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1. Introduction 
The determination of a geoid for national heighting has been 
one of the major research areas in geodesy, geophysics, 
oceanography and has drawn the attention of many 
researchers. The essence is to convert ellipsoidal height into 
orthometric height and vice versa (Odera et al., 2014; Abeho 
et al., 2014; Erol, 2011). This is because for practical 
applications such as structural health monitoring, road and 
building construction, extraction of metallic minerals, 
oceanographic studies for sea surface topography 
interpretation, the orthometric heights referenced to the 
geoid are mostly used (Yilmaz et al., 2017; Gucek and Basic, 
2009; Rummel and Sanso, 1993). However, determining a 
geoid to fit an area of interest is still a challenging task (Al-
Krargy et al., 2017). In view of that, several scholars have 

proposed different methodologies to estimate the geoid with 
a good precision. 
 
Several studies have suggested that the geoid could be 
obtained either by a gravimetric or geometric approach 
(Yilmaz et al., 2017; Al-Bayari and Al-Zoubi, 2007). The 
presented study considered the latter approach in 
determining the local geoid due to unavailability of 
gravimetric data for the study area. The various geometric 
approaches that have been applied in the past and recent 
years include the Least Squares Collocation (LSC) (Ramouz 
et al., 2020; Doganalp and Selvi, 2015; Ophaug and Gerlach, 
2017; Darbeheshti, 2009), Moving Least Squares (MLS) 
(Kiani, 2020), Polynomial Regression Model (PRM) (Peprah 
et al., 2017; Soycan, 2014; Erol, 2011; Sanlioglu and Maras, 

 

IJESKA 
contribution to science 

 

www.ijeska.com 
ISSN: 2687-5993  

International Journal of Earth Sciences Knowledge and Applications 
RESEARCH ARTICLE  

Modelling Local Geometric Geoid using Soft Computing and Classical Techniques: 
A Case Study of the University of Mines and Technology (UMaT) Local Geodetic 
Reference Network   

 
Bernard Kumi-Boateng 1*, Michael Stanley Peprah 1 

1Faculty of Mineral Resources Technology, Department of Geomatic Engineering, University of Mines and Technology, Tarkwa, Ghana   

 
I N F O R M A T I O N  A B S T R A C T 

Article history 
Received 22 August 2020 
Revised 21 September 2020 
Accepted 22 September 2020 
Available 15 October 2020 
 
Keywords 
Artificial Neural Networks 
Geodetic Reference System 
Geoid Modelling 
Global Navigation Satellite System, 
Polynomial Regression Model 
 
Contact 
*Bernard Kumi-Boateng  

  kumi@umat.edu.gh  

 

Geoid determination for national heighting is one of the major research focuses in geodetic 
sciences. Many studies in the past and recent years have suggested various mathematical 
techniques for local geometric geoid modelling. This study considered an empirical evaluation 
of soft computing techniques such as Backpropagation Artificial Neural Network (BPANN), 
Multivariate Adaptive Regression Spline (MARS), Generalized Regression Neural Network 
(GRNN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and conventional methods such 
as Polynomial Regression Model (PRM), and Multiple Linear Regression (MLR). The motive 
is to apply and assess for the first time in our study area the working efficiency of the 
aforementioned techniques. Each model technique was assessed based on performance 
criteria indices such as mean error (ME), mean square error (MSE), minimum and maximum 
error value (rmin and rmax), correlation coefficient (R), coefficient of determination (R2) and 
standard deviation (SD). The statistical analysis of the results revealed that ANFIS, GRNN, 
MARS, BPANN, MLR and PRM, successfully estimate the geoid heights with a good 
precision for the study area. However, ANFIS outperforms BPANN, MARS, MLR, PRM, 
and GRNN in estimating a local geoid height. In terms of ME and SD, ANFIS achieved 
0.0445 m and 0.0013m as compared to BPANN, MARS, MLR, PRM, and GRNN which 
achieved 0.1462 m, 0.0059 m, 0.1423 m, 0.0148 m, 0.3117 m, 0.0102 m, 0.1798 m, 0.0208 m, 
0.0878 m and 0.0023, respectively. The main conclusion drawn from this study is that, the 
method of using soft computing is promising and can be adopted to solve some of the major 
problems related to height issues in Ghana.  
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2011; Kutoglu, 2006), Geostatistical Kriging (Erol and Celik, 
2004) and the use of Earth Gravitational Model (EGM) 
(Pavlis et al., 2008; Pavlis et al., 2012; Kotsakis et al., 2008; 
Featherstone and Olliver, 2013; Peprah et al., 2017). 
 
