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Abstract 

Let ∅ ≠ Ŕ, Ś be subsets of a partial metric space (𝛺, 𝜗) and 𝛹: Ŕ → Ś be a mapping. If Ŕ ∩ Ś = ∅, 

it cannot have a solution of equation 𝛹ς = ς for some ς ∈ Ŕ. Hence, it is sensible to investigate if 

there is a point ἣ satisfying 𝜗(ἣ, 𝛹ἣ) = 𝜗(Ŕ, Ś) which is called a best proximity point. In this 

paper, we first introduce a concept of Hausdorff cyclic mapping pair. Then, we revise the 

definition of 0-boundedly compact on partial metric spaces. After that, we give some best 

proximity point results for these mappings. Hene, our results combine, generalize and extend 

many fixed point and best proximity point theorems in the literature as properly. Moreover, a 

comparative and illustrative example to demonstrate the effectiveness of our results has been 

presented. 
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1. INTRODUCTION 

 

In 1922, Banach [1] obtained a very significant result, known as the Banach contraction principle, on 

complete metric spaces. Because of its applicable in various fields of nonlinear analysis and applied, this 

the result has been extended in different ways [2-6]. Nadler [7] proved one of the famous and interesting 

generalizations by considering multivalued mappings. 

 

Theorem 1. Let 𝛹: 𝛺 → 𝐶𝐵(𝛺) be a multivalued mapping on a complete metric space (𝛺, 𝜎). If there is 𝑞 

in [0,1) satisfying 

 

𝐻𝜎(𝛹ἣ, 𝛹ὓ) ≤ 𝑞𝜎(ἣ, ὓ) 

 

for all ἣ, ὓ ∈ 𝛺 where 

 

𝐶𝐵(𝛺) = {Ŕ ⊆ 𝛺 ∶  Ŕ 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑛𝑑 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑖𝑛 (𝛺, 𝜎)}  

 

and 𝐻 is a Hausdorff metric w.r.t. 𝜎 on 𝐶𝐵(𝛺), then is a point ἣ∗ in 𝛺 satisfying ἣ∗ = 𝛹ἣ∗. 

 

Introducing the nice definition of cyclic mapping, Kirk et al. [8] proved another generalization of Banach's 

principle. 

 

Theorem 2. Let ∅ ≠ Ŕ, Ś be subsets of a complete metric space (𝛺, 𝜎) and 𝛹: Ŕ ∪ Ś → Ŕ ∪ Ś be a cyclic 

mapping, that is, 𝛹(Ŕ) ⊆ Ś and 𝛹(Ś) ⊆ Ŕ. If there is q in [0,1) satisfying 
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𝜎(𝛹ἣ, 𝛹ὓ) ≤ 𝑞𝜎(ἣ, ὓ) 

 

for all ἣ ∈ Ŕ and ὓ ∈ Ś, then there is a point ἣ∗ in Ŕ ∩ Ś satisfying ἣ∗ = 𝛹ἣ∗. 

 

 Note that, unlike the mentioned principle, 𝛹 may not be continuous in Theorem 2. Hence, the continuity 

condition of 𝛹 has been neglected. Therefore, this topic is generalized and extended in different ways 

[9,10]. Also, considering a similar approach the following result has been obtained. 

 

Theorem 3. [8] Let ∅ ≠ Ŕ, Ś be subsets of a complete metric space (𝛺, 𝜎) where Ŕ, Ś are closed. Assume 

that 𝛹: Ŕ → Ś and 𝛷: Ś → Ŕ are two mappings such that 

 

𝜎(𝛹ἣ, 𝛷ὓ) ≤ 𝑞𝜎(ἣ, ὓ) 

 

for all ἣ ∈ Ŕ and ὓ ∈ Ś where 𝑞 in [0,1). Then, there is a unique 𝑧 ∈ Ŕ ∩ Ś such that 𝛹𝑧 = 𝛷𝑧 = 𝑧. 

 

Recently, some other extensions of Banach's result have been obtained by considering nonself mappings. 

Let ∅ ≠ Ŕ, Ś be subsets of a metric space (𝛺, 𝜎) and 𝛹: Ŕ → Ś be a mapping. If Ŕ ∩ Ś = ∅, then 𝛹 cannot 

have a fixed point. Hence, because of the fact that 𝜎(ἣ, 𝛹ἣ) ≥ 𝜎(Ŕ, Ś) for all ἣ ∈ Ŕ, it is logical to search 

a point ἣ satisfying 𝜎(ἣ, 𝛹ἣ) = 𝜎(Ŕ, Ś) which is called a best proximity point [11]. Since every best 

proximity point is a natural generalization of fixed point in case of  Ŕ = Ś = 𝛺, many authors have studied 

on this topic in literature [12-20]. 

  

Taking into account Ŕ ∩ Ś = ∅ in the Theorem 2, Eldered and Veeramani [21] gave the nice concept, so 

called cyclic contraction mapping, and proved some best proximity point results for such mappings. 

 

Definition 1. Let ∅ ≠ Ŕ, Ś be subsets of a metric space (𝛺, 𝜎) and 𝛹: Ŕ ∪ Ś → Ŕ ∪ Ś be a cyclic mapping. 

