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Abstract

This paper provides a detailed analysis and performance treatment of a class of discrete-
time systems with an eigen-spectrum gap coupled over networks. We deploy tools from
time-scale modeling (TSM) theory to develop rigorous reduced-order models to aid in the
stability analysis of these multiple time-scale networked systems over fixed and undirected
graph topology. We establish that the controller gain matrices can be determined by solving
convex optimization problems in terms of finite linear matrix inequalities with prescribed
H∞ and H2 performance criteria. As demonstrated by simulation studies, the ensuing results
provide designers with a network-centric approach to improve the performance and stability
of such coupled systems.

1. Introduction

The usefulness of time-scale modeling (TSM) theory for the analysis and synthesis of dynamical control systems with slow and
fast dynamics has been broadly recognized as a strong technique for over four decades [1, 2]. Different control methodologies
have received great attention of various researchers in the theory of control systems that comprises time-scales [3]-[6]. An
important feature of the existing results is that the control analysis and synthesis are accomplished in two stages, such that a
suitable reduced-order dynamics is treated at each stage. Order reduction and control has been extended to discrete systems
with two time scale [7]-[9] based on explicit invertible-transformations where quasi-steady-state is assumed [10]-[13]. It has
been demonstrated that the discrete time dynamics can be reduced to (a) a slow sub-dynamics with large eigenvalues near the
the unit disk and (b) a fast sub-dynamics with eigenvalues distributed near the origin of the disk. This decomposition can be
satisfied if an inequality relating the norms of subsystem matrices holds. Therefore, this structure allows the user to implement
feedback control using different gain matrices. Along with the enormous advancement of control theory, technological
development of controlling a group of agents has been widely investigated and received increasing demands. A common
structure for controlling a group of agents is the distributed cooperative and coordinated control techniques [14]-[19]. Recently,
distributed coordination of multi-agent systems have received a tremendous interests in a wide range of practical applications,
mainly including engineering, ecology, biology and sociology [20]-[30].
On another research avenue, discrete networked dynamic systems (DNDS) provides a high-level treatment of a general class of
linear discrete-time dynamic systems interconnected over an information network processed in discrete-time environment,
exchanging relative state measurement or output measurements. It seems encouraging that by exploiting the impact of the
network properties, additional features of the dynamical systems can be revealed [31]. On a parallel development in view of
the available results, it turns out that research avenues in multiagent systems offer great opportunities for further developments
from theoretical, simulation and implementations standpoints [32, 33]. TSM theory [34, 35] is attractive for establishing
these approximations as the obtained reduced-order dynamics guarantees the asymptotic behavior of the coupled-consensus
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dynamics and give a viable estimate of the performance of the network trajectories through a simpler set of equations, compared
to the original complex structure. Reduced-order modeling and synchronization of a network of homogeneous linear agents
that comprises two time-scale behavior over fixed and undirected graph topology are investigated in [36]. However, most of the
existing results do not employ the time-scale separation that normally appears between the agent-layer and the network-layer.
By adopting advantage of this framework, the technique addressed in this article is, therefore, flexible to be applied to a broad
range of agent models and wide range network controllers. In addition, it gives important insights into the interplay between
design parameters such as controller parameters and communication topology on the behavior of coupled-consensus dynamics.
In this paper, tools from time-scale modeling (TSM) theory [37]–[42] are used to investigate reduced-order dynamics rigorously
to help in the stability analysis of the multi-time-scale networked systems. Modeling and synchronizing reduced-order networks
of a group of identical agents characterized by continuous singularly-perturbed dynamics over undirected graph topology have
been addressed in [43].
The contributions of this paper are as follows:

A) We extend the preliminary findings of [7, 8] to networked formalism of discrete systems with eigen-spectrum gap, thereby
exploring the relationship between the graph topology and the coupled system stability framework.

B) We develop a mode-separation methodology of expanding the stabilization control design to the synchronization problem.
This is clarified by decomposing the overall network dynamics and designing the controls that synchronize the slow
dynamics and the fast ones. By recomposing the slow and fast controllers to the network of two time-scale systems we
obtain an approximation of the synchronization behavior imposed for each scale.

C) We established that the controller gain matrices can be determined by solving convex optimization problems in terms of
finite linear matrix inequalities with prescribed H∞ and H2 performance criteria.