Even though these techniques have been utilized, they exhibit 
some practical drawbacks as elaborated by several scholars. 
The efficiency of LSC for global and regional modelling does 
not hold without modifying the cross-variance function 
(Ophaug and Gerlach, 2017; Darbeheshti, 2009). The PRM 
has a few problems associated with it. The best fit is obtained 
when the order is high (Chen and Hill, 2005; Tusat, 2011), 
but rather creates higher distortions when using the derived 
unknown parameters (Poku-Gyamfi, 2009).  
 
Hence, there is the need to keep the order as low as possible. 
Increase in distance introduce noise and increase variance 
when using the Kriging method (Erol and Celik, 2005). EGM 
accuracy cannot satisfy any civil engineering works (Al-
Krargy et al., 2017) and its values need to be validated using 
independent datasets (Abeho et al., 2014). In view of that, 
researchers have tried to evaluate the performance of soft 
computing techniques for local geoid modelling.  
 
Notably, the Artificial Neural Network (ANN) is one of the 
commonly used soft computing methods (Veronez et al., 
2011; Kaloop et al., 2017; Akyilmaz et al., 2009). ANN 
techniques which is most widely used in geoscientific 
discipline can form linear relationship between nonlinear 
variables (Ziggah et al., 2016). ANN have been used to solve 
some of the problems related to height issues in geodesy. 
Notable among them are GPS heights transformation 
(Yilmaz et al., 2017; Fu and Liu, 2014; Wu et al., 2012; Liu 
et al., 2011), and geoid modelling (Kao et al., 2017; Zaletnyik 
et al., 2007; Akcin and Celik, 2013; Ahmadi et al., 2016; 
Kavzoglu and Saka, 2005; Pikridas et al., 2011; Kutoglu, 
2006).  
 
The authors concluded that, the results achieved by ANN 
models’ techniques are encouraging and provides promising 
testaments in the future for solving some of the problems 
related to height issues (Akcin and Celik, 2013; Veronez et 
al., 2011; Akyilmaz et al., 2009). Multivariate Adaptive 
Regression Spline (MARS) invented by Friedman (1991) is a 
soft computing technique which has been extensively used to 
solve some problems in geoscientific discipline.  
 
Some of the areas of application include slope stability 
analysis (Samui, 2013), prediction of river water pollution 
(Kisi and Parmar, 2015), modelling of reservoir induced 
earthquakes (Samui and Kim, 2012), regional spatio-
temporal mapping (Durmaz and Karslioglu, 2011) and 
modelling of the ionosphere (Durmaz et al., 2010; Nohutcu 
et al., 2010). These studies have shown that, the MARS 
model has the ability to train independent variables (input) 
with several basis functions to yield an optimal dependent 
variable (output) (Samui, 2013). 
 
The local geoid was established in the University of Mines 
and Technology (UMaT), Tarkwa which happens to be the 
study area. This study for the first time in Ghana, applied and 

assessed the performance of soft computing techniques 
namely Adaptive Neuro-Fuzzy Inference System (ANFIS), 
MARS, Generalized Regression Neural Network (GRNN), 
Backpropagation Artificial Neural Network (BPANN) and 
conventional techniques such as Multiple Linear Regression 
(MLR) and Polynomial Regression Model (PRM) as 
effective tools for modelling local geoid in the study area. 
Each model technique was assessed based on performance 
criteria indices such as ME, MSE, minimum residual value 
(rmin), maximum residual value (rmax), and SD. This study will 
therefore create the opportunity for researchers in Ghana to 
know the performance of using soft computing techniques in 
solving some of the problems related to heights issues in the 
country. The authors were motivated to embark on this study 
since the aforementioned techniques is yet to be conducted in 
Ghana. 
 
