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Abstract
In this paper, we are going to analyze the following difference equation

xn+1 =
xn−29

1+ xn−4xn−9xn−14xn−19xn−24
n = 0,1,2, ...

where x−29,x−28,x−27, ...,x−2,x−1,x0 ∈ (0,∞).
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1. Introduction
Difference equation is a very diverse field that is effective in almost every branch of applied mathematics. Recently, researchers
have shown great interest in studying the behavior of solutions of nonlinear difference equations. Difference equations are used
in many fields such as population biology, economics, probability theory, genetics, psychology, mathematical modeling. There
are many articles on difference equations, for example; [24]-[28]

Cinar, studied the following problem with positive initial values:

xn+1 =
xn−1

−1+axnxn−1
,

for n = 0,1,2, ... in [2] respectively.
Simsek et. al., studied the following problems with positive initial values,

xn+1 =
xn−3

1+ xn−1

xn+1 =
xn−5

1+ xn−2
,

xn+1 =
xn−5

1+ xn−1xn−3
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for n = 0,1,2, ... in [5]-[7] respectively.
Elsayed studied the behavior of the solution of the following difference equation,

xn+1 = axn−1 +
bxnxn−1

cxndxn−2
, n = 0,1, ...,

where the initial conditions x−2x−1,x0 are arbitrary positive real numbers and a,b,c,d are positive constants. [15]
Devault et. al. studied the following problems

xn+1 =
A
xn

+
1

xn−2

for n = 0,1,2, ... in [23] and showed every positive solution of the equation where A ∈ (0,∞).
Stevic et. al. studied on a product-type system of difference equations of second order solvable in closed form in [28].

Shown that the following system of difference equations

zn+1 =
za

n

wb
n−1

,wn+1 =
wc

n

zd
n−1

,n ∈ N0,

where a,b,c,d ∈ Z,z−1,z0,w−1,w0 ∈ C is solvable in closed form.
In this work, the following non-linear difference equation was studied

xn+1 =
xn−29

1+ xn−4xn−9xn−14xn−19xn−24
(1.1)

where x−29,x−28, ...,x−1,x0 ∈ (0,∞) .

2. Main Results
Let x be the unique positive equilibrium of the 1.1, then clearly,

x =
x

1+ xxxxx
⇒ x+ x6 = x⇒ x6 = 0⇒ x = 0,

so x = 0 can be obtained. For any k ≥ 0 and m > k notation i = k,m means i = k,k+1, ...,m

Theorem 2.1. Consider the difference equation 1.1. Then the following statements are true.

a) The sequences x30n−29,x30n−28, ...,x30n−1,x30n are being decreased and

a1,a2, ...,a29,a30 ≥ 0

are existed in such that

lim
n→∞

x30n−29+k = a1+k, k = 0,29.

b)

6

∏
k=0

lim
n→∞

x35n−34− j+5k = 0, j = 0,4 or
6

∏
k=0

a5k+i = 0, i = 1,5.

c) n0 ∈ N such that xn+1 ≤ xn−24 for all n≥ n0, then

lim
n→∞

xn = 0.

d) The following formulas below are hold:

x30n+1+k = x−29+k

(
1− x−4+kx−9+kx−14+kx−19+kx−24+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)
,
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x30n+6+k = x−24+k

(
1− x−4+kx−9+kx−14+kx−19+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+1

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)
,

x30n+11+k = x−19+k

(
1− x−4+kx−9+kx−14+kx−24+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+2

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)
,

x30n+16+k = x−14+k

(
1− x−4+kx−9+kx−19+kx−24+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+3

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)
,

x30n+21+k = x−9+k

(
1− x−4+kx−14+kx−19+kx−24+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+4

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)
,

x30n+26+k = x−4+k

(
1− x−9+kx−14+kx−19+kx−24+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+5

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)
,

k = 0,4 holds.

e) If x30n+1+k → a1+k 6= 0, x30n+6+k → a6+k 6= 0, x30n+11+k → a11+k 6= 0, x30n+16+k → a16+k 6= 0, x35n+21+k →
a21+k 6= 0, then x30n+26+k→ a26+k = 0 as n→ ∞. k = 0,4.

Proof. a) Firstly, from the 1.1

xn+1 =
xn−29

1+ xn−4xn−9xn−14xn−19xn−24

is obtained. If xn−4xn−9xn−14xn−19xn−24 ∈ (0,+∞), then (1+ xn−4xn−9xn−14xn−19xn−24) ∈ ((1,+∞). Since

xn+1 < xn−29,

n ∈ N,

lim
n→∞

x30n−29+k = a1+k, f or k = 0,29

existed formulas are obtained.