Notations: Let Q−1, Qt and ||Q|| denote the inverse, the transpose and induced-matrix-norm of square matrices Q, respectively.
The notation Q > 0 is used to represent a symmetric positive-definite matrix Q and IN represents the N×N identity matrix. If
the dimension of any matrix is not not explicitly given, we assume it to have an appropriate dimension for algebraic operations.
We use the notation • to denote an element that is induced by symmetry. Sometimes, the arguments of a function will be
omitted when no confusion can arise.

2. Graph theory

In the sequel, we recall some definitions and properties of Graph theory, which will be used throughout the paper.
A weighted graph is a triple G= (V,E,W) consisting of a node (vertex) set V= {1, · · · n} with cardinality |V|= n, an edge
set E ⊂ V×V with cardinality |E| = m, a positive weight set W with cardinality |W| = m, a weighted adjacency matrix
A= [ai j] with non-negative adjacent elements ai j and the corresponding vector of weights w with the order wi j refers to the
weight of the edge {i, j} [33]. In what follows, we consider undirected graph such that (i, j) ∈ E is equivalent to ( j, i) ∈ E.
In addition, we consider that the graph G contains no self-loop (∀i = 1, · · · n), one has (i, i) /∈ E. The adjacency matrix
associated with G is define as A= [ai j] ∈ℜn×n such that{

ai j > 0 i f (i, j) ∈ E
ai j = 0 otherwise

The (graph) Laplacian of G is a rank deficient and symmetric matrix defined by

L(G) := E(G)E(G)t = ∆(G) − A(G)

:= [`i j], `i j =−ai j, `ii =
n

∑
j=1

ai j.

Based on the definition of L, the any of its rows sum is zero. Moreover, L(G) ha eigenvalues set 0 = λ1(G)≤ ·· · ≤ λn(G) =
λmax(G) and associated with the set eigenvectors v1 := 1

n 1,v2, . . . ,vn. An attraction of these dynamics is that all subsystems
converge to the consensus space defined as Xc = {y ∈ℜnp|y1(k) = · · ·= yn(k)} when G is a connected graph [33].

Definition 2.1. In the graph G= (V,E), a path of length p is defined as the union of edges as follows:

p⋃
m=1

(im, jm)⇒ im+1 = jm, ∀m ∈ {1, · · · p−1}

The agent j is said to be connected with agent i if there one path exists joining i with j, i.e. i1 = i and jp = j. If every two
different agents has at least one path connecting them, the graph is said to be connected. Henceforth, we assume that the
undirected graph G is connected.

The following remark gives some important characteristic of the graph and its Laplacian matrix.

Remark 2.2. Let λ1 ≤ λ1 ≤ ·· · ≤ λn be the eigenvalues of L. It follows from [32] that
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• λ1 = 0 is a unique zero eigenvalue of L corresponding to the eigenvector I ∆
= [1, 1, · · · , 1]t .

• λ2 is strictly positive if and only if the graph G is connected. This means that L≥ 0.
• λ1 = 0 is an eigenvalue with multiplicity r of the matrix L⊗ Ir. Moreover, L⊗ Ir has r different normalized eigenvectors

given by I⊗ ei, i = 1, ...,r where ei ∈ℜr is the column vector whose ith element is 1 and others are zeros.
• An orthonormal matrix exists: T ∈ℜn×n, TTt = TtT= In such that TLTt = D ∆

= diag(λ1, λ2, · · · , λn)

3. Mode-separation of discrete time dynamical systems

There are a wide class of linear discrete-time control systems with eigenvalue-separation. By reordering and/or rescaling of
states, linear discrete system can be cast into the form

x(k+1) = A1x(k)+A2z(k)+B1u(k)+Γ1ω(k),

z(k+1) = A3x(k)+A4z(k)+B2u(k)+Γ2ω(k),

y(k) = C1x(k)+C2z(k) (3.1)

where the disturbance weighting matrices are Γ1 ∈ℜn1×s, Γ2 ∈ℜq×s. We seek to determine the conditions under which the
modes of discrete systems can be separated. In (3.1), the state vector is formed by x(k) ∈ℜn1 and z(k) ∈ℜn2 , and the control
is u(k) ∈ℜm and the disturbance vector ω(k) ∈ℜs.