2. Resources and Methods Used 
The study area (Fig. 1a to 1d) is found in a mining 
community in the Southwestern part of Ghana with 
geographical coordinates between longitude 001º 59´ 55ʺ 
West (W) to 002° 00ʹ 15˝ W and latitude 005º 17´ 45ʺ North 
(N) to 005° 18ʹ 00˝ N. The area has an average altitude of 
about 78 m above Mean Sea Level (MSL) (Peprah et al., 
2017). The type of coordinate system used in the study area 
is the Ghana projected grid derived from the Transverse 
Mercator 01º North West (NW). The horizontal geodetic 
datum of the study area is the War Office 1926 ellipsoid, and 
the vertical datum is the MSL which approximate the geoid 
(Ziggah, 2014). 
 
Primary data collected from the study area was used in this 
present study. The data consists of 328 control points 
collected with the Differential Global Positional System 
(DGPS) receivers and Total Station instruments. The data 
comprise of three-dimensional geographical coordinates 
namely latitude, longitude, and ellipsoidal heights denoted as 
(𝜑, 𝜆, ℎ) obtained from the GPS while eastings, northings, 
and orthometric heights denoted as (E, N, H) was recorded 
using the Total Station instrument for the selected controls of 
the study area.  
 
Fig. 2 shows the control points distribution map of the study 
area. The fast-static GPS survey technique was adopted 
during the field work in collection of data points. The 
reference receiver (base station) was a Continuous Operating 
Reference Station (CORS) located at UMaT campus. 
Because observations period was short, the rovers were 
allowed to occupy each point for a minimum period of five 
minutes to acquire more satellites position for better output 
results. After data collection, there was a post-processing of 
the raw GPS data using specified processing software to get 
the real coordinates of each fixed position.  
 
However, it is worth acknowledging that, one of the 
contributing factors affecting the estimation accuracy of 
models is related to the quality of datasets used in model-
building (Devi and Karthikiyan, 2015; Dreiseitl and Ohno-
Machado, 2002; Ismail et al., 2012). Therefore, to ensure that 
the obtained field data from the GPS receivers are reliable, 
several factors such as checking of overhead obstruction, 
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observation period, observation principles and techniques as 
suggested by many researchers (Yakubu et al., 2018; Yakubu 
and Dadzie, 2019) were performed on the field. In addition, 
all potential issues relating to DGPS survey work were also 

considered. The mean values of the ellipsoidal heights and 
orthometric heights data used for the estimation of the local 
geometric geoid heights were 108.8500 and 73.6558 m, 
respectively.  

   
 
 

 
 

Fig. 1a. African map showing the location of Ghana 
 
 

 
 

Fig. 1b. Regional Map of Ghana showing the Location of the study area 
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Fig. 1c. Digital Elevation Model of the study area 
 
 
 

 
 

Fig. 1d. An aerial photo of the study area 
 
 
 

2.1. Methods 
2.1.1. NGPS/Levelling Estimated Geoidal Heights 
Computation 
The geometric technique for estimating geoidal heights using 
GPS obtained ellipsoidal height (h) collocated with 
orthometric height (H) was done according to Eq. 1. The 
estimated geoidal heights (N) derived from GPS ellipsoidal 
heights and orthometric heights are referred to as 
NGPS/Levelling. 

