

Addendum

Addendum to " α -Topological Vector Spaces"[Hacet. J. Math. Stat. 47 (5), 1102-1107, 2018]

Madhu Ram

Department of Mathematics, University of Jammu, Jammu-180006, J& K, India

Abstract

In this article, we give the corrected version of Theorem 3.5 and Theorem 3.7 (a) in $[\alpha$ -Topological vector spaces, Hacet. J. Math. Stat. **47** (5), 1102-1107, 2018] by T. Al-Hawary.

Mathematics Subject Classification (2020). 46A19, 54C05, 46A99

Keywords. α -open sets, α -topological vector spaces, nearly topological vector spaces

This article concerns two results, namely Theorem 3.5 and Theorem 3.7 (a), in the original paper " α -Topological Vector Spaces by T. Al-Hawary", Hacet. J. Math. Stat. 47 (5), 1102-1107, 2018. Actually, an incorrect detail is used by Al-Hawary in the argument of the proofs of Theorem 3.5 and Theorem 3.7 (a) in [1]. We identify this error and provide a counterexample to it before stating the amended version of these theorems.

Recall that a subset A of a topological space (X, \mathfrak{S}) is called α -open [2] if $A \subseteq Int(Cl(Int(A)))$. Njastad [2] showed that α -open sets in X form a topology on X which is called the α -topology on X.

We now state Theorem 3.5 and Theorem 3.7 (a) in [1].

Theorem 1. Let $(X, \alpha O(X))$ be an α -topological vector space. Then every $U \in N_0(X)$, the collection of all α -open sets in X containing the zero vector, is absorbing.

Theorem 2. Let $(X, \alpha O(X))$ be an α -topological vector space. For every $U \in N_0(X)$, there exists a balanced set $V \in N_0(X)$ s.t. $V \subseteq U$.

In the proof of these theorems in [1], we claim that the set V_1 need not contain any open interval of the form $(-\epsilon, \epsilon)$, for any $\epsilon > 0$. To see why this claim is correct in general, take e.g. the set $V_1 = \{\eta \in \mathbb{R} : \eta \neq \frac{1}{n}, n \in \mathbb{Z}_+\}$, where \mathbb{Z}_+ denotes the set of positive integers. Then $Int(Cl(Int(V_1))) = \mathbb{R} \supseteq V_1$, i.e., V_1 is an α -open set of \mathbb{R} . Obviously, V_1 does not contain any set of the form $(-\epsilon, \epsilon)$. We can also observe this by considering the following sets in \mathbb{R} :

$$V_1 = \{\eta \in \mathbb{R}: -1 < \eta < 1, \ \eta \neq \frac{1}{n}, \ n \in \mathbb{Z}_+\}$$

or

$$V_1 = \{ \eta \in \mathbb{R} \colon -1 < \eta < 1, \ \eta \notin \sigma \},\$$

Email address: madhuram0502@gmail.com

Received: 25.10.2020; Accepted: 12.03.2021

where $\sigma = \{-\frac{1}{n} : n \in \mathbb{Z}_+\} \cup \{\frac{1}{k} : k \in \mathbb{Z}_+\}.$

From here on, we use the following notations:

• \mathfrak{S}^{α} , X^{α} and $N_x(X)$ denote respectively the class of α -open sets in a given topological space (X, \mathfrak{S}) , the corresponding topological space $(X, \mathfrak{S}^{\alpha})$ and the collection of all α -open sets in X (with respect to \mathfrak{S}) containing x.

• All vector spaces are over the field $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, and when we treat \mathbb{F} as a topological space, we mean \mathbb{F} is endowed with its ordinary topology.

Corrected version

Definition 3. A nearly topological vector space is a pair (L, \Im) , where

- L is a vector space, and
- \Im is a topology on L, with
- (1) the vector addition mapping, $L^{\alpha} \times L^{\alpha} \ni (x, y) \mapsto x + y \in L^{\alpha}$, and

(2) the scalar multiplication mapping, $\mathbb{F} \times L^{\alpha} \ni (\lambda, x) \mapsto \lambda x \in L^{\alpha}$

are continuous.

It is obvious from the definition that every real nearly topological vector space is an α -topological vector space, but the converse need not be true in general.

Theorem 4. Let (L, \Im) be a nearly topological vector space, and $o \in L$ the zero vector. Then the following statements

(1) Every $\sigma \in N_o(L)$ is absorbing.

(2) For every $\nabla \in N_o(L)$, there exists a balanced set $\sigma \in N_o(L)$ s.t. $\sigma \subseteq \nabla$. hold true.

Proof. (1) Fix any $x \in L$, then the mapping

$$\mathbb{F} \ni \lambda \; \mapsto \; \lambda x \in L^{\alpha}$$

is continuous. Therefore for any $\sigma \in N_o(L)$, there exists an open set \mathfrak{U} in \mathbb{F} such that $\mathfrak{U}\mathfrak{V} \subseteq \sigma$ where $\mathfrak{V} = \{x\}$. Without loss of generality, we can take $\epsilon > 0$ such that $(-\epsilon, \epsilon) \subseteq \mathfrak{U}$. Then $(-\epsilon, \epsilon)\mathfrak{V} \subseteq \sigma$, showing that σ is absorbing.

(2) Take any $\nabla \in N_o(L)$, then there exists an open set \mathfrak{U} in \mathbb{F} , and $\mathfrak{V} \in N_o(L)$ satisfying

$$\mathfrak{UV}\subseteq \nabla, 0\in \mathfrak{U}.$$

Choose any sufficiently small positive number ϵ such that $D = \{\lambda \in \mathbb{F} : |\lambda| \leq \epsilon\} \subseteq \mathfrak{U}$, and set

$$\sigma = \cup_{\lambda \in D} \lambda \mathfrak{V}.$$

Since the function $L^{\alpha} \ni x \mapsto \lambda x \in L^{\alpha}$ (for any fixed $0 \neq \lambda \in \mathbb{F}$) is a homeomorphism, $\sigma \in N_o(L)$. Now, for $\mu \in \mathbb{F}$ with $|\mu| \leq 1$, we have

$$\mu\sigma = \cup_{\lambda \in D} \mu(\lambda \mathfrak{V}) = \cup_{\nu \in D} \nu \mathfrak{V},$$

which ends the proof.

Acknowledgment. The author wishes to thank the editor for her valuable comments/suggestions concerning the improvement of the manuscript.

References

- T. Al-Hawary, α-Topological Vector Spaces, Hacet. J. Math. Stat. 47 (5), 1102-1107, 2018.
- [2] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15, 961-970, 1965.