Assumption 1. Let n = n1 +n2. System (3.1) is asymptotically Schur stable and its eigen-spectrum

1 > |λ1|> · · ·> |λn1 |> |λn1+1|> · · ·> |λn|
∆
= λ (As)∪λ (A f ) (3.2)

λ (As) = {λ1, · · · ,λn1}, λ (A f ) = {λn1+1, · · · ,λn}

possesses a gap expressed by µ
∆
= |λn1+1|/|λn1 |<< 1

A standard assumption in time-scale modeling theory, which ensures the well-posedness of (3.1) is that following.

Assumption 2. The matrix A4 is invertible.

When Assumption 1 is met, then system (3.1) is called a two-time-scale system. To this end λ (As),λ (A f ) define, respectively,
the eigenvalues of the slow (dominant) parts and are the eigenvalues of the fast (non-dominant) parts of system (3.1). A useful
interpretation of (3.2) is that [A f ]

k tends to zero much quicker that [As]
k. Recalling the facts for any square invertible matrix P

that

|λmax| ≤ ||P||, 1/|λmin| ≤ ||P−1||

An alternative expression of the eigen-spectrum property is

||A−1
s ||||A f || << 1 (3.3)

which designates a matrix norm condition of mode separation in linear discrete systems.

Remark 3.1. By looking at system (3.1) with property (3.2) or (3.3), it is significant that it enjoys the mode-separation
implicitly through the recognition of a gap in the eigen-spectrum.

3.1. Mode separation in networked systems

We consider a network of n identical linear discrete systems having an eigen-spectrum gap in the manner of (3.2). For any
i = 1, · · · ,n where the ith system at discrete instant k, represented by the state [xi(k), zi(k)] ∈ℜn1+n2 and the input u(k) ∈ℜm,
is given by

xi(k+1) = A1xi(k)+A2zi(k)+B1ui(k)+Γ1ωi(k),

zi(k+1) = A3xi(k)+A4zi(k)+B2ui(k)+Γ2ωi(k),

yi(k) = C1xi(k)+C2zi(k) (3.4)

A1 ∈ℜ
n1×n1 , A2 ∈ℜ

n1×n2 , A3 ∈ℜ
n2×n1 ,

A4 ∈ℜ
n2×n2 , rank(B1) = rank(B2) = m

The consensus problem of n systems is first introduced:
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Definition 3.2. The n discrete systems with mode-separation defined by (3.4) achieve asymptotic synchronization using local
information if there exists a state protocol of the form

ui(k) = K1

n

∑
j=1

ai j[xi(k) − x j(k)]+K2

n

∑
j=1

ai j[zi(k) − z j(k)] (3.5)

where K1 ∈ℜm×n1 , K2 ∈ℜm×n2 such that

lim
k→∞
||xi(k) − x j(k)||= 0, lim

k→∞
||zi(k) − z j(k)||= 0 (3.6)

The prime objective hereafter is the characterization of the local controllers that use local information and asymptotically
synchronize the two time-scale (TTS) discrete systems defined by (3.4). Toward our objective, we express the collective
dynamics characterizing the performance of the collective dynamics of n feedback coupled-systems. In terms of

x(k) = [xt
1(k), ..., xt

n(k)]
t ∈ℜ

nn1 , and z(k) = [zt
1(k), ..., zt

n(k)]
t ∈ℜ

nn2

we note that the asymptotic synchronization (3.6) corresponds to

lim
k→∞

(L⊗ In1)x(k) = 0, lim
k→∞

(L⊗ In2)z(k) = 0 (3.7)

Invoking the fact that TL= DT, it follows that (3.7) can be expressed as

lim
k→∞

(D⊗ In1)(T⊗ In1)x(k) = 0, and lim
k→∞

(D⊗ In2)(T⊗ In2)z(k) = 0 (3.8)

3.2. Closed-loop representation

On substituting protocol (3.5) in system (3.4), we obtain the closed-loop dynamics:

x(k+1) = Â1x(k)+ Â2z(k)+ Γ̂1ω(k),

z(k+1) = Â3x(k)+ Â4z(k)+ Γ̂2ω(k) (3.9)

where

Â1 = (In⊗A1) − (In⊗B1K1)(L⊗ In1),

Â2 = (In⊗A2) − (In⊗B1K2)(L⊗ In1),

Â3 = (In⊗A3) − (In⊗B2K1)(L⊗ In1),

Â4 = (In⊗A4) − (In⊗B2K2)(L⊗ In1),

Γ̂1 = (In⊗Γ1) , Γ̂2 = (In⊗Γ2).

