
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 51 (2) (2022), 455 – 465

DOI : 10.15672/hujms.816436

Research Article

On n-absorbing prime ideals of commutative rings

Mohammed Issoual1, Najib Mahdou2, Moutu Abdou Salam Moutui∗3

1CRMEF Khemisset, Morocco
2Laboratory of Modeling and Mathematical Structures, Department of Mathematics, Faculty of Science

and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco
3Division of Science, Technology, and Mathematics American University of Afghanistan, Kabul,

Afghanistan

Abstract
This paper investigates the class of rings in which every n-absorbing ideal is a prime ideal,
called n-AB ring, where n is a positive integer. We give a characterization of an n-AB
ring. Next, for a ring R, we study the concept of Ω(R) = {ωR(I); I is a proper ideal of R},
where ωR(I) = min{n; I is an n-absorbing ideal of R}. We show that if R is an Artinian
ring or a Prüfer domain, then Ω(R) ∩ N does not have any gaps (i.e., whenever n ∈ Ω(R)
is a positive integer, then every positive integer below n is also in Ω(R)). Furthermore, we
investigate rings which satisfy property (**) (i.e., rings R such that for each proper ideal
I of R with ωR(I) < ∞, ωR(I) =| MinR(I) |, where MinR(I) denotes the set of prime
ideals of R minimal over I). We present several properties of rings that satisfy condition
(**). We prove that some open conjectures which concern n-absorbing ideals are partially
true for rings which satisfy condition (**). We apply the obtained results to trivial ring
extensions.
Mathematics Subject Classification (2020). 13F05, 13A15, 13E05, 13F20, 13B99,
13G05, 13B21

Keywords. n-absorbing ideal, prime ideal, primary ideal, Prüfer ring, Noetherian ring,
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1. Introduction
Throughout this work, all rings are assumed to be commutative with identity element

and 1 ̸= 0. Recall from [3] that a proper ideal I of R is called a 2-absorbing ideal of R
if a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. A more general concept
than a 2-absorbing ideal is the concept of n-absorbing ideal. Let n ≥ 1 be a positive
integer. Also, recall from [1] that a proper ideal I of R is called an n-absorbing ideal of R
if a1, a2, ..., an+1 ∈ R and a1a2 · · · an+1 ∈ I, then there are n of the ai’s whose product is
in I. The concept of n-absorbing ideals is a generalization of the concept of prime ideals
(note that a prime ideal of R is a 1-absorbing ideal of R). For more details on n-absorbing
ideals, we refer the reader to [11–13]. We investigate rings in which every n-absorbing
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ideal of R is a prime ideal, where n ≥ 2 is an integer, called n-AB rings. Note that the
authors in [6] studied rings where every 2-absorbing ideal of R is prime.

This paper aims at studying of rings in which every n-absorbing ideal is a prime ideal.
We also study the concept of Ω(R) = {ωR(I); I is a proper ideal of R}, where ωR(I) =
min{n; I is an n-absorbing ideal of R}. We establish results which give the possible values
for Ω(R) in several classes of rings.

In section 2, we study the concept of n-AB ring and prove that for a ring R, the following
assertions are equivalent:

(1) R is an n-AB ring.
(2) (a) The prime ideals of R are comparable. In particular, R is quasi-local with

maximal ideal M.
(b) If P is a minimal prime ideal over an n-absorbing ideal I, then IM = P.

Next, we use the notion of minimal n-absorbing ideal introduced in [17], to establish
that for a ring R, the following statements are equivalent:

(1) R is an n-AB ring.
(2) (a) The prime ideals of R are comparable. In particular, R is quasi-local with

maximal ideal M.
(b) For every prime ideal P of R, n − MinR(P n) = {P}.

Let A be a ring and E an A-module. The trivial ring extension of A by E (also called
the idealization of E over A) is the ring R = A ∝ E whose underlying group is A × E
with multiplication given by (a, e)(a′, e′) = (aa′, ae′ + a′e). Recall that if I is an ideal of
A and E′ is a submodule of E such that IE ⊆ E′, then J = I ∝ E′ is an ideal of R.
However, prime (resp., maximal) ideals of R have the form P ∝ E, where P is a prime
(resp., maximal) ideal of A. Suitable background on commutative trivial ring extensions
is [2, 5, 10,14,15].