If there is q in [0,1) satisfying 

 

𝜎(𝛹ἣ, 𝛹ὓ) ≤ 𝜎(ἣ, ὓ)  + (1 − 𝑞)𝜎(Ŕ, Ś) 

 

for all ἣ ∈ Ŕ and ὓ ∈ Ś, then 𝛹 is called cyclic contraction mapping. 

 

Theorem 4. [21] Let ∅ ≠ Ŕ, Ś be subsets of a metric space (𝛺, 𝜎) and where Ŕ, Ś are closed. Assume that 

𝛹: Ŕ ∪ Ś → Ŕ ∪ Ś is a cyclic contraction mapping, ἣ0 ∈ Ŕ and define ἣ𝑛+1 = 𝛹ἣ𝑛 for all 𝑛 ∈ ℕ. Then, 

there is ἣ ∈ Ŕ satisfying 𝜎(ἣ, 𝛹ἣ) = 𝜎(Ŕ, Ś) provided that {ἣ2𝑛−1} has a convergent subsequence in Ŕ. 

 

Theorem 5. [21] Let ∅ ≠ Ŕ, Ś be subsets of a metric space (𝛺, 𝜎) and 𝛹: Ŕ ∪ Ś → Ŕ ∪ Ś be a cyclic 

contraction mapping. Then, 𝛹 has a best proximity point in Ŕ ∪ Ś if either Ŕ or Ś is a boundedly  compact.  

 

On the other hand, Matthews [22] introduced the definition of partial metric: 

 

Definition 2. Let 𝛺 ≠ ∅ and 𝜗: 𝛺 × 𝛺 → [0, ∞) be a function. If the following conditions hold: 

 

p1) 𝜗(ἣ, ἣ) = 𝜗(ἣ, ὓ) = 𝜗(ὓ, ὓ) if and only if ἣ = ὓ, 
p2) 𝜗(ἣ, ἣ) ≤ 𝜗(ἣ, ὓ), 

p3) 𝜗(ἣ, ὓ) = 𝜗(ὓ, ἣ), 

p4) 𝜗(ἣ, 𝑧) ≤ 𝜗(ἣ, ὓ) + 𝜗(ὓ, 𝑧) − 𝜗(ὓ, ὓ), 

 

for all ἣ, ὓ, 𝑧 ∈ 𝛺, then 𝜗 is called a partial metric. Also, the pair (𝛺, 𝜗) is said to be partial metric space. 

 

For simplicity, in the rest of this paper, we will use pms instead of partial metric space. It can be seen that 

every metric space is a pms, but every pms may not be metric space. In fact, let 𝛺 = [0, ∞) and a function 
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𝜗: 𝛺 × 𝛺 → [0, ∞) defined by 𝜗(ἣ, ὓ) = max {ἣ, ὓ} for all ἣ, ὓ ∈ 𝛺. Then, 𝜗 is a partial metric, but it is not 

a metric. For other example of pms, we refer to [23-25]. 

 

Let (𝛺, 𝜗) be a pms. Then, 𝜗 generates 𝑇0 − topology 𝜏𝜗 on 𝛺 which has as a base the family open 𝜗-balls 

 
{𝐵𝜗(ἣ, 𝜀): ἣ ∈ 𝛺, 𝜀 > 0} 

 

where 

 

𝐵𝜗(ἣ, 𝜀) = {ὓ ∈ 𝛺: 𝜗(ἣ, ὓ) < 𝜗(ἣ, ἣ) + 𝜀} 

 

for all ἣ ∈ 𝛺 and 𝜀 > 0. 

 

Let {ἣ𝑛} be a sequence in 𝛺 and ἣ ∈ 𝛺. It is clear that {ἣ𝑛} converges to ἣ w.r.t. 𝜏𝜗  if and only if 

 

lim
𝑛→∞

𝜗(ἣ𝑛, ἣ) = 𝜗(ἣ, ἣ). 

 

If lim
𝑛,𝑚→∞

𝜗(ἣ𝑛, ἣ𝑚) is finite and exists, then {ἣ𝑛} is called a Cauchy sequence. Then (𝛺, 𝜗) is called a 

complete pms if every Cauchy sequence {ἣ𝑛} in 𝛺 converges to a point ἣ in 𝛺 satisfying  

 

lim
𝑛,𝑚→∞

𝜗(ἣ𝑛, ἣ𝑚) = 𝜗(ἣ, ἣ) 

 

Recently, Romaguera [26] introduced the concept of 0-complete pms. Hence, a weaker form of 

completeness on pms has been obtained. 

 

Definition 3. Let {ἣ𝑛} be a sequence in a pms (𝛺, 𝜗). 

 

i) If lim
𝑛,𝑚→∞

𝜗(ἣ𝑛, ἣ𝑚) = 0, then {ἣ𝑛} is called 0-Cauchy sequence 

 

ii) If every 0-Cauchy sequence converges to a point ἣ in 𝛺 w.r.t. 𝜏𝜗 such that 

 

lim
𝑛,𝑚→∞

𝜗(ἣ𝑛, ἣ𝑚) = 𝜗(ἣ, ἣ) = 0, 

 

then (𝛺, 𝜗) is called 0-complete pms. 