   HhN LevellingGPS /  (1)    
 
where NGPS/Levelling is the estimated geoidal heights, h is the 
ellipsoidal height from GPS measurements and H is the 
orthometric height obtained from levelling procedure. The 
statistical analysis of the NGPS/Levelling estimated geoidal 
heights; thus, maximum value, minimum value, mean value 
and SD is given by Table 1. Fig. 3 is the histogram graph 
analysis of the computed local geometric geoidal heights.  
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Fig. 2. Control points distribution map of the study area 
 
 
 
 

2.1.2. Polynomial Regression Model (PRM) 
In this study, a PRM was adopted to model and predict the 
geoidal height values produced by Eq. 1. The horizontal 
geographical coordinates (𝜑, 𝜆) were used as the independent 
variables. The general expression of an m-degree polynomial 
interpolation is given by Eq. 2 (Yilmaz et al., 2017) as; 
 

   








m

i

m

j

ji
ijaZ

0

1

0

),( 
 

(2)    

                                                                                                                                          
where 𝑍(ఝ,ఒ) is the geoidal height information of the point 
with known horizontal coordinates (𝜑, 𝜆) and 𝑎௜,௝ is the 
unknown polynomial coefficients to be estimated, (𝑖, 𝑗 =
0, … , 𝑚) . The Simple Planar (SP) polynomial model was 
adopted in this study due to its efficiency and performance in 
estimating local geoid heights as recommended by (Peprah et 
al., 2017; Dawod et al., 2010; Dawod, 2008). The general SP 
polynomial model is denoted by Eq. 3 given as; 
 

   
 210 aaaN sUndulation 

     (3)    
 
where 𝑁௎௡ௗ௨௟௔௧௜௢௡ is the estimated geoidal height, 𝜑, 𝜆 are the 
geographical coordinates of the horizontal position, 𝑎௜,௝ are 
the unknown parameters that can be determined using least 
square approach. The least squares approach has been 
successfully and frequently applied in geodetic sciences. 

Therefore, the mathematical backgrounds and theories of the 
method will not be repeated here. A more comprehensive 
detail on them can be found in the work of Ghilani (2010). 
 
2.1.3. Multiple Linear Regression (MLR) 
MLR is a nonlinear regression model in which observational 
data are modelled by a function Z(f(x)) and depends on one 
or more independent variables (Tiryaki, 2008). MLR was 
adopted in this study to estimate a local geoid height 
produced by Eq. 1. MLR fits a linear combination of the 
components of multiple input parameters to a single output 
parameter (Ziggah et al., 2016; Sheta et al., 2015) defined by 
Eq. 4 as; 
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where 𝛼଴ is the intercept (values when all the independent 
variables are zero) (Ziggah et al., 2016) with 𝛽௜ values 
denoting the regression coefficients. In Eq. 4, i is an integer 
varying from 1 to M, where M is the total number of 
observations and x is the three-dimensional geographical 
coordinates (𝜑, 𝜆, ℎ).  
 
2.1.4. Adaptive Neuro-Fuzzy Inference System (ANFIS) 
ANFIS is an integrated model between ANN and Fuzzy 
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logic algorithms (Kaloop et al., 2017). The detail theoretical 
concept can be found in the following available literature 
(Acar et al., 2006; Tusat, 2011; Eldessouki and Hassan, 2015; 
Akyilmaz et al., 2009; Erol and Erol, 2013). In the ANFIS 
model formulation, the dataset was divided into training 
data (70 %) and testing data (30 %). The training data are 
the inference points which were used to estimate the ANFIS 

model parameters, whiles the test data was used to validate 
the estimated model parameters (Akyilmaz et al., 2009). The 
input variables (independent variables) were the three-
dimensional geographical coordinates of longitude, latitude 
and ellipsoidal heights denoted as 𝜑௜,௝ , 𝜆௜,௝ , ℎ and the output 
variable (dependent variables) were the estimated geoidal 
heights by Eq. 1 (𝑁௜,௝) was used in this stage.

