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Abstract

In the present paper random multivalued admissible operators are considered. First for such operators
we shall formulate the following topological results: Schauder-type Fixed Point Theorems, Leray�Schauder
Alternative, Granas Continuation Method and Topological Degree.

Next these problems will be transformed to the existence problems, periodic problems and implicit
problems for random di�erentuial inclusions.

Let us remark that this paper constitute a summary and complement of the following earlier papers:
[2], [3], [5], [6], [10], [11], [14] and [15]. This work can be considered as an advanced survey with some new
results: mainly concerning the theory of random di�erential inclusions. We believe that this paper will be
useful for mathematiciants and students intrested in topological methods of nonconvex analysis.
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1. Topological background

In this paper all topological spaces are assumed to be metric. We shall deal with �ech homology functor
H =

{
Hn

}
n≥0

with compact carriers and coe�cients in the �eld of rational numbers Q. A space X is called
acyclic provided we have:

Hn(X) =

{
0 for n ≥ 1,

Q for n = 0.

Note that any contractible space or any Rδ-space is acyclic.

Email address: gorn@mat.umk.pl (Lech Gewicz)

Received August 5, 2020; Accepted: October 23, 2020; Online: October 24, 2020.



L. Górniewicz, Results in Nonlinear Anal. 3 (2020), 196�206. 197

De�nition 1.1. A space X is called absolute retract or extension space (written X ∈ AR) provided for every
space Y and for every closed subset B ⊂ Y any continuation map f : B → X has extension over Y , i.e. there
exists a continuation map f̃ : Y → X such that

f̃(y) = f(y), for every y ∈ B.

Note that any absolute retract X is contractible and hence acycylic.

De�nition 1.2. A continuous map p : Y → X is called a Vietoris map provided the following conditions
are satis�ed:

(a) p is onto, i.e. p(Y ) = X,

(b) p is proper, i.e. for every compact K ⊂ X the counter image p−1(K) of K under p is compact too,

(c) for every point x ∈ X the set p−1(x) is acyclic.

In what follows we shall deal with multivalued mappings. We shall say that for a multivalued map
φ : X ⊸ Y is called upper semicontinuous (u.s.c.) provided for every open U ⊂ Y the set φ−1(U) =

{
x ∈

X; φ(x) ⊂ U
}
; φ is called lower semicontinuous map (l.s.c.) provided for every closed B ⊂ Y the set

φ−1(B) =
{
x ∈ X; φ(x) ⊂ B

}
φ is called continuous provided φ is both u.s.c. and l.s.c.; �nally φ is compact

if the closure of φ(X) in Y is a compact set. An u.s.c. mapping φ : X ⊸ Y is called acyclic provided φ(x)
is an acyclic set for every x ∈ X.

A multivalused map φ : X ⊸ Y is called admissible provided there exists space Z and two continuous
maps p : Z → X and q : Z → Y such that

(1) p is a Vietoris map, and

(2) φ(x) = q
(
p−1(x)

)
, for every x ∈ X.

It is well known that admissible mappings have some important properties, namely:

(3) any admissible map is u.s.c.,

(4) any acyclic map is admissible,

(5) if φ : X ⊸ Y and ψ : Y ⊸ Y1 are admissible, then the composition ψ ◦ φ : X ⊸ Y1 de�ned by the
formula:

(ψ ◦ φ)(x) = ψ(φ(x)) =
⋃

y∈φ(x)

ψ(y) for every x ∈ X,

is admissible too.

(6) furthermore the Cartesian product φ× ψ; the sum φ+ ψ and f · φ, are admissible provided φ and ψ
are admissible.

Assume that A ⊂ X and φ : A⊸ X is a multivalued map. Then we let

Fix(φ) =
{
x ∈ A; x ∈ φ(x)

}
.

We shall use the following version of Schauder Fixed Point Theorem:

Theorem 1.3. Assume that X ∈ AR and φ : X ⊸ X is a compact admissible map, then φ has a �xed point,

i.e.

Fix(φ) ̸= ∅.
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Theorem 1.4. Let E be a normal space nad φ : E ⊸ E be an admissible map such that, for every bounded

subset B ⊂ E, the set φ(B) is compact. Let

E(φ) =
{
x ∈ E; x ∈ λφ(x) for some λ ∈ (0, 1)

}
.