b) In view of the 1.1,

n = 30n⇒ x30n+1 =
x30n−29

1+∏
5
k=0 x30n−29+5k

is obtained. If the limits are put on both sides of the above equality,

6

∏
k=0

lim
n→∞

x35n−34+5k = 0 or
6

∏
k=0

a5k+1 = 0

is obtained. Similarly for n = 30n+1, n = 30n+2, n = 30n+3 and n = 30n+4 we can obtain x30n+2, x30n+3, x30n+4
and x30n+5.
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c) If there exist n0 ∈ N such that xn+1 ≤ xn−24 for all n ≥ n0, then, a1 ≤ a6 ≤ a11 ≤ a16 ≤ a21 ≤ a26 ≤ a1, a2 ≤ a7 ≤
a12 ≤ a17 ≤ a22 ≤ a27 ≤ a2, a3 ≤ a8 ≤ a13 ≤ a18 ≤ a23 ≤ a28 ≤ a3, a4 ≤ a9 ≤ a14 ≤ a19 ≤ a24 ≤ a29 ≤ a4, a5 ≤
a10 ≤ a15 ≤ a20 ≤ a25 ≤ a30 ≤ a5. Using (b) we get

6

∏
k=0

a5k+i = 0, i = 1,5.

Then we see that,

lim
n→∞

xn = 0.

Hence the proof of (c) completed.

d) Subtracting xn−29 from the left and right-hand sides in 1.1

xn+1− xn−29 =
1

1+ xn−4xn−9xn−14xn−19xn−24
(xn−4− xn−34)

is obtained and the following formula is produced below, for n≥ 5

x5n−24− x5n−54 = (x1− x−29)
n−5
∏
i=1

1
1+ x5i−4x5i−9x5i−14x5i−19x5i−24

x5n−28− x5n−53 = (x2− x−28)
n−5
∏
i=1

1
1+ x5i−3x5i−8x5i−13x5i−18x5i−23

x5n−27− x5n−52 = (x3− x−27)
n−5
∏
i=1

1
1+ x5i−2x5i−7x5i−12x5i−17x5i−22

x5n−26− x5n−51 = (x4− x−26)
n−5
∏
i=1

1
1+ x5i−1x5i−6x5i−11x5i−16x5i−21

x5n−25− x5n−50 = (x5− x−25)
n−5
∏
i=1

1
1+ x5ix5i−5x5i−10x5i−15x5i−20

.

(2.1)

6 j inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4

x30n+1+k− x−29+k = (x1+k− x−29+k)
n

∑
j=0

6 j

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

.

Also, 6 j+1 inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4

x30n+6+k− x−24+k = (x6+k− x−24+k)
n

∑
j=0

6 j+1

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

.

Also, 6 j+2 inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4

x30n+11+k− x−19+k = (x11+k− x−19+k)
n

∑
j=0

6 j+2

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

.

Also, 6 j+3 inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4
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x35n+16+k− x−14+k = (x16+k− x−14+k)
n

∑
j=0

6 j+3

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

.

Also, 6 j+4 inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4

x30n+21+k− x−9+k = (x21+k− x−9+k)
n

∑
j=0

6 j+4

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

.

Also, 6 j+5 inserted in 2.1 by replacing n, j = 0 to j = n is obtained by summing, for k = 0,4

x30n+26+k− x−4+k = (x26+k− x−4+k)
n

∑
j=0

6 j+5

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

.

Now we obtained of the above formulas:

x30n+1+k = x−29+k

(
1− x−4+kx−9+kx−14+kx−19+kx−24+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)
,

x30n+6+k = x−24+k

(
1− x−4+kx−9+kx−14+kx−19+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+1

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)
,

x30n+11+k = x−19+k

(
1− x−4+kx−9+kx−14+kx−24+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+2

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)
,

x30n+16+k = x−14+k

(
1− x−4+kx−9+kx−19+kx−24+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+3

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)
,

x30n+21+k = x−9+k

(
1− x−4+kx−14+kx−19+kx−24+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+4

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)
,

x30n+26+k = x−4+k

(
1− x−9+kx−14+kx−19+kx−24+kx−29+k

x−4+kx−9+kx−14+kx−19+kx−24+k

n

∑
j=0

6 j+5

∏
i=1

1
1+ x5i−4+kx5i−9+kx5i−14+kx5i−19+kx5i−24+k

)
,

k = 0,4 holds.
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e) Suppose that a1 = a6 = a11 = a16 = a21 = a26 = 0. By (d), the following formulas are produced below

lim
n→∞

x30n+1 = lim
n→∞

x−29

(
1− x−4x−9x−14x−19x−24

1+ x−4x−9x−14x−19x−24

n

∑
j=0

6 j

∏
i=1

1
1+ x5i−4x5i−9x5i−14x5i−19x5i−24

)

a1 = x−29

(
1− x−4x−9x−14x−19x−24

1+ x−4x−9x−14x−19x−24

∞

∑
j=0

6 j

∏
i=1

1
1+ x5i−4x5i−9x5i−14x5i−19x5i−24x5i−29

)

a1 = 0⇒ 1+ x−4x−9x−14x−19x−24

x−4x−9x−14x−19x−24
=

∞

∑
j=0

6 j

∏
i=1

1
x5i−4x5i−9x5i−14x5i−19x5i−24

. (2.2)