 
 
 

Table 1. Statistical analysis of NGPS/Levelling estimated geoidal heights (units in meters) 
 

PCI max min mean SD 

N 46.8177 21.4702 35.5774 0.0022 

 
 
 
 

 
 

Fig. 3. Histogram graph analysis of NGPS/Levelling estimated geoidal heights 
 
 
 
 

Numerous types and membership functions are available 
hence, for geodetic purpose, membership functions of the 
Gaussian type are the most appropriate ones to be used 
(Akyilmaz et al., 2009). The optimum number of member 
functions for each input variable is obtained by trial and error 
approach. The output member functions are the first order 
polynomials of the input variables (Yilmaz and Arslan, 
2008). 
 
The number of the output member functions depend on the 
number of fuzzy rules which are the number of all 
combinations of the input membership functions (Tusat, 
2011). There are several mathematical methods that can be 
used for the ANFIS training. The hybrid training algorithm 
proposed by Jang (1993) was adopted in this study because 
of its rapid convergence to the global optimum solution 
(Akyilmaz et al., 2009). After the parameters of the ANFIS 

model are estimated after the training step, they are used to 
calculate the geoid heights at the test data points according to 
Eq. 5 (Kaloop et al., 2017) given as; 
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where 𝑓௜ are the estimated parameters, 𝑥௜ are the model 
inputs, 𝑤௜  are normalized weights, and n is the number of 
points.  
 
The best model achieved by the soft computing techniques 
were analyzed based on their MSE, correlation coefficient 
(R), and coefficient of determination (R2). Their 
mathematical representation is found in model performance 
assessment section. 
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2.1.5. Generalized Regression Neural Network (GRNN) 
GRNN which was first introduced by Specht (1991) is a 
different kind of Radial Basis Function Neural Network 
(RBFNN) which is built on Kernel regression network 
(Hannan et al., 2010) with one pass learning algorithm and 
highly parallel structure (Dudek, 2011). GRNN consist of 
four layers namely; input layer, pattern layer (radial basis 
layer), summation layer, and output layer. In this study, the 
input variables (independent datasets) were the latitude, 
longitude, and ellipsoidal height denoted as 𝜑௜,௝ , 𝜆௜,௝ , ℎ௜,௝ and 
the output variables (dependent datasets) were the estimated 
geoidal heights by Eq. 1 denoted as (𝑁௜,௝).  
 
The number of input units in the first layer depends on the 
total number of the observational parameters. The first layer 
is connected to the pattern layer and in this layer, each 
neuron is being presented by a training pattern and its output. 
The pattern layer is connected to the summation layer. The 
summation layer consists of two different types of summation 
namely, single division unit and summation unit (Hannan et 
al., 2010).  
 
The summation with output layer combined perform a 
normalization of output datasets. In training of the network, 
radial basis and linear activation functions are used in hidden 
and output layers. Each pattern layer unit is connected to two 
neurons in the summation layer. One neuron unit computes 
the sum of the weighted response of the pattern, and the other 
neuron unit computes unweighted outputs of pattern 
neurons. The output layer divides the output of each neuron 
unit by each other yielding the estimated output variables.  
 
In this present study, the Gaussian function is applied, and 
the output neuron is a summation of the weighted hidden 
output layer given by Eq. 6 (Erdogan, 2009); 
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where n is the number of hidden neurons, 𝑥 𝜖 𝑅ெ is the input, 
𝑘௝are the output layer weights of the radial basis function 
network, 𝜒௝(𝑥) is Gaussian radial basis function given by Eq. 
7 (Srichandan, 2012; Idri et al., 2010); 
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where 𝑐௝ 𝜖 𝑅ெ and 𝜎 are the centre and width of jth hidden 

neurons respectively,  denotes the Euclidean distance. 
 