Then E(φ) is bounded or φ has a �xed point.

For details concerning this section see [13], [1], [14].
In Section 6 we shall use the notion of essential �xed point. Let X be an AR-space and φ : X ⊸ X a

compact admissible map.

De�nition 1.5. Let x ∈ Fix(φ) be a �xed point of φ. We shall say that x is essential provided for every
open set U ⊂ X such that x ∈ U there exists an open V ⊂ U for which the following conditions are satis�ed:

(a) x ∈ U ,

(b) ∂U ∩ Fix(φ) = ∅,

(c) �xed point index Ind(φ, ν) ̸= 0 is di�erent as 0, (for the de�nition of Ind(φ, ν) see [3], [13]).

In [6] it is proved the following proposition:

Proposition 1.6. If dimFix(φ) = 0, then there exists an essential �xed point x ∈ Fix(φ), where dimFix(φ)
denotes the topological dimension of Fix(φ).

2. Random operators

By measurable space we shall mean the pair (Ω,Σ), where a set Ω is equipped with σ-algebra Σ of
subsets of Ω. If X is a metric space then by B(X) we shall denote the Borel σ-algebra of subsets of X. The
symbol Σ⊗B(X) denotes the smallest σ-algebra on Ω×X which contains all sets A×B, where A ∈ Σ and
B ∈ B(X).

De�nition 2.1 ([2], [13]). A multivaluded map φ : Ω×X ⊸ Y is called a measurable provided, for every
open B ⊂ Y , the set

φ−1(B) ∈ Σ⊗B(X),

where Y is a metric space.

De�nition 2.2 ([2], [13]). A multivalued map φ : Ω×X ⊸ Y is called a random operator provided:

(a) φ is measurable,

(b) the map φ(ω, · )(x) = φ(ω, x) is u.s.c. with closed values for every ω ∈ Ω.

A random operator φ : Ω×X ⊸ Y is called bounded provided, for every ω ∈ Ω, the map φ(ω, · ) is bounded.

Assume that X is closed subset of Y .

De�nition 2.3. A measurable map η : Ω → X is called a random �xed point of the random operator
φ : Ω×X ⊸ Y provided η(ω) ∈ φ(ω, η(ω)) for every ω ∈ Ω.

The following theorem is crucial in this section.

Theorem 2.4. Let Y be a separable space. Assume further that φ : Ω×X ⊸ Y is a random operator. Then

φ has a random �xed point if and only if the map φ(ω, · ) : X ⊸ Y has a �xed point for every ω ∈ Ω.
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For the proof of Theorem 2.4 see: [2], [4], [14], [13].

De�nition 2.5. A random operator φ : Ω×X ⊸ Y is called random admissible operator provided the map
φ(ω, · ) is admissible for every ω ∈ Ω.

From Theorems 1.3 and 2.4 and [2, (1.10)] immediately follows:

Theorem 2.6. Let Y be a separable AR-space and φ : Ω×Y ⊸ Y be a compact random admissible operator,

then φ has a random �xed point.

We shall end this section by proving the Leray�Schauder Alternative for random operators.

Theorem 2.7 (Leray�Schauder Alternative). Let E be a separable normal space and φ : Ω × E ⊸ E be a

random admissible operator such that the map φ(ω, · ) satis�es all assumptions of Theorem 1.4 for every

ω ∈ Ω. Let E(φ′, ω) =
{
x ∈ E; x ∈ φ(ω, x)

}
. If E(φ, ω) is an unbounded set for every ω ∈ Ω the φ has a

random �xed point.

Proof. Since E(φ, ω) is unbounded for every ω ∈ Ω in view of Theorem 1.4 we deduce that φ(ω, · ) has a
�xed point for every ω ∈ Ω. Hence our claim follows from Theorem 2.4.

For more information about random operators see: [1], [2], [4], [14], [13], [18], [20].

3. Topological essentiality and degree for random admissible operators

First we shall recall the notion of topological essentiality , called also continuation method, and its
properties for random admissible operators. Note that this notion was introduced un 1962 by A. Granas
(see [16], [17] for singlevalued maps). next it was studied for multivalued mappings iun [11], [13]�[15]. The
random case was presented in [2], [14].