Similarly,

a6 = 0⇒ 1+ x−4x−9x−14x−19x−24

x−4x−9x−14x−19x−29
=

∞

∑
j=0

6 j+1

∏
i=1

1
x5i−4x5i−9x5i−14x5i−19x5i−24

. (2.3)

Similarly,

a11 = 0⇒ 1+ x−4x−9x−14x−19x−24

x−4x−9x−14x−24x−29
=

∞

∑
j=0

6 j+2

∏
i=1

1
x5i−4x5i−9x5i−14x5i−19x5i−24

. (2.4)

Similarly,

a16 = 0⇒ 1+ x−4x−9x−14x−19x−24

x−4x−9x−19x−24x−29
=

∞

∑
j=0

6 j+3

∏
i=1

1
x5i−4x5i−9x5i−14x5i−19x5i−24

. (2.5)

Similarly,

a21 = 0⇒ 1+ x−4x−9x−14x−19x−24

x−4x−14x−19x−24x−29
=

∞

∑
j=0

6 j+4

∏
i=1

1
x5i−4x5i−9x5i−14x5i−19x5i−24

. (2.6)

Similarly,

a26 = 0⇒ 1+ x−4x−9x−14x−19x−24

x−9x−14x−19x−24x−29
=

∞

∑
j=0

6 j+5

∏
i=1

1
x5i−4x5i−9x5i−14x5i−19x5i−24

. (2.7)

From 2.2 and 2.3

1+ x−4x−9x−14x−19x−24

x−4x−9x−14x−19x−24
=

∞

∑
j=0

6 j

∏
i=1

1
x5i−4x5i−9x5i−14x5i−19x5i−24

>

1+ x−4x−9x−14x−19x−24

x−4x−9x−14x−19x−29
=

∞

∑
j=0

6 j+1

∏
i=1

1
x5i−4x5i−9x5i−14x5i−19x5i−24

thus, x−29 > x−24. From 2.3 and 2.4



On the Recursive Sequence xn+1 =
xn−29

1+xn−4xn−9xn−14xn−19xn−24
— 52/54

1+ x−4x−9x−14x−19x−24

x−4x−9x−14x−19x−29
=

∞

∑
j=0

6 j+1

∏
i=1

1
x5i−4x5i−9x5i−14x5i−19x5i−24

>

1+ x−4x−9x−14x−19x−24

x−4x−9x−14x−24x−29
=

∞

∑
j=0

6 j+2

∏
i=1

1
x5i−4x5i−9x5i−14x5i−19x5i−24

thus, x−24 > x−19. From 2.4 and 2.5

1+ x−4x−9x−14x−19x−24

x−4x−9x−14x−24x−29
=

∞

∑
j=0

6 j+2

∏
i=1

1
x5i−4x5i−9x5i−14x5i−19x5i−24

>

1+ x−4x−9x−14x−19x−24

x−4x−9x−19x−24x−29
=

∞

∑
j=0

6 j+3

∏
i=1

1
x5i−4x5i−9x5i−14x5i−19x5i−24

thus, x−19 > x−14. From 2.5 and 2.6

1+ x−4x−9x−14x−19x−24

x−4x−9x−19x−24x−29
=

∞

∑
j=0

6 j+3

∏
i=1

1
x5i−4x5i−9x5i−14x5i−19x5i−24

>

1+ x−4x−9x−14x−19x−24

x−4x−14x−19x−24x−29
=

∞

∑
j=0

6 j+4

∏
i=1

1
x5i−4x5i−9x5i−14x5i−19x5i−24

thus, x−14 > x−9. From 2.6 and 2.7

1+ x−4x−9x−14x−19x−24

x−4x−14x−19x−24x−29
=

∞

∑
j=0

6 j+4

∏
i=1

1
x5i−4x5i−9x5i−14x5i−19x5i−24

>

1+ x−4x−9x−14x−19x−24

x−9x−14x−19x−24x−29
=

∞

∑
j=0

6 j+5

∏
i=1

1
x5i−4x5i−9x5i−14x5i−19x5i−24

thus, x−9 > x−4.
From here we obtain x−29 > x−24 > x−19 > x−14 > x−9 > x−4. Similarly, we can obtain x−28 > x−23 > x−18 > x−13 >
x−8 > x−3, x−27 > x−22 > x−17 > x−12 > x−7 > x−2, x−26 > x−21 > x−16 > x−11 > x−6 > x−1 and x−25 > x−20 > x−15 >
x−10 > x−5 > x0. We arrive at a contradiction which completes the proof of theorem.

3. Conclusion
In this study, the theorem is given for the 1.1, and its solution and periodicity are investigated. By taking the coefficients of the
1.1, real numbers, sequence or function, new equations can be defined and their solutions can be examined.
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