 

Because of the fact that every 0-Cauchy sequence in 𝛺 is a Cauchy sequence, every complete pms is 0-

complete. But, the converse may not be true. Indeed, let us consider the set (𝛺 = ℚ ∩ [0, ∞), 𝜗) is a pms 

where  𝜗(ἣ, ὓ) = 𝑚𝑎𝑥{ἣ, ὓ} for all ἣ, ὓ ∈ 𝛺. Then, (𝛺, 𝜗) is 0-complete but  it is not a complete pms. 

 

Definition 4. [27] Let (𝛺, 𝑝) be a pms and ∅ ≠ Ŕ ⊆ 𝛺. Ŕ is called a 0-boundedly compact if every bounded 

sequence  {ἣ𝑛} has a subsequence {ἣ𝑛𝑘
} such that  

lim
𝑛→∞

𝜗(ἣ𝑛𝑘
, ἣ) = 𝜗(ἣ, ἣ) = 0. 

 

If 𝜗 is a partial metric on 𝛺, then the mapping 𝜗𝑠: 𝛺 × 𝛺 → [0, ∞) defined by 

 

𝜗𝑠(ἣ, ὓ) = 2𝜗(ἣ, ὓ) − 𝜗(ἣ, ἣ) − 𝜗(ὓ, ὓ) 

 

for all ἣ, ὓ ∈ 𝛺 is an ordinary metric on 𝛺. 
 

Now, we give the relations between pms (𝛺, 𝜗) and corresponding metric space (𝛺, 𝜗𝑠).. 

 

Lemma 1. [28] Let {ἣ𝑛} be a sequence in a pms (𝛺, 𝜗). 
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i) {ἣ𝑛} is a Cauchy sequence in (𝛺, 𝜗𝑠 ) iff {ἣ𝑛} is a Cauchy sequence in (𝛺, 𝜗).  
ii) (𝛺, 𝜗𝑠 ) is a complete metric space iff (𝛺, 𝜗) is a complete pms. 

iii) Given a sequence {ἣ𝑛} in 𝛺 and ἣ ∈ 𝛺. Then, we get 

 

lim
𝑛→∞

𝜗𝑠(ἣ𝑛, ἣ) = 0 ⇔ 𝜗(ἣ, ἣ) = lim
𝑛→∞

𝜗(ἣ𝑛, ἣ) = lim
𝑛,𝑚→∞

𝜗(ἣ𝑛, ἣ𝑚). 

 

Using Lemma 1 (iii), it is clear that 

 

lim
𝑛→∞

𝜗𝑠(ἣ𝑛, ἣ) = 0 = lim
𝑛→∞

𝜗𝑠(ὓ𝑛, ὓ) ⇔ lim
𝑛→∞

𝜗(ἣ𝑛, ὓ𝑛) = 𝜗(ἣ, ὓ). 

 

Now, we give the following lemmas which are very useful in our main results. 

 

Lemma 2. [28] Let (𝛺, 𝜗) be a pms and Ŕ, Ś ∈ 𝐶𝐵𝜗(𝛺). Then, for each 𝑎 ∈ Ŕ and 𝜀 > 0, there exists 𝑏 ∈ Ś 

such that 

 

𝜗(𝑎, 𝑏) ≤ 𝐻𝜗(Ŕ, Ś) + 𝜀. 
 

Lemma 3. [28] Let ∅ ≠ Ŕ be a subset of a pms (𝛺, 𝜗). Then, we have  

 

ἣ ∈ Ŕ̅ ⇔ 𝜗(ἣ, Ŕ) = 𝜗(ἣ, ἣ) 

 

where Ŕ̅ is closure of Ŕ w.r.t. 𝜏𝜗. 

 

Let 𝐶𝐵𝜗(𝛺) = {Ŕ ⊆ 𝛺 ∶  Ŕ 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑎𝑛𝑑 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑖𝑛 (𝛺, 𝜗)}. 

 

Aydi et al. [28] defined partial Hausdorff metric of (𝛺, 𝜗) on 𝐶𝐵𝜗(𝛺). The function 

 

𝐻𝜗: 𝐶𝐵𝜗(𝛺) × 𝐶𝐵𝜗(𝛺) → [0, ∞) 

 

defined by 

 

𝐻𝜗(Ŕ, Ś) = 𝑚𝑎𝑥{𝑠𝑢𝑝𝑎∈Ŕ𝜗(𝑎, Ś), 𝑠𝑢𝑝𝑏∈Ś𝜗(Ŕ, 𝑏)} 

 

for all Ŕ, Ś ∈ 𝐶𝐵𝜗(𝛺) where 𝜗(ἣ, Ś) = 𝑖𝑛𝑓{𝜗(ἣ, ὓ) ∶  ὓ ∈ Ś} is called a partial Hausdorff metric of (𝛺, 𝜗).  