We shall start from some notations. Let E, F be two Banach spaces and U ⊂ E be an open set. By
∂U we shall denote the boundary of U in E. We shall consider the following classes of random multivalued
mappings:

A∂U (Ω× U,F ) =
{
φ : Ω× U ⊸ F ; φ is a random admissible map

}
,

Ac(Ω× U,F ) =
{
φ : Ω× U ⊸ F ; φ is a random admissible and compact map

}
,

A0(Ω× U,F ) =
{
φ ∈ Ac(Ω× U,F ); φ(ω, x) = 0 for every ∂Uand ω ∈ Ω

}
,

De�nition 3.1. A map φ ∈ A∂U (Ω × U,F ) is called essential provided for every ψ ∈ A0(Ω × U,F ) there
exists x ∈ U such that φ(ω, x) ∩ ψ(ω, x) ̸= ∅ for every ω ∈ Ω.

Below we shall list properties of the above notion.

Properties 3.2.

(1) (Existence) If φ is essential, then there exists x ∈ U such that 0 ∈ φ(ω, x) for every ω ∈ Ω.

(2) (Perturbation) If φ is essential and ψ ∈ A0(Ω×U,F ), then (φ+ψ) ∈ A∂U (Ω×U,F ) and it is essential.

(3) (Coincidence) Let φ be essential and ψ ∈ A0(Ω× U,F ). Assume further that the set

B =
{
x ∈ U ; φ(ω, x) ∩ (t · ψ(ω, x)) ̸= ∅ for some t ∈ [0, 1] and every ω ∈ Ω

}
is a closed subset of U and B ⊂ U . Then there exists x ∈ U such that x ∈ φ(ω, x) ∩ ψ(ω, x) for every
ω ∈ Ω.
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(4) (Normalization) Assume that U ∈ AR and i : Ω× U → E is the random map de�ned as follows:

i(ω, x) = x for every x ∈ U and ω ∈ Ω.

The map i is essential if and only if 0 ∈ U .

(5) (Localization) Let φ be an essential map. Assume further that:

(i) V is an open subset of U such that V ∈ AR,
(ii)

{
x ∈ U ; 0 ∈ φ(ω, x)

}
⊂ V .

Then the map φ̃ : Ω× V ⊸ F , φ̃(ω, x) = φ(ω, x) for every x ∈ V and ω ∈ Ω is essential.

(6) (Homotopy) Let φ be an assential map. If η : Ω×U × [0, 1] ⊸ F is a random admissible and compact
map such that:

(i) η(ω, x, 0) =
{
0
}
for every ω ∈ Ω and x ∈ ∂U , and

(ii) the set
{
x ∈ U ; φ(ω, x) ∩ η(ω, x, t) ̸= ∅ for some t ∈ [0, 1] and every ω ∈ Ω

}
is a closed subset of

U .

Then the map (φ− η)( · , · , 1) is essential.

(7) (Continuation) Let φ be essential such that for every comact K ⊂ E the set
{
x ∈ U ; φ(ω, x)∩K ̸= ∅

}
is compact for every ω ∈ Ω. Assume further that η : Ω×U× [0, 1] ⊸ F is a random admissible compact
map such that η(ω, x, 0) =

{
0
}
for every ω ∈ Ω and x ∈ ∂U . Then there exists ε > 0 such that the

map (φ− η)( · , · , λ) is essential for every λ ∈ [0, ε].

Now we shall recall the notion of topological degree for random operators. For details see [2] and [13], [14].
By Rn we shall denote n-dimensional euclidean space. We let:

Kn(r) =
{
x ∈ Rn; ∥x∥ ≤ r

}
, Sn−1(r) =

{
x ∈ Rn; ∥x∥ = r

}
,

A(Ω×Kn(r),Rn) =
{
φ : Ω×Kn(r) ⊸ Rn, 0 ̸∈ φ(ω, x) for every ω ∈ Ω and x ∈ Sn−1(r),

Degφ(ω, · ) is de�ned for every ω ∈ Ω
}
.

Example 3.3. (i) If φ : Kn ⊸ Rn is an u.s.c. map with Rδ-values, then Deg(φ) is well de�ned (see [13]).
(ii) f : Kn(r) → X is a continuous single valued mapping and φ : X ⊸ Rn is an u.s.c. map with

Rδ-values, then Deg(φ ◦ f) is well de�ned (see [13]).
Of course both in (i) and (ii) we have assumed the 0 ̸∈ φ(x) (0 ̸∈ φ(f(x)) for every x ∈ Sn−1.