Let R be a ring and I be a proper ideal of R. If I is an n-absorbing ideal for some positive
integer n, then it is easy to see that I is an m-absorbing ideal of R for every positive integer
m ≥ n. We define ωR(I) = min{n; I is an n-absorbing ideal of R}; Otherwise ωR(I) = ∞.
It is convenient to define ωR(R) = 0. Then for any ideal of R, we have ωR(I) ∈ N∪ {0, ∞}
with ωR(I) = 1 if and only if I is a prime ideal of R and ωR(I) = 0 if and only if I = R.
We define Ω(R) = {ωR(I); I is a proper ideal of R}. Notice that {1} ⊆ Ω(R) ⊆ N ∪ {∞}.
In [1] page 1668, Anderson-Badawi raised the following question:

• If n ∈ Ω(R) for some positive integers n, then m ∈ Ω(R) for every integer m with
1 ≤ m ≤ n?

It is worth to mention that a positive answer (to the question of Anderson-Badawi) is
given for Prüfer domains. In Section 3, we give a positive answer of Anderson-Badawi’s
question, and we establish another characterization of Artinian rings. If I is a proper
ideal of R, MinR(I) denotes the set of prime ideals of R minimal over I. Recall that from
[1, Theorem 2.5], |MinR(I)| ≤ ωR(I).

In section 4, we study rings in which |MinR(I)| = ωR(I). We say that a ring R satisfies
(**) if for every ideal of R with ωR(I) < ∞, we have |MinR(I)| = ωR(I). We prove in
Theorem 4.9, that a Dedekind domain R satisfies (**) if and only if R is a field. Recall
that from [1, Theorem 5.11(e)], Anderson-Badawi proved that Ω(R) ⊆ Ω(R ∝ E), where
R is a commutative ring and E is an R-module. Notice that the inclusion may be strict.
We end this paper by studying about when the equality between Ω(R) and Ω(R ∝ E) is
satisfied, where R is a ring and E an R-module. It is worth to mention that some of our
proofs are easy, because we exploit earlier results. We are very grateful to [1, 7] for their
results on n-absorbing ideals.

2. Main results on n-AB rings
We start this section by recalling the notion of n-AB ring defined in the introduction.



On n-absorbing prime ideals of commutative rings 457

Definition 2.1. We say that a ring R is an n-AB ring for some positive integer n if every
n-absorbing ideal of R is prime.

Now, we provide examples of rings which illustrate the notion of n-AB ring.

Example 2.2. Let R be a one-dimensional valuation domain with maximal ideal M which
is not principal. Then R is an n-AB ring for any positive integer n.

Proof. Let I be a nonzero proper n-absorbing ideal of R. From [1, Theorem 5.5], Mn ⊆ I,
as I is M -primary. On the other hand, we claim that M2 = M . Assume not. Then, there
exists t ∈ M such that t ̸∈ M2. One can easily check that M = tR, making M , a principal
ideal of R, which is a contradiction. So, M2 = M . Therefore, I = M , making I a prime
ideal. Hence, R is an n-AB ring, as desired. �
Example 2.3. Let R be a two-dimensional valuation domain with prime ideals 0 ⊂ P ⊂
M and value group G = Q

⊕
Q (all direct sums having lexicographic order). Then R is

an n-AB ring.

Proof. We need to prove that M2 = M and P 2 = P. Indeed, let (q, q′) ∈ Q
⊕

Q such
that (q, q′) > (0, 0) if q > 0 or q = 0 and q′ > 0. In the first case, (q, q′) = (q/2, q′/2) +
(q/2, q′/2). In the second case, (0, q′) = (0, q′/2)+(0, q′/2). Hence, M2 = M. With similar
arguments as previously, we obtain P 2 = P. Next, let n be a positive integer and I ̸= M be
a nonzero n-absorbing ideal of R. Then

√
I = P, and so P n = P ⊆ I ⊆ P . Consequently,

I = P which is a prime ideal of R. Thus, R is an n-AB ring, as desired. �
Our next aim is to give a characterization of an n-AB ring. For this purpose, we

establish the following lemma.

