{Lonlf () u}l; v} = Tﬂ).f ¢2n-1¢2n(p-1) [f x2n—1o—(t2M+y?M)x? f(x)dx|dt.
0 0

Changing the order of integration that is permissible by absolute convergence of the integrals involved, and
using the definition (15) and the relation (17), (106) is obtained.

Theorem 13. The following Parseval-Goldstein type relation

Jo £ Ruanf (0 ) Lanl g @) e = o0 7 fOX*" Lonl gu™?"; x)lx, (108)
holds true, provided that the integrals involved converge absolutely, where Rey > 0, u € C.

Proof. By the definition (36), we have
Sy, €2 IRy 0 {F (1) 300 {g (u); )t

= [ ¢l [ﬁ fot X2 — xzn)“"lf(x)dx] Lon{g(u); t}dt
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= [ X2 f(x) [F( S [ e - 2“)”_1£2n{g(u);t}dt] dx.
Then, by using the definition (35) and Lemma 12, we get

[oe]

« 1
|0 Ruanl £ D anlg i e = 5 [ 22 F ) Lon 2 M g )i )
0 0
Corollary 14. The following Parseval-Goldstein type relation

Lon {0 Roan {f @2}y = 2o [ 22 f(0erf (%) dx, (109)

holds true, provided that each of the integrals involved converges absolutely.

Proof. Setting u = 1 and g(u) = sin(2u™y™) in (108), it is obtained that

Jo” 2" Ry 20 {f () Lon{sin@umy™); hdt = o [7 fOOx2" " Lop{u 2 sin(2u"y™); x}dx.  (110)
Using the relation (17) and the formulas [14, p.153,Entry(32)], [14, p.154, Entry(34)], we get

Lon{sin(2uty™); t} = - L{sin(2vuy™); 2} = gy”t‘?’"e‘y e (111)

Lo {u=?"sin(Quy™); x} = —L{u Lsin(2Vuy™); x*"} = —e f( ) (112)
Substituting (111) and (112) into (110), it is found that

7 VAR g {f (0 e 3me Y de = [ nlerf (W) fGodx. (113)

Finally, by making change of variable t = u~1 on the left-hand side of the Equation (113) and using the
definition (15), we arrive at (109).

Corollary 15. The following Parseval-Goldstein type relation

[ 21y O, (y 2R MR, 50 (F(X); Bt = T [ x2n ey T (), y 20 () d, (114)

y2un
holds true, provided that each of the integrals mvolved converges absolutely for |[argy| < Z' 0 < Reu <
1 and E; (x) is the exponential integral function which is defined by the following identity [12,13],

E () = [ du. (115)

Proof. Setting g(u) = (y?™ + u?™)~1 into (108), we have
[ Ruanl G om0+ w2y e
0

= [y FOOXP Ly u=2 (2 + 1)~ ) dx. (116)
Using the relation (17) and the formulas [14, p.137, Entry(4) and Entry(7)], we get

2nt2n
Lon{2" +u?) 1 ) = £ F, (y2ne2m), (117)
Lon{um2n(y" 4 u2) g = “y—“) eI, y2x2"). (118)

Substituting (117) and (118) into (116), we arrive at (114).
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Theorem 16. The following identity

- _ 1 fe) _ 2n
Pon{t "Ry on{f ()t} v} = Ty J, ¥ f(arctan (17) dx, (119)
holds true, provided that each of the integrals involved converges absolutely, where Re(t%™) > |Im(y?™)].

Proof. By setting u = 1 and g(u) = sin(u?"y?") in (108), we get

Jy" €2 Ry o (f (2); O} Lon{sin(u?my®™); e = 5- 17 f X2 Lop (usin(u?y?™); x}dx. (120)
Using the relation (17) and the formulas [14, p.150, Entry(1)], [14, p.152, Entry(16)], we have

2n

. 1

Lon{sin@™y™); 8} = 3-—2 (121)
- , 1 2n

Ly {u=?"sin(u?ty?™); x} = S-arctan (i%) (122)

Substituting (121) and (122) into (120) and using the definition (3), we arrive at (119).

Lemma 17. The identity for Reu < 1, Re(t?™) > —Re(s?™), and Re(x?™) > —Re(s*"),

PRyl f () ths)3 =T P (F(x);s), (123)

2n
holds true, provided that each of the integrals involved converges absolutely.