 

The properties of partial Hausdorff metric were given in [28]: 

 

Lemma 4. [28] Let (𝛺, 𝜗) be a pms. For all Ŕ, Ś ∈ 𝐶𝐵𝜗(𝛺), we have 

 

i) 𝐻𝜗(Ŕ, Ŕ) ≤ 𝐻𝜗(Ŕ, Ś), 

ii) 𝐻𝜗(Ŕ, Ś) = 𝐻𝜗(Ś, Ŕ), 

iii) 𝐻𝜗(Ŕ, Ś) ≤ 𝐻𝜗(Ŕ, 𝐶) + 𝐻𝜗(𝐶, Ś) − 𝑖𝑛𝑓𝑐∈𝐶𝜗(𝑐, 𝑐), 
iv) 𝐻𝜗(Ŕ, Ś) = 0 implies Ŕ = Ś. 
 

Then, they obtained the following result. 

 

Theorem 6. [28] Let 𝛹: 𝛺 → 𝐶𝐵𝜗(𝛺) is a multivalued mapping on a complete pms (𝛺, 𝜗). If there is q in 

[0,1) satisfying 

 

𝐻𝝈(𝛹ἣ, 𝛹ὓ) ≤ 𝑞𝜗(ἣ, ὓ) 
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for all ἣ, ὓ ∈ 𝛺, then there is a point ἣ∗ in 𝛺 satisfying ἣ∗ = 𝛹ἣ∗. 

 

For any subset Ŕ of 𝛺, image of Ŕ under the multivalued mapping 𝛹 is defined as 

 

𝛹(Ŕ) = ⋃ 𝛹ἣ

ἣ∈Ŕ

. 

 

Now, we remember the basic concepts and notations of best proximity point theory. 

 

Let (𝛺, 𝜗) be a pms, Ŕ, Ś be nonempty subsets of 𝛺 and 𝛹: Ŕ → Ś be a mapping. We regard the following 

subsets of Ŕ and Ś, respectively: 

 

Ŕ0 = {ἣ ∈ Ŕ: 𝜗(ἣ, ὓ) = 𝜗(Ŕ, Ś) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 ὓ ∈ Ś} 

 

and 

 

Ś0 = {ὓ ∈ Ś: 𝜗(ἣ, ὓ) = 𝜗(Ŕ, Ś) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 ἣ ∈ Ŕ} 

 

where 𝜗(Ŕ, Ś) = 𝑖𝑛𝑓{𝜗(ἣ, ὓ): ἣ ∈ Ŕ 𝑎𝑛𝑑 ὓ ∈ Ś}. 

 

In this paper, we first introduce a concept of Hausdorff cyclic mapping pair. Then, we revise the definition 

of 0-boundedly compact on partial metric spaces. After that, we give some best proximity point results for 

these mappings. Hene, our results combine, generalize and extend many fixed point and best proximity 

point theorems in the literature as properly. Moreover, a comparative and illustrative example to 

demonstrate the effectiveness of our results has been presented. 

 

2. MAIN RESULTS 

 

In this section, we introduce Hausdorff cyclic mapping pair for multivalued mappings. 

 

Definition 5. Let ∅ ≠ Ŕ, Ś be subsets of a pms (𝛺, 𝜗). Assume that 𝛹: Ŕ → 𝐶𝐵𝜗(Ś) and 𝛷: Ś → 𝐶𝐵𝜗(Ŕ) 

are multivalued mappings. If there exists q in (0,1) such that 

 

𝐻𝝈(𝛹ἣ, 𝛷ὓ) ≤ 𝑞𝜗(ἣ, ὓ) + (1 − 𝑞)𝜗(Ŕ, Ś)                                                                                                            (1)  
 

for all ἣ ∈ Ŕ and ὓ ∈ Ś, then the pair (𝛹, 𝛷) is called Hausdorff cyclic contraction mapping pair.  

 

Proposition 1. Let ∅ ≠ Ŕ, Ś be subsets of a pms (𝛺, 𝜗). Assume that 𝛹: Ŕ → 𝐶𝐵𝜗(Ś) and 𝛷: Ś → 𝐶𝐵𝜗(Ŕ) 

are multivalued mappings satisfying the pair (𝛹, 𝛷) is a Hausdorff cyclic contraction mapping pair and 

ἣ0 ∈ Ŕ. Consider the sequence {ἣ𝑛} in Ŕ ∪ Ś by ἣ2𝑛+1 ∈ 𝛹ἣ2𝑛 and ἣ2𝑛+2 ∈ 𝛷ἣ2𝑛+1 for all 𝑛 ∈ ℕ. Then, 

we have 𝜗(ἣ𝑛, ἣ𝑛+1) → 𝜗(Ŕ, Ś) as 𝑛 → ∞. 

 

Proof. Choose ἣ1 ∈ 𝛹ἣ0. From (1), there exists q in (0,1) such that 

 

𝐻𝜗(𝛹ἣ0, 𝛷ἣ1) ≤ 𝑞𝜗(ἣ0, ἣ1) + (1 − 𝑞)𝜗(Ŕ, Ś). 
 

Then, by Lemma 2, there exists ἣ2 ∈ 𝛷ἣ1 such that  

 

𝜗(ἣ1, ἣ2) ≤ 𝐻𝜗(𝛹ἣ0, 𝛷ἣ1) + 𝑞. 
 