Lemma 2.4. Let R be a quasi-local ring with maximal ideal M. Then the following state-
ments hold:

(1) If I is an n-absorbing ideal of R, then IM is an (n + 1)-absorbing ideal of R.
(2) If P is a prime ideal of R, then PM is an n-absorbing ideal of R for each n ≥ 2;

moreover, PM is a prime ideal of R if and only if PM = P.

Proof. (1) Let x1, x2, · · · , xn+2 ∈ R be such that x1 · · · ·xn+2 ∈ IM ⊂ I. Since
I is an n-absorbing ideal of R, then without loss of generality, we may assume
that x1 · · · ·xn ∈ I. Now, if xn+2 ∈ M , then we are done. Otherwise; we have
x1 · · · ·xn+1 ∈ IM since R is a quasi-local ring. Thus, IM is an (n + 1)-absorbing
ideal of R.

(2) Let P be a prime ideal of R. By assertion (1) above, PM is a 2-absorbing ideal of
R and so an n-absorbing ideal for every positive integer n ≥ 2. If PM = P, then
PM is a prime ideal. Conversely, assume that PM is a prime ideal of R and let
x ∈ P . Then x2 ∈ PM , as R is a quasi-local ring. Thus, x ∈ PM since PM is a
prime ideal and so PM = P, as desired.

�
Now, we establish the following characterization of an n-AB ring.

Theorem 2.5. A ring R is an n-AB ring if and only if the following two assertions hold:
(1) The prime ideals of R are comparable. (In particular, R is quasi-local with maximal

ideal M .)
(2) If P is a minimal prime ideal over an n-absorbing ideal I, then IM = P.

Proof. (⇒) (1) Let P1 and P2 be two prime ideals of R. By [1, Theorem 2.1(c)], P1 ∩P2 is
a 2-absorbing ideal of R and so an n-absorbing ideal from [1, Theorem 2.1(b)](as n ≥ 2).
So, P1 ∩ P2 is a prime ideal of R. Thus, P1 and P2 are comparable prime ideals. Now
using the fact that the prime ideals of R are comparable, it follows that R is quasilocal
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with maximal ideal M .
(2) Let I be an n-absorbing ideal of R and P be a minimal prime ideal over I. Then by
assumption, I is a prime ideal of R. On the other hand,

√
I = P . Therefore, I = P and

so by Lemma 2.4, it follows IM = I.
(⇐) Assume that the assertions (1) and (2) hold. Let I be an n-absorbing ideal of R.

Since the prime ideals are comparable, then
√

I is a prime ideal, say P which is the unique
minimal prime ideal over I. By assertion (2) above, it follows that P = IM ⊆ I. Therefore,
I = P is a prime ideal of R. Hence, R is an n-AB ring, as desired. �

As a first application of Theorem 2.5, we have the following corollary.

Corollary 2.6. Let R be a ring. If R is an n-AB ring, then R is quasi-local with maximal
ideal M satisfying M2 = M.

Proof. If R is an n-AB ring, then by Theorem 2.5, R is a quasi-local ring with maximal
ideal M. On the other hand, Mn is an n-absorbing ideal of R [1, Lemma 2.8]. Consequently,
Mn is a prime ideal of R. And so, Mn = M ⊆ M2 ⊆ M . Finally, M2 = M. �

It is worth to mention that the converse of Corollary 2.6 is not true, in general, as shown
by the next example which exhibits a quasi-local ring R which is not 2-AB.

Example 2.7. Let R be a one-dimensional valuation domain with maximal ideal M which
is not principal. Then M2 = M. Now, let I be an ideal of R such that 0 ⊂ I ⊂ M. Clearly,
I is an M -primary ideal of R. We claim that I is not an n-absorbing ideal of R for every
positive integer n. Deny. by [1, Theorem 5.5], M = Mn ⊂ I, which is a contradiction.
Therefore, the only n-absorbing ideals of R are 0 and M. Next, let A := R ∝ R be the
trivial ring extension of R by the R−module R. Clearly, A is a quasi-local ring with
maximal ideal m := M ∝ R. Consider a prime ideal P of R. Then by [1, Theorem 4.10],
0 ∝ P is a 2-absorbing ideal of A which is not prime. Thus, A is not a 2-AB ring. �

The next corollary is another application of Theorem 2.5 which gives a characterization
of n-AB rings in the special case of Noetherian setting.