2

Proof. Setting g(u) = e~5""4*" in (108), we get

2n,,2n znuzn .

fooo t2 IR o {f (); 3 onfe™s " t)de = %fow xLE() Ly {u= e~ ; x}dx. (124)
Using the relation (17) and the formulas [14, p.143, Entry(1)], [14, p.144, Entry(3)], we have

_<2n..2n 1 1

LZn{e stu ;t} = onsInygn’ R(—Z‘(tzn) > —RE(SZH), (125)
_ —_g2ny2n. _ 1 r(1—p

LZn{u 2npe=sTu ,X} = 2n G ysEmyi-n Re(in) > —RE(SZH). (126)

Substituting results (125) and (126) into (124) and using the definitions (1) and (11), we arrive at (123).

Theorem 18. The following Parseval-Goldstein type identity

Jy T IBAf (0); Ry 2 {g(w); t}dt = r(;—;“)fooo XL (O Py {g(W); x}dx, (127)
holds true, provided that each of the integrals involved converges absolutely, where Reu < 1, Re(t?") >
—Re(s?"), and Re(x*™) > —Re(s*™),u,t € C.

Proof. Applying the definition (1) and then changing the order of integration under the absolute
convergence condition, we get

fooo tzn_lﬁn{f(x); t}Ru,Zn{g(u)i t}dt

= fooo th—l (J‘OOO x2"=1F(x) d.x) Rulzn{g(u); t}dt

x2ngtg2n

= Jy #* T O PRy 2 g (W); 13 x}dx. (128)
Using Lemma 17 on the right-hand side of (128), the relation (127) is obtained.
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Corollary 19. The following equation holds true under the hyphothesis of Theorem 18,

I'(1 = W Lon{Propnlg@ialiy} = [, 277 1eY " B (2" 2R, 20 {g (w); thdt, (129)
where 0 < Reu < 1 and E; (x) as defined in (115).

Proof. Setting £ (x) = e™**"¥*" in Equation (127), and using the definition (15), we have

Jy R (e Ry, onfe(W);

2n ~

r(i-u) o _,2n
= = 7 a2 e Y (g (w); xYdx

= T L Prounlg () ) v} (130)
Using relation (12) and the formulas [9, p.217, Entry(11)], we get
Ple ™"t} = %S{e‘xzny; t2n) = — "M, (y2ren), (131)

Substituting (131) into (130), we arrive at (129).

Remark 20. Using relations (129) and (114), it is derived that

Lon{Propnlg@ixhiy} = 5 ) w71 ™ T,y u?™) g (W, (132)
which holds true, provided that each of the integrals involved converges absolutely for |argy| < 0 <
Reu < 1.

Corollary 21. The following identity

La{t"Ry2nlg@); 1y} = DT (P nlg () ), (133)
holds true, provided that each of the integrals involved converges absolutely.

Proof. Taking f(x) = sin(x™y™) in Theorem 18, the following identity is found:

* ¢2n1P (sin(x™y™); t}R, on{g(w); t}dt = Fa-w e x20~1sin(x"y™)P;_, nig(w); x}dx. (134)
0 u, 2n 0 K,
Using relation (12) and the formula [9, p.219, Entry(36)], we get

P {sin(x"y"); t} = —e V", (135)
Setting (135) into (134) and using the deﬂnltlons (19), (23), we arrive at (133).

Corollary 22. The following identity

2D 50, {0 )R, {9 00 0 9 = 90 SO g0 03] (136)

holds true, provided that each of the mtegrals mvolved converges absolutely, where y > 0,—k—1 <
Rev < =2k +3/2,Reu < 1.

Proof. Taking f(x) = x™*2mk 7 _(x™y™) in Theorem 18, the following identity is found:
[ et g, Gy Ry anlg s e
0

= F(;;#) fOOO xzn_lxnv+2nk<7v(xnyn)jjl—y,n{g(u); x}dx. (137)
Using relation (12) and the formula [9, p.225, Entry(10)], we get
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~ _1\k
P {xWHK g (xPyT); £} = 2(2111) Nk ge (yngn). (138)
Setting (138) into (137) and using the definitions (19) and (23), we arrive at (136).