Similarly, there exists q in (0,1) such that 
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𝐻𝜗(𝛷ἣ1, 𝛹ἣ2) ≤ 𝑞𝜗(ἣ1, ἣ2) + (1 − 𝑞)𝜗(Ŕ, Ś) 

 

and there exists ἣ3 ∈ 𝛹ἣ2 such that 

 

𝜗(ἣ2, ἣ3) ≤ 𝐻𝜗(𝛷ἣ1, 𝛹ἣ2) + 𝑞2. 

 

Repeating this way, one can create a sequence {ἣ𝑛} in Ŕ ∪ Ś such that ἣ2𝑛+1 ∈ 𝛹ἣ2𝑛, ἣ2𝑛+2 ∈ 𝛷ἣ2𝑛+1, 

 

𝜗(ἣ2𝑛+1, ἣ2𝑛+2) ≤ 𝐻𝜗(𝛹ἣ2𝑛, 𝛷ἣ2𝑛+1) + 𝑞2𝑛+1 

 

and 

 

𝐻𝜗(𝛹ἣ2𝑛, , 𝛷ἣ2𝑛+1) ≤ 𝑞𝜗(ἣ2𝑛, ἣ2𝑛+1) + (1 − 𝑞)𝜗(Ŕ, Ś) 

 

for all 𝑛 ∈ ℕ. Hence, we have  

 

𝜗(ἣ2𝑛+1, ἣ2𝑛+2) ≤ 𝐻𝜗(𝛹ἣ2𝑛, 𝛷ἣ2𝑛+1) + 𝑞2𝑛+1                                                                                       (2) 

                               ≤ 𝑞𝜗(ἣ2𝑛, ἣ2𝑛+1) + (1 − 𝑞)𝜗(Ŕ, Ś) + 𝑞2𝑛+1 

                            ≤ 𝑞(𝐻𝜗(𝛷ἣ2𝑛−1, 𝛹ἣ2𝑛) + 𝑞2𝑛) + (1 − 𝑞)𝜗(Ŕ, Ś) + 𝑞2𝑛+1 

                            =  𝑞𝐻𝜗(𝛷ἣ2𝑛−1, 𝛹ἣ2𝑛) + (1 − 𝑞)𝜗(Ŕ, Ś) + 2𝑞2𝑛+1 

                                ≤ 𝑞2 𝜗(ἣ2𝑛−1, ἣ2𝑛) + (1 + 𝑞)(1 − 𝑞)𝜗(Ŕ, Ś) + 2𝑞2𝑛+1 

                             . 
                             . 
                             . 

                                ≤ 𝑞2𝑛+1 𝜗(ἣ0, ἣ1) + (1 + 𝑞 + ⋯ + 𝑞2𝑛)(1 − 𝑞)𝜗(Ŕ, Ś) + (2𝑛 + 1)𝑞2𝑛+1 

                            ≤ 𝑞2𝑛+1 𝜗(ἣ0, ἣ1) +
1−𝑞2𝑛+1

1−𝑞
(1 − 𝑞)𝜗(Ŕ, Ś) + (2𝑛 + 1)𝑞2𝑛+1 

                                ≤ 𝑞2𝑛+1 𝜗(ἣ0, ἣ1) + 𝜗(Ŕ, Ś) + (2𝑛 + 1)𝑞2𝑛+1. 

 

Since the series ∑ (2𝑛 + 1)𝑞2𝑛+1∞
𝑛=0  is convergent for 𝑞 ∈ (0,1), we have lim

𝑛→∞
(2𝑛 + 1)𝑞2𝑛+1 = 0. Taking 

limit 𝑛 → ∞ (2), we get  

 

lim
𝑛→∞

𝜗(ἣ2𝑛+1, ἣ2𝑛+2) =  𝜗(Ŕ, Ś). 

 

Similarly, we can show that 

 

lim
𝑛→∞

𝜗(ἣ2𝑛, ἣ2𝑛+1) = 𝜗(Ŕ, Ś).  

 

Hence, we have 

 

𝜗(ἣ𝑛, ἣ𝑛+1) → 𝜗(Ŕ, Ś) 𝑎𝑠 𝑛 → ∞. 
 

Now, we give our main result. 

 

Theorem 7. Let ∅ ≠ Ŕ, Ś be subsets of a pms (𝛺, 𝜗). Assume that 𝛹: Ŕ → 𝐶𝐵𝜗(Ś) and 𝛷: Ś → 𝐶𝐵𝜗(Ŕ) are 

multivalued mappings satisfying the pair (𝛹, 𝛷) is a Hausdorff cyclic contraction mapping pair and ἣ0 ∈
Ŕ. Consider the sequence {ἣ𝑛} constructed as Proposition 1. Then, we get the following: 

 

i) if the sequence {ς
2n

} has a subsequence {ς
2nk

} in Ŕ such that 
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lim
𝑘,𝑙→∞

𝜗(ἣ2𝑛𝑘
, ἣ2𝑛𝑙

) = lim
𝑘→∞

𝜗(ἣ2𝑛𝑘
, ἣ∗) = 𝜗(ἣ∗, ἣ∗) = 0                                                                            (3) 

 

for some ἣ∗ ∈ Ŕ, then ἣ∗ is a best proximity point of φ in Ŕ. 

ii) if the sequence {ς
2n+1

} has a subsequence {ς
2nk+1

} in Ś such that 

 

lim
𝑘,𝑙→∞

𝜗(ἣ2𝑛𝑘+1, ἣ2𝑛𝑙+1) = lim
𝑘→∞

𝜗(ἣ2𝑛𝑘+1, ὓ∗) = 𝜗(ὓ∗, ὓ∗) = 0                                                                (4) 

 

for some ὓ∗ ∈ Ŕ, then ὓ∗ is a best proximity point of 𝛷 in Ś. 