By homotopy in A(Ω×Kn(r),Rn) we shall understand a random homotopy, i.e. a random map X : Ω×
Kn(r)× [0, 1] ⊸ Rn such that

0 ̸∈ φ
(
Ω× Sn−1(r)× [0, 1]

)
and X( ·, · , t) ∈ A(Ω×Kn(r),Rn), for every t ∈ [0, 1].

We de�ne a multivalued map Degr : A(Ω×Kn(r),Rn) → Z, where Z is the set of integers, by putting

Degr(φ) =
{
Deg(ω, · ); ω ∈ Ω

}
. (3.1)

Then we have the following properties:

Properties 3.4.

(8) (Existence) If 0 ̸∈ Degr(φ), then there exists a measurable function ξ : Ω → Bn(r) such that 0 ∈
φ(ω, ξ(ω)) for ω ∈ Ω, where Bn(r) =

{
x ∈ Kn(r); ∥x∥ < r

}
.

(9) (Localization) If φ ∈ A
(
Ω×Kn(r),Rn

)
, then

Degr
(
X( · , · , 0)

)
= Degr

(
X( · , · , 1)

)
.

For more information see [14], [2], [13].
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4. Existence results

Let φ : Ω× [0, 1]× Rn ⊸ Rn be a bounded random operator with convex values and let ψ : Ω ⊸ Rn be
a measurable map with compact convex values. We shall consider the following boundary value problem for
random di�erential inclusions: {

x′(ω, t) ∈ φ(ω, t, x(ω, t)),

x(ω, 0) ∈ ψ(ω),
(4.1)

where the solution x : Ω × [0, 1] → Rn is a map such that x( · , t) is measurable and x(ω, · ) is absolutely
continuous for almost all ω ∈ Ω and t ∈ [0, 1]. By S(φ,ψ) we shall denote the set of all solutions of 4.1.

Under the above assumptions we have:

Theorem 4.1. S(φ,ψ) ̸= ∅.

Proof. First we de�ne the map F : Ω× C
(
[0, 1],Rn

)
⊸ C

(
[0, 1],Rn

)
by the formula

f(ω, x) =

{
v; v(t) =

∫ t

0
n(τ) dτ and n(τ) ∈ φ(ω, τ, x(τ)), where n is Lebesque integrable selector of φ

}
.

It is proved in [2] (see Theorem 4.2) that F is a bounded random operator with compact convex values.
Consequently the map F̃ : Ω× C([0, 1],Rn) ⊸ C([0, 1],Rn) de�ned by the formula

F̃ (ω, x) = ψ(ω) + F (ω, x) =
{
y + v, y ∈ ψ(ω) and v ∈ F (ω, x)

}
.

Hence F̃ is a bounded random operator with compact index values suth that F̃ (ω, · ) is a compact admissible
map for all ω ∈ Ω. So, in view of Theorem 1.3, F̃ has a �xed point for every ω ∈ Ω. Therefore it follows
form Theorem 2.4 that F̃ has a random �xed point. Finally, it is easy to see that every random �xed point
of F̃ is a solution of (4.1). The proof of Theorem 4.1 is completed.

Remark 4.2. The case when ψ(ω) = A for every ω ∈ Ω and A is a convex compact set (4.1) is called a
generalized Cauchy problem for random of di�erential inclusions.

Let φ : Ω × [0, 1] × Rn ⊸ Rn be a measurable map with closed values. If for every ω ∈ Ω the map
φ(ω, · , · ) is l.s.c. (lower semi continuous) then we shall say that φ is a l-random operator.