3. SOME ILLUSTRATIVE EXAMPLES

Example 23. It is shown that for Rea?™ > 0,Rev > —1,—1 < Rea < 0,

- B _grl-i-_a 1+a+v
Jo wFerEnTlg, (@Mt K, (aP P du = 8n(a22"“1221 F%l—;+v%1 (139)
2

where 7, [13, p.5, Entry(12)] and X,, [13, p.5, Entry(13)] are Modified Bessel functions of first and second
kind of order v, respectively and B(x, y) is the beta function [12, p.9, Entry(1)].

Demonstration. Setting
_ 1
f(x) - xZn(x4-n+4a4-n)1/2 (140)
in relation (63) of Corollary 5, and using the relationship obtained by replacing n with 2n in (21) and the
known formula [9, p.23, Entry(11)], for Rea?™ > 0, Rev > —1, we have

1 n
}[v,Zn {W; u} = Z_njv/z (aznuZn):Kv/Z (aZnuZn)_ (141)

Using relationship (5) and the known formula [11, p.174, Entry(m)], for =1 < Rea < 0, we get

gzn{x—Zn—Zna; 21/2na} _ a—Zna—an (_E 1+_a) (142)

2a+3n 2’ 2

Substituting (140), (141) and (142) into (63), assertion (139) is obtained.
Example 24. It is shown that for Rev > 0,

%V,Zn{x_zn(v_l/z) (x4n _ a4n)v—1H(x2n _ a2n); y}

v—2
_2 nI‘(v) y—2n(v—1/2)g(0(32ny2n)’ (143)
where H is the Heaviside function [1, p.15, Entry(2.3.9)].

Demonstration. Putting

gw) = u=2"V+1/2) o5 (a?mMuPm) (144)
in identity (53) of Corollary 3 and using relation (5) and the known formula [11, p.174, Entry(b)], we have
Gonlcos(azmuzny; yy = 1l@73) (145)
Using the relationship obtained by replacing n with 2n in (21) and the formula [9, p.37,Entry(30)] for
Rev > —1/2, itis found that

—2n(v+1/2) 2n.,2n 1 Vr(xin—gin)’ 2 2n 2n
Iy onfu cos(a®™u®™); x} = ZszznV—nr(vﬂ/z)H(x —a"), (146)

where H is the Heaviside function. Substituting (144), (145) and (146) into (53) and settingv =v — 1/2,
we arrive at (143).

Example 25. It is shown that for —1/2 < Rev < 0,

Gon{w2" D3, (@M — L, (@™ )

2nv+n
_ \/Ey— [Yv+1/2 (aZnyZn) _ Hv+1/2 (aZnyZn)] (147)

2 2namsin(mv)
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where 7, is the modified Bessel function [9, p.5, Entry(12)], L,, is the Modified Struve function [13, p.38,
Entry(52)], Y,, is Bessel function of order of v [12, p.4, Entry(4)] and H,, is the Struve function [13, p.38,
Entry(55)].

Demonstration. Setting

f(X) — x—va—Zn(x4n + a4n)—1 (148)
in identity (45) of Theorem 1 and using the relation obtained by replacing n with 2n in (21) and known
formula [9, p.23,(14)] for Re(v) > —1/2,Rea®™ > 0, we have

=-2nv—n 1 _ _
}[V,Zn {;MW; u} = a%a 2nv Znun[jv(aZnuZn) _ Lv(aZnuZn)]_ (149)

Using the relation obtained by replacing n with 2n in (26) and the formula [9, p.128,Entry(7)] for Rev < 0,
Rea?™ > 0, Rey?" > 0, we get

X—2nv—2n } 1.[2 ynCSC(T[V)

Kyv+1/2,2n {miy = 8n aznvn [Yv+1/2(32n}’2n) - Hv+1/2(32n}’2n)]- (150)
Setting (148), (149) and (150) in (45), we arrive at (147).

Example 26. It is shown that

—a2ny2n _ |2a? (ZyZn)V"'l/Z 3

Hy (U2 Dt gy = 2 i T (v 3), (151)
where Rev > —3/2,Rey?™ > |Ima?"|.
Demonstration. Putting

f(x) = x*"Jo(a*"x*™) (152)
in relation (46) of Theorem 1 and using (5) and the formula [11, p.174, Entry(f)], we have

B o—aZmuZn

Gon{x?"Jo(@®"x* M) u} = ———. (153)

Using the relation obtained by replacing n with 2n in (26) and the known formula [9, p.137, Entry(17)] for
Rev > —3/2, we get

v+1/2,,2nv+2n
7Cv+1/2,2n{x2nv+2n<70(aznxzn)i3’} =—2_X T (V + %) (154)

2n (y*n+qin)v+3/2

Substituting (152), (153) and (154) into (46) of Theorem 1, the assertion (151) is obtained.