Corollary 2.8. A ring R is a Noetherian n-AB ring if and only if R is a field.

Proof. Assume that R is a Noetherian n-AB ring. Then by Theorem 2.5, R is a quasi-
local ring with maximal ideal M. Let P be a prime ideal of R. By Lemma 2.4, we have
MP = P and so P = 0 by Nakayama’s lemma. Thus, R is a field. The converse is
straightforward. �

Recall that a prime ideal P of a ring R is called a divided prime ideal if P is comparable
to every principal ideal of R. If every prime ideal of R is divided, then R is called a divided
ring. Now, we give a necessary and sufficient condition for a divided domain to be an n-AB
ring.

Theorem 2.9. Let R be a divided domain. Then R is an n-AB ring if and only if P 2 = P
for every prime ideal P of R.

Proof. Assume that R is an n-AB ring. Let P be a nonzero prime ideal. From [1, Theorem
3.3], P n is an n-absorbing ideal of R and so a prime ideal of R. Therefore, P n = P . It
follows that P 2 = P, as P n ⊆ P 2 ⊆ P . Conversely, assume that for every prime ideal P
of R, P 2 = P . Let I be a nonzero n-absorbing proper ideal of R. Using the fact that R
is a divided domain, then

√
I = P is a nonzero divided prime ideal. From [7], it follows

that P n ⊆ I ⊆ P. Consequently, I = P is a prime ideal of R. Hence, R is an n-AB ring,
as desired. �

Theorem 2.9 covers the special case of valuation domains, as recorded below.



On n-absorbing prime ideals of commutative rings 459

Corollary 2.10. Let R be a valuation domain. Then R is an n-AB ring if and only if
P 2 = P for every prime ideal of R.

Recall that in [8], Gilmer defined an ideal I of a commutative ring R to be semi-primary
if its radical is a prime ideal of R. Also a ring R satisfies (*) if every semi-primary ideal is
primary. These rings have been studied in [9]. The next theorem shows that for the class
of n-AB rings which satisfy (*), every prime ideal is idempotent.

Theorem 2.11. Let R be an n-AB ring which satisfies (*). Then every prime ideal of R
is idempotent.

Proof. Let R be an n-AB ring which satisfies (*). Consider a prime ideal P of R. Then
from assumption, P n is a P -primary ideal of R and so an n-absorbing ideal of R by
[1, Theorem 3.1]. It follows that P n = P which is a prime ideal of R. Consequently,
P 2 = P, as P n ⊆ P 2 ⊆ P . �

Now, we establish another characterization of an n-AB ring using the notion of minimal
n-absorbing ideal introduced by Moghimi and Naghani in [17], in the following way:

Definition 2.12 ([17]). Let I be an ideal of a ring R. An n-absorbing ideal P of R is said
to be a minimal n-absorbing ideal over I, if there is no n-absorbing ideal Q of R such that
I ⊆ Q ⊂ P. And the set of minimal n-absorbing ideals over I is denoted by n − MinR(I).

Theorem 2.13. Let R be a ring. Then the following statements are equivalent:
(1) R is an n-AB ring.
(2) (a) The prime ideals of R are comparable. In particular, R is quasi-local with

maximal ideal M .
(b) If P is a minimal prime over an n-absorbing ideal I, then IM = P.

(3) (a) The prime ideals of R are comparable. In particular, R is quasi-local with
maximal ideal M.

(b) For every prime ideal P of R, n − MinR(P n) = {P}.