It is significant to notice that unlike the invertibility of matrix I2−A4, we can not guarantee that the matrix I2− Â4 is
non-singular. Hence, the well-posedness of the closed-loop dynamics (3.9) has also to be guaranteed by the selection of the
matrix gains. We now proceed by making another transformation of variables

x̂(k) = (T⊗ In1)x(k) , ẑ(k) = (T⊗ In2)z(k),

converts the aggregate dynamics (3.9) into the form[
x̂(k+1)
ẑ(k+1)

]
=

[
Â1 Â2

Â3 Â4

][
x̂(k)
ẑ(k)

]
+

[
Γ̂1

Γ̂2

]
ω(k) (3.10)

where Γ̂1 = (T⊗ In1)(In⊗Γ1), Γ̂2 = (T⊗ In1)(In⊗Γ2), and

Â1 = (In⊗A1) − (In⊗B1K1)(D⊗ In1),

Â2 = (In⊗A2) − (In⊗B1K2)(D⊗ In1),

Â3 = (In⊗A3) − (In⊗B2K1)(D⊗ In1),

Â4 = (In⊗A4) − (In⊗B2K2)(D⊗ In1). (3.11)

The following results stand out:

Proposition 3.3. The closed-loop system (3.10)-(3.11) can be decoupled in n independent TTS systems.
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Proof: Invoking the properties of Kronecker products [3], one uses the fact that for any matrices M, N of appropriate
dimensions we have

(In⊗M) − (In⊗N)(D⊗ Im) = (In⊗M) − (D⊗N)
= diag[M, · · · ,M] − diag[λ1N, · · · ,λnN]
= diag[M−λ1N, · · · ,M−λnN]

which eventually results in

Â1 = diag[A1−λ1B1K1, · · · ,A1−λnB1K1],

Â2 = diag[A2−λ1B1K2, · · · ,A2−λnB1K2],

Â3 = diag[A3−λ1B2K1, · · · ,A3−λnB2K1],

Â4 = diag[A4−λ1B2K2, · · · ,A4−λnB2K2].

This in turn casts the closed-loop system (3.10) into the form[
x̂i(k+1)
ẑi(k+1)

]
=

[
(A1−λiB1K1) (A2−λiB1K2)
(A3−λiB2K1) (A4−λiB2K2)

][
x̂i(k)
ẑi(k)

]
+

[
Γ̂1

Γ̂2

]
ω(k) (3.12)

for i = 1, · · · · · · , n, which is the desired result. �

Proposition 3.4. The asymptotic synchronization problem under consideration with local state information becomes a problem
of feedback simultaneous stabilization of systems in (3.12) for i = 2; · · · ; n.

Proof: Recall that (3.8) can be cast into

lim
k→∞

(D⊗ In1)x̂ = 0 , lim
k→∞

(D⊗ In2)(T⊗ In1)ẑ = 0.

In view of the fact that D= diag[λ1, · · · , λn], λ1 ≡ 0, it follows that the asymptotic synchronization condition reduces to

lim
k→∞

x̂i = 0, lim
k→∞

ẑi = 0, i = 2, · · · , n

which completes the proof. �
Now, it follows from the definition of T, that the following change of variables

x̂(k) = (Tt ⊗ In1)x(k) , ẑ(k) = (Tt ⊗ In2)z(k)

also hold.
Proceeding further and following the time-scale design theory [11]-[40] with ωi(k)≡ 0, the consensus manifold depends on
the behavior of [x̂(k); ẑ(k)]. Effectively, if the discrete-system[

x̂1(k+1)
ẑ1(k+1)

]
=

[
A1 A2
A3 A4

][
x̂1(k)
ẑ1(k)

]
(3.13)

has a stable equilibrium [x̂∗(k); ẑ∗(k)], then the original dynamics (3.1) reaches a finite synchronization asymptotically. If the
system (3.13) has unstable equilibrium point then all the systems given in (3.4) achieves consensus on divergent paths.

Finally, the well-posedness of dynamics (3.4) is similar to the system (3.10) which in turn is guaranteed if all systems given in
(3.12) are also well-posed. It must be emphasized that for i = 1, the system is well posed due to the non-singularity of I2−A4.
The rest of the systems in (3.10) are well-posed if K2 is selected such that (A4−λiB2K2) invertible for i = 2, · · · , n.