2.1.6. Multivariate Adaptive Regression Splines (MARS) 
The MARS model developed in this study for the geoidal 
height estimation was constructed in a two-phase procedure 
namely, the forward and the backward phase. In the forward 
phase, basis functions are added, and potential knots are 
determined to improve the model’s performance, resulting in 
overfitting. Therefore, in the backward phase the least 
relevant basis functions are deleted (Samui, 2013). A general 

MARS model can be written in the following form as denoted 
by Eq. 8 (Friedman, 1991); 
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where 𝑍(௫) is the output variable (geoidal height), 𝛼଴ is a 
constant, 𝛽௜ is a vector coefficient of the non-constant basis 
functions, 𝑏𝑗𝑖(𝑋௩(𝑗, 𝑖)) is the truncated power basis function 
with 𝑣(𝑗, 𝑖) being the index of the independent variable used 
in the 𝑖௧௛ term of the 𝑗௧௛ product, and 𝑘௜ is a parameter that 
limits the order of interactions (Samui and Kim, 2012; Adoko 
et al., 2013).  
 
It must be known that in the forward process, the basis 
functions were selected according to Eq 8. In the backward 
elimination process, the ineffective basis functions are 
removed based on the generalized cross-validation (GCV) 
criterion (Craven and Wahba, 1979). The GCV criterion is 
defined by Eq. 9 as; 
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where M is the number of basis function, 𝛿 is the penalty 
factor (Craven and Wahba, 1979), N is the number of 
observations, 𝑦௜  is the 𝑖௧௛ measured element and 𝑥௜  denotes 
the 𝑗௧௛  predicted value of the model.                                                                     
 
2.1.7. Backpropagation Artificial Neural Network 
(BPANN) 
BPANN is an effective multilayer perceptron (MLP) model 
(Yilmaz et al., 2017) and is widely used due to its simple 
implementation (Ziggah et al., 2016). BPANN consists of 
one input layer with M inputs, one hidden layer with q units 
and one output layer with n outputs (Mihalache, 2012). The 
M inputs in this study were the geographical coordinates 
(𝜑௜,௝ , 𝜆௜,௝ , ℎ௜,௝), the q units were achieved by a trial and error 
training in changing number of hidden neurons, and the n 
outputs were the estimated geoid heights (Ni) achieved by the 
BPANN model. The output of the model (yi) with a single 
output neuron is represented by Eq. 10 (Ziggah et al., 2016; 
Mihalache, 2012); 
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where Wj is the weight between the hidden layer and the 
output layer, 𝑤௜,௝ is the weight between the input layer and 
the hidden layer, and xi is the input parameter. In this study, 
the selected input and output variables were normalized into 
the interval [-1, 1] using Eq. 11 given as (Mueller and 
Hemond, 2013); 
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where 𝑍(𝑖) represents the normalized data, 𝑥௜ is the measured 
geoid height values, while 𝑥௠௜௡ and 𝑥௠௔௫  represent the 
minimum and maximum value of the measured geoid 
heights with 𝑦௠௔௫  and 𝑦௠௜௡ values set at 1 and -1, 
respectively. The optimal model was obtained based on the 
lowest MSE, R and R2. Their mathematical expression is 
represented by Eq. 12 to Eq. 14 respectively as; 
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where 𝛼௜ and 𝛽௜ are the measured and predicted geoid heights 
from the BPANN model.  
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Here, N is the total number of test examples presented to the 
learning algorithm, 𝛼௜ and 𝛽௜ are the measured and predicted 
geoid heights from the BPANN learning approach, while 𝛼ത 
and �̅� is the mean of the calculated and predicted geoid 
heights. i is an integer varying from 1 to N where N is the total 
number of observations.  
 
The present study adopted one hidden layer in the BPANN. 
This decision was in line with literature and conclusion made 
by (Hornik et al., 1989) that the BPANN with one hidden 
layer could be used as a global approximator for any discrete 
and continuous functions. Furthermore, to introduce non-
linearity into the network, the hyperbolic tangent activation 
function was selected for the hidden units, while a linear 
function was applied for the output units. The hyperbolic 
tangent function is defined by Eq. 15 (Yonaba et al., 2010) 
as;  
 

   𝑍(𝑥) = 𝑡𝑎𝑛ℎ( 𝑥) =
ଶ

ଵା௘షమೣ − 1 (15)   

 
where x is the sum of the weighted inputs.  
 