Proof. (1) ⇔ (2) Follows from Theorem 2.5. (2) ⇒ (3) By Theorem 2.5, it remains to
show that for every prime ideal P of R, n − MinR(P n) = {P}. Let P be a prime ideal of
R. By [17, Corollary 2.2], we have n − MinR(P n) ̸= ∅. Therefore, it is sufficient to show
that n − MinR(P n) ⊆ {P}. Let J ∈ n − MinR(P n). Then J is an n-absorbing ideal of R,
and hence J is a prime ideal of R. Since P n ⊆ J, it follows that P ⊆ J , which implies
P n ⊆ P ⊆ J . Since P is an n-absorbing ideal of R, we have J = P .
(3) ⇒ (1) Suppose that P is a minimal prime ideal over an n-absorbing ideal I. Then by
[7], P n ⊆ I ⊆ P . Since n − MinR(P n) = {P}, then I = P and so IM = PM = P by
Lemma 2.4. �

The next result is an immediate consequence of Theorem 2.13 with the well-known fact
that the prime ideals of a divided ring are comparable.

Corollary 2.14. Let R be a divided ring with unique maximal ideal M. Then the following
statements are equivalent:

(1) For every minimal prime P over an n-absorbing ideal I of R, IM = P.
(2) For every prime ideal P of R, we have n − MinR(P n) = {P}.

Moreover, if one of the above equivalent statements holds, then R is an n-AB ring.

In the following result, we show that for each prime ideal P of an n-AB ring, either
P idempotent or P j is not an n-absorbing ideal of R for every positive integer j with
2 ≤ j ≤ n.

Corollary 2.15. Let R be an n-AB ring. For each prime ideal P of R, either P 2 = P or
P j is not an n-absorbing ideal of R for every positive integer j with 2 ≤ j ≤ n.
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Proof. Assume that there exists a positive integer j with 2 ≤ j ≤ n such that P j is an
n-absorbing ideal. Then P j is a prime ideal of R and so P j = P. Hence P 2 = P. �

We end this section by studying the transfer of n-AB ring notion to trivial ring extension.

Theorem 2.16. Let A be a ring, E be a finitely generated A-module and R := A ∝ E.
Then the following statements are equivalent:

(1) R is an n-AB ring,
(2) A is an n-AB ring and E = 0.

Proof. (1) ⇒ (2) Assume that R is an n-AB ring. Since R/0 ∝ E ≃ A, it follows that
A is an n-AB ring. Let M be the unique maximal ideal of A. By Corollary 2.6, we have
M2 = M and so (M ∝ E)2 = M ∝ ME = M ∝ E (since M ∝ E is the unique maximal
ideal of A ∝ E). Therefore, ME = E and so by Nakayama’s lemma, E = 0.
(2) ⇒ (1) Straightforward since A ≃ A ∝ 0 = R. �

Recall that from [2, Corollary 3.4], if A is an integral domain and E is a divisible A-
module, then every ideal of A ∝ E has the form I ∝ E for some ideal I of A or 0 ∝ N for
some submodule N of E. The next theorem develops a result on the transfer of n−AB
property for the special case of trivial extensions of integral domains by vector spaces over
their quotient fields.

Theorem 2.17. Let A be an integral domain with quotient field K and E be a K-vector
space and R := A ∝ E. Then the following statements are equivalent:

(1) R is an n-AB ring.
(2) A is an n-AB ring and E = 0.

Proof. (1) ⇒ (2) Assume that R is an n-AB ring. Then it is easy to see that A is an
n-AB ring. Recall that from [11, Theorem 2.2], if F is an A-submodule of E, then 0 ∝ F
is a 2-absorbing ideal of R if and only if F is a K-subspace of E. Therefore, for F = 0, we
obtain 0 ∝ 0 is a 2-absorbing ideal and so a prime ideal of R. We conclude that R is an
integral domain, making E = 0. (2) ⇒ (1) Clear since A ≃ A ∝ 0 = R. �

The next result establishes the transfer of the n-AB property to trivial ring extension
in the special case of Noetherian setting.

Corollary 2.18. Let A be a Noetherian ring, E be a finitely generated A-module and
R := A ∝ E. Then R is an n-AB ring if and only if so is A and E = 0.

Proof. Assume that R is an n-AB ring. From [2, Theorem 4.8], it follows that R is
Noetherian. By Corollary 2.8, R is a field. Thus, A is a field and E = 0. The converse is
trivial. �

3. On Ω(R) where R is a ring
Recall that ωR(I) = min{n; I is an n-absorbing ideal of R}; Otherwise ωR(I) = ∞. It

is convenient to define ωR(R) = 0. Then for any ideal of R, we have ωR(I) ∈ N ∪ {0, ∞}
with ωR(I) = 1 if and only if I is a prime ideal of R and ωR(I) = 0 if and only if I = R.
Also recall that Ω(R) = {ωR(I); I is a proper ideal of R}. Then {1} ⊆ Ω(R) ⊆ N ∪ {∞}.
The first result of this section gives a characterization of Artinian rings.