4. Control design

In this section, we aim to provide a control design method that gives completely decouple structure of the fast and slow modes
that appear in the whole closed-loop system. Following the discrete quasi-steady state concept [7, 40], the fast dynamics
associated with the small eigenvalues are crucial only within a short period of time. When that transient period finished, they
become negligible and the trajectories behavior the original system can be characterized only by its slow dynamics.
Formally, setting zi(k+ 1) = zi(k)

∆
= zis(k) in the dynamics (3.4) is the same as neglecting the effect of the fast dynamics.

Under this condition, discrete quasi-steady state is given by

zis(k) = [I2−A4]
−1[A3xis(k)+B2uis(k)+Γ2ω(k)]
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As demonstrated in [11] the slow-mode control law us(k) = K1xs(k) and the fast-mode control law u f (k) = K2z f (k) will
eventually produce a composite control law uc(k) based on uc(k) = us(k)+u f (k).

Note that the gains K1, K2 can be synthesized for slow and fast modes subject to specified performance objective. To this
end and following a discrete-time quasi-steady-state technique [9]-[12], it can be readily investigated, the aggregate model
(3.10)-(3.11) can be separated into a slow dynamics

xis(k+1) = [Âo − λiB̂oK1]xis(k)+Γoω(k),

yis(k) = [Ĉo + D̂oK1]xis(k),

zis(k) = −(I− Â−1
4 )[Â3 − λiB̂2K2]xis(k)+Γ2w(k),

Âo = Â1 + Â2(I− Â4)
−1Â3,

B̂o = Â1 + Â2(I− Â4)
−1B̂2,

Ĉo = Ĉ1 + Ĉ2(I− Â4)
−1Â3,

D̂o = Ĉ2(I− Â4)
−1B̂2,

Γo = Γ1 + Â2(I− Â4)
−1

Γ2, (4.1)

of order n1, and a fast dynamics:

xi f (k+1) = [Â4 − λiB̂2K2]xi f (k)+Γ2w(k),

yi f (k) = Ĉ2xi f (k) (4.2)

of order n2.
We are now in a position to establish the following result:

Theorem 4.1. Let the gain matrices K1 and K2 be designed such that for i = 2, · · · , n the matrices

[Âo − λiB̂oK1] , [Ai4−λiB2K2]

are all Schur stable. Then, the composite controllers gain

Kc =

[
Im−K2(In2 −A4)

−1B2

]
K1−K2(In2 −A4)

−1A3

asymptotically synchronize systems (3.4) with local state information.

Proof: Following the results of [9] and selecting the gain matrices K1 and K2 to stabilize the slow and fast subsystems (4.1)
and (4.2), respectively for i = 2, · · · , n, guarantees that

x̂i(k) = x̂is(k) + O(µ),

ẑi(k) = (In2 −Ai4)
−1[Ai3xis(k)−λiB2K2x̂is(k)]+ x̂i f (k) + O(µ)

hold for all sufficiently small µ > 0 and all k ∈ [0, ∞). Recalling that the asymptotic synchronization corresponds to

lim
k→∞

(L⊗ In1)x(k) = 0 , lim
k→∞

(L⊗ In2)z(k) = 0

which holds true in view of

(L⊗ In1)x(k) = (D⊗ In1)x̂(k),

= [0, λ2x̂2, · · · , λnx̂n]
t ,

(L⊗ In2)z(k) = (D⊗ In2)ẑ(k),

= [0, λ2ẑ2, · · · , λnẑn]
t .

Therefore, the proof is completed. �

Remark 4.2. Basically, Theorem 4.1 guarantees asymptotic synchronization of systems (3.1). In order to achieve that, both
slow and fast dynamics should be separately synchronized by stabilizing the error between the different dynamics.

Corollary 4.3. Suppose that Ko is designed such that for i= 2, ...,n that matrices [Ao−λiBoK1] are Schur stable. If ||A4||s < 1,
meaning that the matrix A4 has a spectral radius less than 1, then a lower-order controller with K1 =Kc will asymptotically
synchronize systems (3.1) as well.
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5. H∞ and H2 control design

We next direct attention to the composite control design problem based on the H∞ and H2 prescribed performance criteria. Our
approach is to pursue a Lyapunov-design implementation of H∞ and H2 controllers to guarantee stabilizing system (4.1)-(4.2),
then we recompose them in the manner of Theorem 4.1. We start with the slow-control design.