Example 27. It is shown that

o e ety () r(-)
fo (y4n4q4n)v+3/2 Y= an F(v+g) ’ (155)
where 0 < Re(2 — a +v) < 3/2 and Rev > —3/2.
Demonstration. Setting
f(X) — xZnV+2nJ0(a2nx2n) (156)

in relation (64) of Corollary 5 and using the formula (154), we have

® yzn(v+a+1)—1 _Za—v—zr(%_'_%_%)r(%_%)]v[ 2n,.2n 2n(2 157
f() (y4n+a4n)v+3/2 y = I’(V+%) {Jo(a X ): Tl( —a+v)}, ( )

where M is the Mellin Transform [14, p.305]. Using the formulas [14, p.307 Entry(5)] for h = 2n and [14,
p.326, Entry(1)], we get



377 Durmus ALBAYRAK, A. Nese DERNEK/ GU J Sci, 36(1): 362-381 (2023)

M{Jo(@2x2%); 2n(2 — @ + v)} = 1 2er(ighg) (158)

n azn(z—a+v)p(ﬁ_ﬂ)'
2 2

where 0 < Re(2 — a + v) < 3/2. Substituting (158) into (157), (155) is obtained.

Example 28. It is shown that

0 _ -2nu

Jy, y*tcos(a®y™ydy = I wcos () (159)
where 0 < Reu < 1.
Demonstration. Putting

g(y) = cos(@®"y*™) (160)
in relation (93) of Corollary 10, we get

(00} 2 [ee]
fo yZnu—lcos(aZnyZn)dy _ 2M+2p fo x‘zn”“l‘1760,2n{y‘“c05(a2ny2n);X}dx. (161)

()
Using the relation obtained by replacing n with 2n in (26), the formulas [13, p.79, Entry(15)] and [9, p.137,
Entry(17)], we have

T x™

Koanly "cos(@"y*™);x} = o (162)
Setting (162) in (161), it is found that

Iy y?tcos(@2my?M)dy = —2— Gy {x M ), (163)

(=)l
sing the relation or0<Re(w) <l,a=1l,v=pandu =a, is obtained.
Using the relation (65) for 0 < Re(u) < 1 1 uand (159) is obtained
Example 29. It is shown that for Re(v) > —1/2 and —Re2v < Reu < 3/2
Bi-p I
f0°° uZnu—lgv(aZnuZn)%v(QZnuZn)du — (2’ 2 )F(V+z) (164)

8na2nl‘F(1+v—%)'

where 7, [13, p.5, Entry(12)] and X, [13, p.5, Entry(13)] are Modified Bessel functions of first and second
kind of order v, respectively.

Demonstration. Putting

9) = Joy(2a"y?™) (165)
in relation (91) of Corollary 10 and using relation (5) and the formula [11, p.174, Entry(g)] for Re(v) >
—1/2, we get

ni-p
fom u?=17 (e u?™)K, (a? u?")du = @M{JZV(ZaZ”yzn); 2nul. (166)
Using the formulas [14, p.307 Entry(5)] for h = 2n and [14, p.326 Entry(1)], it is found that
u
M{Jzy (2a*"y?™); 2np} = 1 rhd) (167)

4n a2"”F(1+v—%)’

where —Re2v < Reu < 3/2. Setting (167) in (166), (164) is obtained.

Remark 30. Example 29 could be obtained easily by setting « = 4 — 1 and v = 2v in Example 23.
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Example 31. It is shown that

f°° x—2n(u+V)—1 F (11 v+, U+ 1: _ﬂ) dx = F(v+1)1"(¥+%)[1"(1_7“)]2 (168)
0 S O S ¥

where Rev > —1,—Rev < Reu < 3/2,Rex?" > |Ima?"|.

Demonstration. Setting

9 = J,(@*"y*™) (169)
in relation (93) of Corollary 10, we get

M{Jv(aznyzn):ZnM}—[z(u T)L]zf XTI oy Ty @2y x}dx,  (170)

where —Rev < Reu < 3/2. Using the relation obtained by replacing n with 2n in (26) and the formula [9,
p.137, Entry(17)] for Rev > —1, we have

2
- — 1
2nv —2nv n[!—-(z 1

Ko,anly "y (@MY x} = 2] B+ v+ -5, (171)
0,2n y v y 2F(V+1) 241 2 2 an

where Rev > —1, Rex?" > |Ima2”|. Substituting the relation (167) for v =v/2,a = 2V/?"q and (171)
into (170), (168) is obtained.