2.2. Model performance assessment 
In order to determine the accuracies of the models being 
used, statistical error analysis was carried out. The statistical 
indicators applied were the ME, MSE (Eq. 12), R (Eq. 13), R2 
(Eq. 14), rmin, rmax, and SD. Their mathematical expressions 
are given by Eq. 16 to Eq. 19, respectively, as; 
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(16)   
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(19)   

 
where, n is the total number of the observations, 𝛼௜ and 𝛽௜ are 
the measured and predicted geoid heights from the various 
techniques, 𝜇 denote the residual between the measured and 
estimated geoid height, 𝜇 ഥ is the mean of the residual and i is 
an integer varying from 1 to n. 
 
3. Results and Discussions 
The optimal model achieved by the BPANN model after 
successive iterative training was [3 15 1]. Thus, 3 input 
variables (independent dataset), 15 hidden neurons and 1 
output variable (dependent dataset). The network was 
allowed to train for 5000 epochs for each iterative training. 
The optimal ANN architecture was selected based on the 
lowest MSE and highest R. The optimal model for the GRNN 
was achieved by varying the spread parameter between 0 and 
1 until the best results was achieved. In the MARS model 
formulation, 21 basis functions were used in the forward 
training, 2 basis functions were used in the final model 
formulation thus, 19 basis functions were removed during the 
backward training due to overfitting. The optimal MARS 
equation for estimating the geoid heights is given by Eq. 20 
and the number of basis functions used is tabulated by Table 
2. 
 

  𝑁௜,௝ = 0.556571 + 1.01427 X BF1 + 3122.18 X BF2   (20)   
 
ANFIS model was trained for specific epoch by varying the 
number of membership functions. The summarized results of 
the training and testing by all the soft computing techniques 
is represented by Table 3 below. Based on the statistical 
results given in Table 3 below, it can be observed that soft 
computing techniques provide satisfactory results in 
estimating local geoid heights with much better accuracy for 
the study area. The rmin and rmax are very quiet encouraging. 
The MSE of both training and testing are quite good and very 
much encouraging. In addition, the R and R2 which ranges 
from (0 to 1) shows how closely the estimated values from 
the models corresponds to the actual data (dependent 
variables).  
 
As seen from Table 3 below, R and R2 conform that soft 
computing techniques have successfully provided good 
approximations with much better accuracy. However, 
ANFIS have proven to be a powerful realistic alternative tool 
in computing local geoid heights for the study area with 
much better accuracy as compared to the other soft 
computing techniques. The soft computing techniques 
(ANFIS, BPANN, MARS, and GRNN) have been 
compared to the conventional techniques (PRM and MLR) 
using all the data points. Table 4 is the estimated unknown 
parameters of the PRM model using least square approach 
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and Eq. 21 is the optimal equation used by the MLR model 
for estimating the geoid height.  
 

   𝑁௜,௝ = − 12757.769 + (2529.703 X 𝜑௜,௝) −  

                         (361.947 X 𝜆௜,௝) + (1.0360 X ℎ௜,௝) 
(21)   

 
The statistical analysis of all the models is represented by 
Table 5. The rmax value of the conventional techniques and the 
soft computing techniques was about 1.2 m. When 
comparing their statistical analysis, the PRM model had a rmin 
value of 0.0478 m and SD of 0.02077 m. This situation agrees 
with the recommendations of Poku-Gyamfi (2009) and Chen 
and Hill (2005) that, the defects of the PRM model are due to 
the increase in order and there are distortions in the estimated 
values using the transformed parameters estimated by the 
least squares approach and the order must be kept low. 
 

Hence, the results achieved by Peprah et al., (2017) for the 
study area was quite precise. The soft computing techniques 
outperforms the conventional techniques in estimating local 
geoid heights. The outlined models did not achieve a 
millimeter accuracy and this situation agrees with Akyilmaz 
et al., (2009) that geoid heights vary in mountainous areas. 
For example, the study area under consideration and for 
proper estimation of the geoid requires high resolution data. 
 