5.1. Slow H∞ controller

Consider a Lyapanov candidate function Vs = xt
s(k)Psxs(k), Ps > 0 that is associated with the slow dynamics (4.1). Given a

scalar γs > 0, the objective of slow mode H∞ control law is to determine the controller us(k) = K1xs(k) that leads system
(4.1) to stability and guarantees that ||ys(k)||22 < γ2

s ||ω(k)||22. The synthesis of the control problem is detailed by the following
result:

Theorem 5.1. : The dynamical system (4.1) is stabilized by the control law us(k) =K1xs(k) and ||ys(k)||22 < γ2
s ||ω(k)||22 if

there exist matrices Xs > 0, Ys and a scalar γs > 0 satisfying the following LMIs for i = 2, · · · ,n are feasible
−Xs 0 XsÂt

o +Yt
sB̂t

o XsĈt
o +Yt

sD̂t
o

• −γ2
s I Γt

o 0
• • −Xs 0
• • • −I

 < 0 (5.1)

The H∞ slow gain matrix can be obtained as K1 = YsX−1
s .

Proof: Based on robust control theory [44] that the solution of the slow-mode H∞ control problem corresponds to obtaining
the controller gain K1 that ensures the feasibility of the following inequality:

Πs = ∆Vs + yt
s(k)ys(k) − γ

2
s ω

t(k)ω(k)< 0. (5.2)

Obtaining of difference of the Lyapunov function ∆Vs along the dynamics of (4.1) with the control law us(k) =K1xs(k), we
rewrite inequality (5.2) in its equivalent form:

Πs =

[
xs,
ωs

]t

Ξs

[
xs,
ωs

]
< 0, (5.3)

Ξs =

[
Ξs1 Ξs2,
• −Ξs3

]
,

Ξs1 = −Ps +(Ât
o +Kt

1B̂t
o)Ps(Âo + B̂oK1)+(Ĉt

o +Kt
1D̂t

o)(Ĉo + D̂oK1),

Ξs2 = (Ât
o +Kt

1B̂t
o)PsΓo,

Ξs3 = γ
2
s I−Γ

t
oPsΓo.

Inequality (5.3) implies that Ξs < 0. Employing Schur complements to Ξs < 0 and using the following congruent transformation
Xs, I, Xs, I with Xs = P−1

s , K1Xs = Ys, we obtain the LMI (5.1). �

5.2. Fast H∞-control

Using the same procedure of the slow-mode case, consider the Lyapunov function Vf = xt
f (k)P f x f (k), P f > 0 associated

with the fast-dynamics (4.2). Given a scalar γ f > 0, the objective of fast-mode H∞ control law is to obtain the controller
u f (k) = K2x f (k) that stabilizes system (4.2) and guaranteeing that ||y f (k)||22 < γ2

f ||ω(k)||22. The synthesis of the control
problem is detailed by the following result:

Theorem 5.2. : System (4.2) is stabilizable by the controller u f (k) = K2x f (k) and ||y f (k)||22 < γ2
f ||ω(k)||22 if there exist

matrices X f > 0, Y f and a scalar γ f > 0 such that such that the following LMIs for i = 2, · · · ,n are feasible
−X f 0 X f Ât

4 +Yt
f B̂t

2 X f Ĉt
2

• −γ2
f I Γt

2 0
• • −X f 0
• • • −I

 < 0 (5.4)

The H∞ fast gain matrix can be determined by K2 = Y fX−1
f .

Proof: The proof is similar to the proof of Theorem 5.1. �
We combine the results of Theorems 4.1, 5.1 and 5.2, such that the composite H∞ control law is obtained by the following
result:
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Lemma 5.3. Consider the dynamical system (4.1)-(4.2) and let Xs > 0, Ys and X f > 0, Y f be the obtained solutions of the
LMIs (5.1) and (5.4), respectively. Then, the H∞ composite controller is obtained in the form

uc(k) = [(I−Y fX−1
f (I−A4)

−1B2)
−1YsX−1

s −Y fX−1
f (I−A4)

−1A3]x(k)+Y fX−1
f z(k)

guarantees that ||y(k)||22 < γ2 ||ω(k)||22 with γ ∈ [γs, γ f ]. In addition, it yields an approximation of first-order to the states of
the original dynamics (3.4).

If the fast-mode dynamics is asymptotically stable, we can derive a reduced-order H∞ control based on the following lemma:

Lemma 5.4. Consider the dynamics in (3.1) and assume Xs > 0, Ys are the solutions obtained by solving LMI (5.1). Then the
reduced-order H∞ control law is given as follows

uc(k) = YsX−1
s x(k)

guarantees that ||y(k)||22 < γ2 ||ω(k)||22 with γ ∈ [γs, γ f ]. In addition, it yields an approximation of first-order to the states of
the original dynamics (3.4).