1 a

Example 32. It is shown that

?Zn{u an(‘ (aZnuZn) S} — zln 47;271 [ O(aZnSZn) _ YO(aZnSZn)]’ (172)

where %, is Modified Bessel functions of second kind of order v [13, p.5, Entry(13)], Y,, is Bessel function
of second kind order of v [12, p.4, Entry(4)], H,, is the Struve function [13, p.38, Entry(55)].

Demonstration. Setting

g() = cos(a*"y*™) (173)
in (86) of Corollary 9 and using (17) and the formula [14, p.138, Entry(10)], we get

1 1
LZn{(x4n+a4n)1/2;S} 2nTZt[Ho(aZ"sz") Yo (a?s?M)]. (174)

Substituting (145), (162), (173) and (174) into (86), we arrive at the assertion (172).

Example 33. The following equation holds true under the hypothesis of Corollary 14,

f x~nv-1)- 1erf( )dx —\/_7:(11 :)) ( ) (0 < Rev). (175)

Demonstration. Setting £ (x) = x~*@*1 in (109), we get

Loy {u_nRLZn {x‘n(““);%};y} S L fooo x MV D-1gpf (z—Z) dx. (176)

2nyn

Using definitions (36) and (15) on the left-hand side of (109), we have
_ 1 _ _ —nv
Lon {u n [fo /u x—n(w+1) 1dx] ;}/} = 2n3;(1—v) r (g) 77

Substituting (177) into (176), (175) is obtained.
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Example 34. The following equation holds true under the hypothesis of Theorem 16,

—qyn+1) -
f L vHD- 1arctan( )dx T csc (n(v 1)), (-3 <Rev<1). (178)

2n(v+1) 4

Demonstration. Setting f(x) = x™¥~1 on the left-hand side of Equation (119) and using the formula [9,
p.216, Entry(5)], we have

Zn{t”(v—l);y} - Z csc (n(v_l)). (179)

ijn{t_ {xn(v+1) t} y} = n(v+1) 4n2(v+1) 4

Finally, by setting (179) into Equation (119), (178) is obtained.

Example 35. The following equations hold true under the hypotheses of Theorem 18,

a—-1 E)

r +
f0°° t3n+a—zey2“t2nE1(yZnth)dt — (Zn 2

T 1

) 180
2n sin(n(‘é—;l+;)) ysmrat (180)
®©  2n+a-2,y*"u?" 2n,,2n N F(az_:ql-%)
Jo u ey r1/2;y*™u?™du = X (181)
Sin(n(7+5)) y
1
where——< Re( ) <-3
Demonstration. Setting u = 1/2 and g(u) = u®~! into (129) and (132), we have
F(1/2) Lon{Pryonfu b xky} = [y 27 1€ " By (Y22 Ry n (UL L)L, (182)
Using the relations (13) and (17) and formulas [14, p.133,Entry(3)] and [9, p.233, Entry(8)], we get
- _ 1 (G )r(G-5 _
P12 nlu® 1;x}=z (5 \)/E(Z 2 )x”+"‘ (-1 <Re( )< ——) (183)
vam1. .y - LTG5 s a-1
Lonfx™ ey = 2iEm) (-2 < Re(22)). (184)
In addition, using the definition of (35), we have
:R1/2,2n{ua_1; t} — \/iﬁfot uZn—l(th _ u2n)—1/2ua—1du. (185)

Changing the variable in (185) to u = ty'/?™ and using the definition of beta function, we get

oy fn+a-1 r( +1)
Rijponu® it} = on F(az:1+z)-

Substituting (183), (184) and (186) into (129) and (132), respectively, we arrive at (180) and (181).

(186)

4. CONCLUSION

It could be concluded that there are many other infinite integrals which could be evaluated in this manner
by applying the Lemma, the theorems and its corollaries considered here. Also, the new equalities in this
manuscript could be used in many other topics. Fractional calculus is frequently applied in other fields of
sciences and medicine, as it could be seen that it was used for modeling in various areas [15-20]. We believe
that the relations in this manuscript could be used in different disciplines in the future.
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