 

Proof. Let {ἣ𝑛} be sequence constructed as Proposition 1. Assume that the condition (i) holds. Due to the 

condition (i), there is a subsequence {ς
2nk

} of {ς
2n

} such that 

 

lim
𝑘,𝑙→∞

𝜗(ἣ2𝑛𝑘
, ἣ2𝑛𝑙

) = lim
𝑘→∞

𝜗(ἣ2𝑛𝑘
, ἣ∗) = 𝜗(ἣ∗, ἣ∗) = 0 

 

for some ἣ∗ ∈ Ŕ. From Proposition 1, we have 

 

lim
𝑘→∞

𝜗(ἣ2𝑛𝑘
, ἣ2𝑛𝑘+1) = 𝜗(Ŕ, Ś).                                                                                                             

 

Hence, we get 

 

𝜗(Ŕ, Ś) ≤ 𝜗(ἣ∗, ἣ2𝑛𝑘+1) 

                ≤ 𝜗(ἣ∗, ἣ2𝑛𝑘
) + 𝜗(ἣ2𝑛𝑘

, ἣ2𝑛𝑘+1). 

 

Letting limit 𝑘 → ∞, one have  

 

𝜗(ἣ∗, ἣ2𝑛𝑘+1) → 𝜗(Ŕ, Ś) 𝑎𝑠 𝑘 → ∞                                                                                                           (5) 

 

Therefore, we get 

 

𝜗(Ŕ, Ś) ≤ 𝜗( ἣ2𝑛𝑘+2, 𝛹ἣ∗) 

                ≤ 𝐻𝜗(𝛷ἣ2𝑛𝑘+1, 𝛹ἣ∗) 

              ≤ 𝑞𝜗(ἣ2𝑛𝑘+1, ἣ∗) + (1 − 𝑞)𝜗(Ŕ, Ś). 

 

Taking limit 𝑘 → ∞ in the last inequality, from (5), we have 

 

𝜗(ἣ∗, 𝛹ἣ∗) = 𝜗(Ŕ, Ś). 

 

Hence 𝛹 has a best proximity point ἣ∗ in Ŕ. Similarly, if the condition (ii) holds, then it can be shown that 

𝛷 has a best proximity point in Ś. 

 

Recall that, a sequence {ἣ𝑛} in a pms (𝛺, 𝜗) is bounded if there exist 𝑎 ∈ 𝛺 and M > 0 such that 𝜗(ἣ𝑛, 𝑎) ≤
𝜗(𝑎, 𝑎) + 𝑀 for all 𝑛 ∈ ℕ. 

 

Proposition 2. Let (𝛺, 𝜗) be a pms, ∅ ≠ Ŕ, Ś ⊆ 𝛺 and ἣ0 ∈ Ŕ. Assume that 𝛹: Ŕ → 𝐶𝐵𝜗(Ś) and 𝛷 ∶ Ś →

𝐶𝐵𝜗(Ŕ) are multivalued mappings. If the pair (𝛹, 𝛷) is Hausdorff cyclic contraction mapping pair, then 

every sequence {ἣ𝑛} constructed as Proposition 1 is bounded. 

 

Proof. Let {ἣ𝑛} be sequence constructed as Proposition 1. Then, since 𝜗(ἣ𝑛, ἣ𝑛+1) converges to 𝜗(Ŕ, Ś) 

by Proposition 1, {𝜗(ἣ𝑛, ἣ𝑛+1) } is bounded sequence in ℝ. Since {𝜗(ἣ2𝑛−1, ἣ2𝑛)} is a subsequence of  

{𝜗(ἣ𝑛, ἣ𝑛+1) }, we have 
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lim
𝑛→∞

𝜗(ἣ2𝑛−1, ἣ2𝑛) = 𝜗(Ŕ, Ś). 

 

Hence, there exists L > 0 such that 

 

𝜗(ἣ2𝑛−1, ἣ2𝑛) ≤ 𝐿 

 

for all 𝑛 ≥ 1. Then, from Lemma 2, there is ἣ1 ∈ 𝛹ἣ0 satisfying  

 

𝜗(ἣ2𝑛, ἣ1) ≤  𝜗(ἣ2𝑛, 𝛹ἣ0) + (1 − 𝑞)𝐿 

                    ≤ 𝐻𝜗(𝛷ἣ2𝑛−1, 𝛹ἣ0) + (1 − 𝑞)𝐿 

                    ≤ 𝑞𝜗(ἣ2𝑛−1, ἣ0) + (1 − 𝑞)𝜗(Ŕ, Ś) + (1 − 𝑞)𝐿 

                    ≤ 𝑞𝜗(ἣ2𝑛−1, ἣ2𝑛) + 𝑞𝜗(ἣ2𝑛, ἣ1) + 𝑞𝜗(ἣ0, ἣ1) + (1 − 𝑞)𝜗(Ŕ, Ś) + (1 − 𝑞)𝐿 

                    ≤ 𝑞𝐿 +  𝑞𝜗(ἣ2𝑛, ἣ1) + 𝑞𝜗(ἣ0, ἣ1) + (1 − 𝑞)𝜗(Ŕ, Ś) + (1 − 𝑞)𝐿. 