Proof: The proof follows parallel details to the results in [7, 40]. �

Remark 5.5. It is worth noting that that the results of Theorems 5.1 and 5.2 and Lemmas 5.3-5.4 are new in the field of two
time-scale discrete-time dynamical systems. Morover, it also strengthen the idea that system (3.1) is represent a good model of
discrete-time practical engineering dynamics with implicit representation of the mode-separation property.

6. H2 Control design

Similarly, instead of synthesizing a full-order H2 control, we decompose it into separate H2 controllers for slow and fast modes.
Moreover, we recompose the controllers similar ro the manner of Theorem 4.1.

6.1. Slow H2 controller

Consider a candidate Lyapunov function Vs = xt
s(k)Ps2xs(k), Ps2 > 0 corresponding the slow dynamics (4.1). The objective

of slow-mode H2 control law is to guarantee the stability of closed-loop slow mode and to maintain the H2-objective of the
closed loop transfer function Hysw(s) from the exogenous input ω to controlled output ys as small as possible.
Substituting the slow-mode control law us(k) =Ks1xs(k) into (4.1), the closed-loop slow subsystem becomes

xs(k+1) = Âcoxs(k)+Γoω(k),

ys(k) = Ĉcoxs(k),

Âco = Âo + B̂oKs1, Ĉco = Ĉo + D̂oKs1. (6.1)

Based on Lyapunov theory, given the control gain matrix Ks1, the closed-loop dynamics (6.1) become asymptotically stable
ω(k)≡ 0 if

Ps2− Ât
coPs2Âco > 0.

Then, we can express the square of the H2-norm of the transfer function Hzw(s) in terms of the solution of a Lyapunov equation
(controllability Grammian). In addition, its minimization problem with respect to the gain matrix Ks1 is characterized as

min
{

Tr[ĈcoPs2Ĉt
co] : Ps2− Ât

coPs2Âco +ΓoΓ
t
o = 0

}
where Trr[.] represents the trace of a matrix. Since Ps2 < P for any P satisfying

P− Ât
coPÂco +ΓoΓ

t
o < 0 (6.2)

it is readily verified that ||Hzw(s)||22 =Tr[ĈcoPs2Ĉt
co]< ν if and only if there exists P > 0 satisfying (6.2) and Tr[ĈcoPs2Ĉt

co]<
ν . We introduce a new dummy variable Z , to obtian the following synthesis result:

Theorem 6.1. : The dynamical system (4.1) can bw stabilizable by the control law us(k) =Ks1xs(k) and ||Hzw(s)||22 < ν for a
prescribed ν if and only if there exist positive definite matrices P, Z , and a matrix Q with appropriate dimensions satisfying
the following conditions:

Tr(Z ) < ν ,

[
Z ĈoP + D̂oQ
• P

]
> 0, P ÂoP + B̂oQ Γo

• P 0
• • I

 > 0 (6.3)

Moreover, the slow-mode gain matrix is obtained by Ks1 = QP−1

proof: It can be proved based on standard convex analysis similar to procedure presented in [45]. �
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6.2. Fast H2 controller

Similarly, consider a Lyapunov function Vf = xt
f (k)P f 2x f (k), P f 2 > 0 associated with the fast dynamics (4.2). The objective

of fast-mode H2 control law is to guarantee the stability of closed-loop fast-mode and to maintain a prescribed H2-performance
the closed loop transfer function Hy f w(s) from ω to y f as small as possible. The corresponding synthesis result is provided by
the following result which follows a parallel development to Theorem 6.1:

Theorem 6.2. : System (4.2) is stabilizable by the controller u f (k) =K f 2x f (k) and ||Hy f w(s)||22 < ν for a prescribed ν if and
only if there exist matrices R > 0, S , W > 0 such that

Tr(W ) < ν ,

[
W Ĉ2R
• R

]
> 0, R Â4R+ B̂2S Γ2

• R 0
• • I

 > 0 (6.4)

Moreover, the fast gain is given by K f 2 = S R−1

Once again, by combining Theorems 4.1 , 6.1 and 6.2, the composite H2 controller is obtained by the following result:

Lemma 6.3. Consider the dynamical system (3.1). Let P > 0, Q, Z > 0 and R > 0, S , W > 0 be the given solutions of
the conditions in (6.3) and (6.4). Then we obtain the H2 composite control as

uc(k) = [(I−S R−1(I−A4)
−1B2)

−1QP−1−S R−1(I−A4)
−1A3]x(k)+S R−1z(k)

that guarantees the stability of closed-loop system and maintaining the H2-norm of the closed loop transfer function Hyw(s)
from ω to ys as small as possible. In addition, it yields an approximation of first-order to the states of the original dynamics
(3.1).