In Section 6 we shall use the following result:

Theorem 4.3. If φ is l-random operator, then there exists a solution of the following problem:

x′(ω, l) ∈ φ(ω, t, x(ω, l))

The proof of Theorem 4.3 is analogous to the respective result in deterministic case (see [1], [15], [13]).
Now we shall consider some boundary problems for for k-order random di�erential inclusions, k ≥ 1. We

shall start from some notations.
Let X, Y be two metric spaces. By (X,Y ) we shall denote the set of all continuous functions from X to

Y . By Ck
(
[0, 1],Rn

)
, k = 0, 1, . . . we shall denote Banach space of all Ck-functions from the interval [0, 1]

to Rn with usual norm de�ned by

∥x∥ = max
{
∥x(t)∥; t ∈ [0, 1]

}
+max

{
∥x′(t)∥; t ∈ [0, 1]

}
+max

{
∥x(2)(t)∥; t ∈ [0, 1]

}
+. . .+max

{
∥x(k)(t)∥; t ∈ [0, 1]

}
,

where x(k) denotes k-th derivative of x; we also put x′ = x(1), x(0) = x, C
(
[0, 1],Rn

)
= C0

(
[0, 1],Rn

)
.

Finally, we let
Rn·k = Rn × . . .× Rn︸ ︷︷ ︸

nt-times

.
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Let φ : Ω× [0, 1]× Rn·k ⊸ Rn be a random bounded operator with convex compact values. Let

ψi, li : Ω× Ck−1
(
[0, 1],Rn

)
⊸ Rn, i = 0, 1, . . . , k − 1,

where ψi are random bounded admissible operators and li be (single valued) bounded random operators for
every i = 0, 1, . . . , k − 1. Assume further that

lk−1(ω, x) = (ω, x(0)) for every ω ∈ Ω and x ∈ Ck−1
(
[0, 1],Rn

)
.

For any µ ∈ [0, 1] we shall consider the following value problem:
x(k)(ω, t) ∈ µφ(ω, x(ω, t), x′(ω, t), . . . , x(k)(ω, t)),

l0(ω, x) ∈ µψ0(ω, x),

. . . . . . . . . . . . . . . . . . .

lk−1(ω, x) = (ω, x(0)) ∈ µψk−1(ω, x),

(4.2)µ

where the solution x : Ω × [0, 1] → Rn is a random map such that x(ω, · ) is Ck−1-function such that its
(k − 1)-derivative is absolutely continuous for every ω ∈ Ω.

We shall associate with (4.2)µ the random mapping:
g : Ω× Ck−1

(
[0, 1],Rn

)
→ C

(
[0, 1],Rn

)
× Rn(k−1)

given by

g(ω, x) =
(
x(k−1), l0(ω, x), . . . , lk−2(ω, x)

)
.

(4.3)

Let Sµ(φ, li, ψi) denote the set of all solutions. As some application of the topological essentiality we
obtain:

Theorem 4.4. Under the above assumptions and the following two assumptions of (4.2)µ :

(a) there exists r ≥ 0 such that for every µ ∈ [0, 1] the set Sµ(φ, li, ψi) is bounded, i.e. ∥x(ω, · )∥ < r for

every ω ∈ Ω and x ∈ Sµ(φ, li, ψi),

(b) the map g restricted the set Ω ×M is essential, where M =
{
x ∈ Ck−1

(
[0, 1],Rn

)
; ∥x∥ ≤ r

}
we have

that S1(φ, li, ψi) ̸= ∅.
Proof. Let F : Ω ×M ⊸ C

(
[0, 1],Rn

)
be de�ned by the same formula as F in the proof of Theorem 4.1.

Evidently F is compact random operator with convex values and hence it is random compact admissible
map. Consider the map φ̂ : Ω×M ⊸ C

(
[0, 1],Rn

)
× Rn(k−2) given by the formula

φ̂(ω, x) = g(ω, x)− f(ω, x)× ψ0(ω, x)× . . .× φk−2(ω, x).

In view of (6) is sectional we deduce that φ̂ is compact admissible random operator. Moreover, from (a) we
deduce that 0 ̸∈ φ̂(ω, x), for every ω ∈ Ω and x ∈ ∂M .

For the proof it is su�cient to show that 0 ∈ φ̂(ω, x), for every ω ∈ Ω and some x ∈M , i.e. φ̂ is essential.
To do it we de�ne the following homotopy

X : Ω× [0, 1]×M ⊸ C
(
[0, 1],Rn

)
× Rn(k−2)

by the formula
X(ω, µ, x) = g(ω, x)− µ · F (ω, x)× ψ(ω, x)× . . .× ψk−2(ω, x).

Observe that X( · , 0, · ) = g( · , · ) and X( · , 1, · ) = φ̂( · , · ) and g is essential so from the homotopy prop-
erty 3.2 (6) we infer that φ̂ is essential and it implies that there exists a solution of (4.2)1; the proof is
completed.