 

Hence, we have 

 

(1 − 𝑞)𝜗(ἣ2𝑛, ἣ1) ≤ 𝐿 + 𝑞𝜗(ἣ0, ἣ1) + (1 − 𝑞)𝜗(Ŕ, Ś) 

 

which implies  

 

𝜗(ἣ2𝑛, ἣ1) ≤
𝐿

(1 − 𝑞)
+

𝑞𝜗(ἣ0, ἣ1)

(1 − 𝑞)
+ 𝜗(Ŕ, Ś) 

                 ≤ 𝜗(ἣ1, ἣ1) +
𝐿

(1−𝑞)
+

𝑞𝜗(ἣ0,ἣ1)

(1−𝑞)
+ 𝜗(Ŕ, Ś). 

 

Let 

 

𝑀 =
𝐿

(1 − 𝑞)
+

𝑞𝜗(ἣ0, ἣ1)

(1 − 𝑞)
+ 𝜗(Ŕ, Ś). 

 

Hence, {ἣ2𝑛} is bounded. For each 𝑛 ∈ ℕ, since 

 

𝜗(ἣ2𝑛+1, ἣ1) ≤ 𝜗(ἣ2𝑛, ἣ2𝑛+1) + 𝜗(ἣ2𝑛, ἣ1) 

                     ≤ 𝜗(ἣ1, ἣ1) + 𝐿 + 𝑀. 

 

Therefore, {ἣ2𝑛+1} is bounded. Hence, {ἣ𝑛}  is a bounded sequence in Ŕ ∪ Ś. 

 

Now, we revise the definition of 0-boundedly compact on pms. 

 

Definition 6. Let (𝛺, 𝜗) be a pms and ∅ ≠ Ŕ ⊆ 𝛺. Ŕ is called a 0-boundedly compact if every bounded 

sequence  {ἣ𝑛} has a subsequence {ἣ𝑛𝑘
} such that 

 

lim
𝑘,𝑙→∞

𝜗(ἣ𝑛𝑘
, ἣ𝑛𝑙

) = lim
𝑘→∞

𝜗(ἣ𝑛𝑘
, ἣ∗) = 𝜗(ἣ∗, ἣ∗) = 0 

 

for some ἣ∗ ∈ Ŕ. 
 

Corollary 1. Let (𝛺, 𝜗) be a pms and ∅ ≠ Ŕ, Ś ⊆ 𝛺. Assume that 𝛹: Ŕ → 𝐶𝐵𝜗(Ś) and 𝛷: Ś → 𝐶𝐵𝜗(Ŕ) are 

multivalued mappings satisfying the pair (𝛹, 𝛷) is a Hausdorff cyclic contraction mapping pair, then we 

get the following: 
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i) if Ŕ is a 0-boundedly compact, then there is a point ἣ∗ in Ŕ satisfying 𝜗(ἣ∗,𝛹ἣ∗) = 𝜗(Ŕ, Ś). Also, 𝜗(ἣ∗ 

, ἣ∗) = 0. 
ii) if Ś is a 0-boundedly compact, then there is a point ἣ∗ in Ś satisfying 𝜗(ἣ∗,𝛷ἣ∗) = 𝜗(Ŕ, Ś). Also, 

𝜗(ὓ∗, ὓ∗) = 0. 

 

Note that, although Ŕ and Ś are not 0-boundedly compact, a sequence satisfying (3) or (4) may be in Ŕ or 

Ś, respectively. The following example is important to show this fact. 

 

Example 1. Let 𝛺 = ({0} ∪ [0,10]) × ({0} ∪ [0,10]) and 𝜗: 𝛺 × 𝛺 → [0, ∞) defined by  

 

𝜗(ἣ, ὓ) = {

ἣ
1

2
 ,                                 ἣ = ὓ

ἣ
1

+ ὓ1 + |ἣ2
− ὓ2| ,    ἣ ≠ ὓ

 

 

for all ἣ = (ἣ
1

, ἣ
2

), ὓ = (ὓ1, ὓ2) ∈ 𝛺. It is clear that (𝛺, 𝜗) is a pms. Let Ŕ = ({0} ∪ [2,4]) × {0} and Ś =

[1,2) × {1}. Hence, we have 𝜗(Ŕ, Ś) = 2. Now, we shall show that Ŕ and Ś are not 0-boundedly compact. 