Remark 6.4. In a similar way, the results of Theorems 6.1 and 6.2 and Lemmas 6.3 and 5.4 are contributions to the field
of discrete systems with mode-separation. It is important to assert the relevance of the permutation and/or scaling in
casting the discrete dynamics of the type (3.1) in the structure of two-time-scale discrete modes with the property of implicit
characterization of the mode-separation.

7. Simulation example

Figure 7.1: Connected topology of 4 agents.

Now, we apply the provided theoretical results to an engine model with dynamometer test. A linearizion is used to obtain the
linear model as developed in [46].The state variables are selected as follows: the speed of the rotor, shaft-torque, speed of the
engine and amplifier’s current.The throttle-servo voltage and dynamometer current are input variables.Consider a group of 4
agent whose graph topology is shown in Fig 7.1. It can be easily shown that the model has a mode separation with two time
scales: slow states (n1 = 2) and three fast states (n2 = 3). Using the data given in [46], the slow dynamics (4.1) is described by

Ao =

[
0.762 0
−0.029 0.689

]
,Bo =

[
0 1.049

0.090 −0.018

]
Co =

[
0 1

−0.221 8.191

]
,Do =

[
0 0

0.765 −0.144

]
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whereas the fast model (4.2) is given by

A4 =

 0.160 −0.002 −0.258
0 −0.038 0

0.231 0 −0.381

 ,B2 =

 0.702 −0.083
0 22.400

0.142 0.026

 , C2 =
[

0 0 1
]

Based on Theorems 5.1 and 5.2, we obtain the H∞ slow and fast matrix gains as follows

K1 =

[
0.008 −0.094
0.007 0.089

]
,γs = 0.453,

K2 =

[
−0.286 −0.001 −0.079
−0.277 −0.011 −0.084

]
,γ f = 0.629

This gives the H∞ composite control law as

Kc =

[
0.054 0.030 −0.288 0.012 −0.078
0.051 0.114 −0.269 0.078 −0.103

]
,

γc ∈ [0.453, 0.629].

In addition, applying Theorems 6.1 and 6.2 with ν = 1.245 gives the following H2 slow and fast matrix gains as

K1 =

[
0.016 −0.085
0.002 0.097

]
,K2 =

[
−0.305 −0.013 −0.044
−0.225 −0.001 −0.103

]
.

Based on the gain matrices K1 and K1, the H2 composite control law is obtained:

Kc =

[
0.0784 −0.248 −50.87 −0.0065 −0.0771
0.095 0.0534 −144.7 −0.0047 −0.246

]
According to Lemmas 5.3-6.3, the composite gains guarantee good approximation to the closed-loop state trajectories. Figure
7.2 shows the output response of the original system. The output disagreement of all agents are demonstrated in Figs 7.3, 7.4
and 7.5.
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Figure 7.2: Output response of the original system.
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Figure 7.3: Disagreement among outputs y1(k)− y2(k)
.
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Figure 7.4: Disagreement among outputs y2(k)− y3(k)
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Figure 7.5: Disagreement among outputs y3(k)− y4(k)
.

8. Conclusions

This article investigated feedback control synthesis problem of a broad range of discrete-time dynamics that possesses eigen-
spectrum gap. The fast and slow modes are assumed to be observable and controllable. This assumption constitutes a very mild



44 Fundamental Journal of Mathematics and Applications

condition and less conservative than assuming observability and controllability of the original dynamical system. Adopting
either the H∞ or H∞ optimization schemes, we have investigated two-stage design approach based on separate gain matrices
for the slow and fast modes. We have constructed a composite controller to obtain first-order approximations to the behavior of
the discrete-time dynamics. Moreover, the paper investigates the interactions between multiple time-scale-networked dynamics
and gives guarantees on the stability of the disagreement among coupled systems. The addressed effectiveness of the presented
methodologies have been demonstrated using a typical application model.
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