Remarks 4.5. (a) Observe that, for k = 1 problem (4.2)1 reduces to (4.1). But in (4.1) is stronger assump-
tion about ψ than about ψ0 in (4.2)1.

(b) Note that Examples 5.4 and 5.5 in [15] can be reformulated onto the random case.
(c) Evidently interval [0, 1] can be replaced by an arbitrary interval [a, b].
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5. Periodic problem

Let φ : Ω× [0, 1]×Rn ⊸ Rn be a random bounded operator with convex values. In this section we shall
consider the following periodic problem for random di�erential inclusions:{

x′(ω, t) ∈ φ(ω, t, x(ω, t)),

x(ω, 0) = x(ω, 1).
(5.1)

To study the above problem we shall de�ne the random operator P : Ω×Rn ⊸ C
(
[0, 1]Rn

)
by the formula:

P (ω, y) = S(φ(ω, · , · , y)) (5.2)

where S(φ(ω, · , · , y) is the set of all solutions of the deterministic Cauchy problem:{
x′(t) ∈ φ(ω, c(t, x(t))),

x(0) = y.

It is well known (comp. [9]) that under the above assumptions S(ω, · , · , y) is non empty acyclic set.

Theorem 5.1. P is the random admissible operator.

For the proof see 4.2 in [2].

Let l1 : C
(
[0, a],Rn

)
→ Rn, l1(x) = x(1) be the evaluation map. The map P1 = e1 ◦ P is called the

random Poincaré operator along the trajectoria of (5.1). The following proposition is self evident.

Proposition 5.2. Problem (5.1) has a solution if and only if the random Poincaré operator P1 : Ω×Rn ⊸ Rn

has a random �xed point.

To obtain a random �xed point of P1 we shall follow an approach based on random topological degree
theory (for the deterministic case see e.g. [1], [7], [8], [13]).

To �nd a �xed point of P1 we associate with P1 the random vector �eld P̃1 : Ω × Rn ⊸ Rn de�ned as
follows:

P̃1(ω, x) = x− P1(ω, x).

The following proposition is self evident.

Proposition 5.3. If 0 ̸∈ Deg(φ̃1), then problem (5.1) has solution, where Deg(φ̃1) is considered for φ̃1 on

some ball Kn(r).

In order to show that 0 ̸∈ Deg
(
P̃1

)
we shall adopt to random case the guiding potential method (comp.

[2]).
A map V : Ω× Rn → R is called a random potential provided the following two conditions are satis�ed:

(a) V ( · , x) is measurable for every x ∈ Rn;

(b) V (ω, · ) is a C1-map for every ω ∈ Ω.

Every random potential map V induces a random vector �eld ∂V : Ω× Rn ⊸ Rn as follows:

∂V (ω, x) =

(
∂V

∂x1
(ω, x), . . . ,

∂V

∂xn
(ω, x)

)
for any ω ∈ Ω and x = (x1, . . . , xn) ∈ Rn.

If, for some r > 0, V satis�es the following condition: 0 ̸∈ ∂V (Ω × Sn−1(r)), then V is called direct
potential. If V is a direct potential then, for every s ≥ r, 0 ̸∈ ∂V (Ω × Sn−1(s)) and deg(V,Kn(s)) is
independent on s. Consequently we can put:

I(V ) = deg(∂V ), (5.3)

where the topological degree deg(∂V ) or ∂V is condedered on arbitrary Kn(s), s ≥ r. Then I(V ) is called
index of random direct potential V .
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De�nition 5.4. Let φ : Ω × [0, 1] × Rn ⊸ Rn be a random bounded operator with convex values and let
V : Ω × Rn → Rn be a random direct potential. We shall say that V is a random guiding function for φ
provided the following condition is satis�ed:

∃ r0 > 0 ∀x, t, ω with ∥x∥ ≥ r0 ∃ y ∈ φ(ω, t, x) such that ⟨y, ∂V (ω, x)⟩ ≥ 0.

We have:

Theorem 5.5. If φ posses a random guaiding function V such that I(φ) ̸= 0 then problem (5.1) has a

solution.

Remark 5.6. Note that the assumptions about φ can be weaken (comp. [2] or [8], [7] in deterministic case).