Indeed, let ἣ
𝑛

= (2 +
1

𝑛
, 0) be a sequence in Ŕ. Then, {ἣ

𝑛} is a bounded sequence. But, there is no a 

subsequence {ἣ
𝑛𝑘

} of {ἣ
𝑛} such that 

 

lim
𝑘,𝑙→∞

𝜗 (ἣ
𝑛𝑘

, ἣ
𝑛𝑙

) = lim
𝑘→∞

𝜗 (ἣ
𝑛𝑘

, ἣ∗) = 𝜗(ἣ
∗, ἣ∗) = 0 

 

for some ἣ
∗ ∈ Ŕ. Similarly, Ś is not a 0-boundedly compact. Let a mapping 𝛹: Ŕ → 𝐶𝐵𝜗(Ś) and ϕ: Ś →

𝐶𝐵𝜗(Ŕ) defined by 

 

𝛹ἣ = [
ἣ

1
+ 8

8
,
ἣ

1
+ 6

6
] × {1} 

 

for all ἣ = (ἣ
1

, 0) ∈ Ŕ and  

 

𝛷ὓ ={(0,0)} 

 

for all ὓ = (ὓ1, 1) ∈ Ś. Now, we shall show that the pair (𝛹, 𝛷) is a Hausdorff cyclic contraction mapping 

pair for 𝑞 =
1

6
. Indeed, for all ἣ = (ἣ

1
, 0) ∈ Ŕ and ὓ = (ὓ1, 1) ∈ Ś, we have 

 

𝐻𝜗(𝛹ἣ, 𝛷ὓ) = 𝑚𝑎𝑥{𝑠𝑢𝑝𝑎∈𝛹ἣ𝜗(𝑎, 𝛷ὓ), 𝑠𝑢𝑝𝑏∈𝛷ὓ𝜗(𝛹ἣ, 𝑏)} 

                    =
ἣ1+6

6
+ 0 + 1 

                    ≤
1

6
(ἣ

1
+ ὓ1 + 1) + (1 −

1

6
) 2 

                    = 𝑞𝜗(ἣ, ὓ) + (1 − 𝑞)𝜗(Ŕ, Ś). 
 

Hence, the pair (𝛹, 𝛷) is a Hausdorff cyclic contraction mapping pair. Moreover, we choose 

 

ἣ
0

= (𝑎, 0),   ἣ
1

= (𝑏, 1) ∈ 𝛹ἣ
0

= [
𝑎+8

8
,

𝑎+6

6
] × {1},   ἣ

2
= (0,0) ∈ 𝛷ἣ

1
, ... , ἣ

2𝑛
= (0,0), … 

 

Hence, {ἣ
2𝑛} has a subsequence , {ἣ

2𝑛𝑘
} such that 

 

lim
𝑘,𝑙→∞

𝜗 (ἣ
2𝑛𝑘

, ἣ
2𝑛𝑙

) = lim
𝑘→∞

𝜗 (ἣ
2𝑛𝑘

, (0,0)) = 𝜗((0,0), (0,0)) = 0. 
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Therefore, all the conditios of Theorem 7 hold, and therefore 𝛹 has a best proximity point ἣ
∗ = (0,0) in Ŕ. 

 

Taking Ŕ = Ś = 𝛺 in the Theorem 7, we give a fixed point result. 

Corollary 2.  Let 𝛹, 𝛷: 𝛺 → 𝐶𝐵𝜗(𝛺) be multivalued mappings on a pms (𝛺, 𝜗) and satisfying the pair 

(𝛹, 𝛷) is a Hausdorff cyclic contraction mapping pair. Let ἣ
0

∈ 𝛺 and define a sequence {ἣ
𝑛} by ἣ

𝑛+1
=

ἣ
𝑛

 for all 𝑛 ≥ 1. If {ἣ
2𝑛

} has a subsequence in 𝛺 such that 

 

 lim
𝑘,𝑙→∞

𝜗 (ἣ
2𝑛𝑘

, ἣ
2𝑛𝑙

) = lim
𝑘→∞

𝜗 (ἣ
2𝑛𝑘

, ἣ∗) = 𝜗(ἣ
∗, ἣ

∗) = 0.  

 

for all ἣ, ὓ ∈ 𝛺, then ἣ
∗
 is a fixed point of 𝛹 in 𝛺. 

 

If we take Ŕ = Ś = 𝛺 and 𝜗(Ŕ, Ś) = 0 in Theorem 7, then we can show that every sequence {ἣ
𝑛} 

constructed as Proposition 1 in 𝛺 is a 0-Cauchy sequence. Hence, by accepting the completeness of 𝛺, 

sequence {ἣ
𝑛} constructed as Proposition 1 has a convergent subsequence. Therefore, we present the 

following fixed point result. 

 

Corollary 3. Let 𝛹, 𝛷: 𝛺 → 𝐶𝐵𝜗(𝛺) be a multivalued mappings on 0-complete pms (𝛺, 𝜗). If there exists 

𝑞 in (0,1) such that  

 

𝐻𝜗(𝛹ἣ, 𝛷ὓ) ≤ 𝑞𝜗(ἣ, ὓ) 

 

for all ἣ, ὓ ∈ 𝛺, then Ŕ is a fixed point ἣ∗ in 𝛺. Moreover, 𝜗(ἣ∗, ἣ∗) = 0. 
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