Additionally, the inability of the soft computing techniques 
may be attributed to the orthometric heights and ellipsoidal 
heights used in the NGPS/Levelling in estimating the geoid 
height. After comparing the soft computing techniques to the 
conventional techniques in terms of their statistical analysis, 
the soft computing was much better as compared to the 
conventional methods in estimating local geoid heights for 
the study area.  
 

 
 

Table 2. Basis functions used by the MARS model 
 

Basis Functions Equation 

BF1 max (0, h-79.7706);  

BF2 max (0, Y-5.29744); 
 
 
 

Table 3. Model results for soft computing techniques (units in meters) 

Training Results 

PCI ANFIS BPANN GRNN MARS 

rmax 1.2990 1.2643 1.2811 -1.2908 

rmin 5.2600 x 10-05 -0.0028 5.7400 x 10-08 -0.0344 

ME 0.0465 0.1552 0.0182 0.0998 

MSE 0.3744 0.5339 0.4863 0.6966 

SD 0.0014 0.0093 0.0039 0.0257 

R 0.9675 0.9609 0.9291 0.8081 

R2 0.9361 0.9233 0.8760 0.6530 

Testing Results 

PCI ANFIS BPANN GRNN MARS 

rmax -1.1718 -1.2384 1.2965 1.2983 

rmin -0.0067 0.0206 0.1702 0.1767 

ME 0.0267 0.1307 0.3225 0.2076 

MSE 0.4229 0.4580 0.7084 0.6380 

SD 0.0547 0.0077 0.0005 0.0289 

R 0.7700 0.9123 0.9320 0.9016 

R2 0.5929 0.8323 0.8560 0.8129 
 

 
 

Table 4. PRM coefficients results (units in meters) 
 

PCI VALUE SD 

0a
 -1.5048 2.0819 

1a  1.6406 320.9703 

2a  -3.5740 243.0151 

SD  3.1515 
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Table 5. Statistical analysis of all the models (units in meters) 
 

PCI rmax rmin ME MSE SD 

ANFIS 1.2990 5.6200 10-05 0.0445 0.3794 0.0013 

BPANN 1.2643 -0.00281 0.1462 0.5061 0.0059 

GRNN 1.2965 0.5740 x 10-08 0.0878 0.5371 0.0023 

MARS 1.2983 -0.0344 0.1423 0.6735 0.0148 

MLR 1.2749 0.0285 0.3117 0.7008 0.0102 

PRM 1.2922 0.0478 0.1798 0.7736 0.0208 
 

 

4. Conclusions 
Geoid studies have become obligatory in establishing a 
vertical geodetic reference network for measuring vertical 
distance. The geoid enables the standard forward 
transformation of GPS heights (h) which has no physical 
meaning to physical meaningful heights (H) for engineering 
and mapping purposes. This study assesses and compares the 
performance of soft computing techniques namely, ANFIS, 
BPANN, MARS, GRNN to conventional techniques 
namely, PRM and MLR in estimating local geoid heights for 
UMaT local geodetic reference network. After comparing the 
soft computing techniques to the conventional methods 
based on their statistical analysis, it was revealed that the soft 
computing techniques outperform the conventional methods 
in estimating a local geoid height for the study area. We 
conclude that, utilizing soft computing techniques in 
estimating local geoid heights for the study area have proven 
to be an alternative realistic technique to the conventional 
techniques. These techniques will help in converting GPS 
heights to orthometric heights for geodetic purposes. 
However, more work should be done in Ghana utilizing 
other soft computing techniques which were not considered 
in this study to evaluate its effectiveness for larger 
engineering projects since the classical techniques of 
obtaining vertical distances are costly, time consuming and 
laborious. This study will create the opportunity for geodesist 
in Ghana to know the efficiency of soft computing techniques 
in solving some problems related to height in geodesy. 
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