6. Implicit problem

In this section the result obtained in [3], [5], [6] will be generalized to the random case.
Let φ : Ω× [0, 1]×Rn×Rn ⊸ Rn be a random bounded admissible operator. We shall study the following

random implicit problem for di�erential inclusions

x′(ω, t) ∈ φ(ω, t, x(ω, t), x′(ω, t)). (6.1)

Since φ(ω, · , · , · ) is admissible we can de�ne random map Ψ: Ω× [0, 1 × Rn ⊸ Rn as follows

Ψ(ω, t, x) = Fixφ(ω, t, x, · ).

Note that Ψ is a random operator with compact values but not convex in general.
From the other hand, if we will consider the following problem:

x′(ω, t) ∈ Ψ(ω, l, x(ω, l)) (6.2)

then any solution of (6.2) is a solution of (6.1). Unfortunately we can't apply Theorem 4.1 to obtain solution
of (6.2).

To get solution of (6.1) we need one more assumption on φ, namely:

Assumption 6.1. Assume that the topological dimension of the set Fix(φ(ω, t, x, · ) is equal zero, i.e.

dimFix(φ(ω, t, x, · ) = 0 for every ω, t, x.

Observe that assumption 6.1 guaranties that, for every ω, t, x, there exists an assentail �xed point of the
map φ(ω, t, x, · ) (see [3], [5], [6]). So we are able to de�ne the following random operator

η(ω, t, x) =
{
y ∈ Rn; y is an essential �xed point of the map φ(ω, t, x, · )

}
(see again [3], [5], [6]). Evidently every solution of the problem

x′(ω, t) ∈ η(ω, t, x(ω, t, x(ω, t)) (6.3)

is a solution of (6.2) and hence it is solution of (6.1). Consequently in view of Theorem 4.3 we get:

Theorem 6.2. Under the above assumptions (6.1) has a random solution.

Proof. From Theorem 4.3 we obtain that the problem (6.3) has a random solution. But every solution of
(6.3) is a random solution of (6.1) and the proof is complete.

Remark 6.3. Let us remark that the methods used in this section remain true for the following random
di�erenctial inclusions:
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(a) random ordinary di�erential inclusions of higher order;

(b) hyperbolic random di�erential inclusions;

(c) elliptic random di�erential inclusions;

in deterministic case see [3], [6].

Remark 6.4. It is possible to consider implicit problem for random di�erential inclusions on proximate
retracts (comp. [9]], in the deterministic case see [10].

7. Final remarks and comments

We already pointed out in Abstract the main novelity of this paper consists in presented applications.

Remark 7.1. Let us add that in Sections 4�6 all results remains true if we will assume about the random
operator φ only that with respect to the variables t and x it is a Carathéodory map or it is linearly bounded
map.

Note that Theorems 4.4 and 4.1 stand some new generalizations of the respective results in deterministic
case. Let us remark also that the class of admissible random operators was introduced for the �rst time in
the �xed point theory and the theory id�erential inclusions.

For better understanding random di�erential inclusions it is useful to present the following randomization
scheme connected with periodic problem (comp. [2]).

Proposition 7.2. Let φ : Ω× [0, 1]× Rn ⊸ Rn be a random operator. If for every ω ∈ Ω the following one

parameter family of deterministic periodic problems{
x′(t) ∈ φω(t, x(t)) := φ(ω, t, x(t)),

x(0) = x(1),
(7.1)

is solvable, then problem (5.1) has a (random) solution.

Proof. Let us consider the random Poincaré operator P1 : Ω × Rn ⊸ Rn de�ned in Section 5. We de�ne
Pω : Rn ⊸ Rn the deterministic Poincaré operator given by the formula:

Pω = P1(ω, · ), for every ω ∈ Ω.

By assumption, for every ω ∈ Ω there exist a deterministic �xed point. Now, in view Theorem 2.6 we infer
that P1 has a random �xed point and hence we obtain a random solution of (5.1). The proof is completed

Remark 7.3. Observe that considering the map F de�ned in the proof of Theorem 4.1 and the maps Fω,
Fω = F (ω, · , · }, for every ω ∈ Ω, we can formulate randomization scheme for problem (4.1).

Remark 7.4. It is an open question to formulate randomization scheme for the problem (6.1).
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