Theorem 3.1. Let R be a ring. Then R is an Artinian ring if and only if R is a Noetherian
ring and Ω(R) = {1, ..., n} for some positive integer n.

The proof of this theorem involves the following lemma.

Lemma 3.2. Let M be a finitely generated maximal ideal of a ring R. If Ω(R) = {1, ..., n}
for some positive integer n, then ht(M) = 0.
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Proof. From [1, Lemma 2.8], it follows that Mn+1 is an (n + 1)-absorbing ideal of R with
ωR(Mn+1) ≤ n (since Ω(R) = {1, ..., n}). We claim that Mn+1 = Mn+2. Deny. Mn+2 ⊂
Mn+1 and so by [1, Lemma 2.8], n + 1 ∈ Ω(R) = {1, · · · , n}, which is a contradiction.
Hence, Mn+1 = Mn+2. Now the result follows from [1, Lemma 5.10]. �
Proof of Theorem 3.1. Assume that R is a Noetherian ring with Ω(R) = {1, ..., n}
for some positive integer n. By Lemma 3.2, ht(M) = 0 for every maximal ideal M of
R. Therefore, dim(R) = 0, and so R is an Artinian ring. The converse is clear from
[1, Theorem 5.11] and the fact that an Artinian ring is Noetherian. �

Recall that incomparable prime ideals in a Prüfer domain are comaximal since R is
locally a valuation domain. In the case of a Prüfer domain, we give a positive answer
to the following Anderson-Badawi’s question: if n ∈ Ω(R) for some positive integer, is
m ∈ Ω(R) for every positive integer m with 1 ≤ m ≤ n ?

Theorem 3.3. Let R be a Prüfer domain and n be a positive integer in Ω(R). Then
m ∈ Ω(R) for every positive integer m ∈ {1, ..., n}.

Proof. Let n be a positive integer in Ω(R) and let I be an n-absorbing ideal of R with
ωR(I) = n. By [1, Theorem 5.7], the ideal I is a product of a prime ideals of R. We may
assume that I = P n1

1 ...P nk
k , where P1, · · · , Pk are comaximal prime ideals of R since R

is a Prüfer domain and n′
is are positive integers with n = n1 + · · · + nk. Now let m be

a positive integer such that 1 ≤ m ≤ n. We may set m = m1 + · · · + mk where m′
is are

non-negative integers such that 1 ≤ mi ≤ ni for every positive integer 1 ≤ i ≤ k and
consider the ideal J := P m1

1 ...P mk
k of R. From [1, Theorem 5.7], J is an m-absorbing ideal

of R and so ωR(J) = m. Hence, {1, · · · , n} ⊆ Ω(R), as desired. �

4. Rings satisfying |MinR(I)| = ωR(I) if ωR(I) < ∞
Let I be an n-absorbing ideal of a ring R for some positive integer n. We denote by

MinR(I) the set of minimal prime ideals over I. Recall that from [1, Theorem 2.14], if I
has exactly n minimal prime ideals, say P1, · · · , Pn. Then P1...Pn ⊆ I and so ωR(I) = n.
In this section, we investigate rings in which every n-absorbing ideal has exactly n minimal
prime ideals.

Remark 4.1. Let I be a proper ideal of a ring R. Notice that if I is an n-absorbing ideal
of R for some positive integer n, then

√
I = ∩P ∈MinR(I)P is also an n-absorbing ideal of

R. Set MinR(I) = {P1, · · · , Pm}. Since P1, · · · , Pm are incomparable prime ideals, then
by [1, Remark 2.2], m = ωR(

√
I) = ωR(∩m

i=1Pi) = |MinR(I)| ≤ ωR(I).

Now, we introduce the following definition:

Definition 4.2. We say that a ring R satisfies the property (**) if for every proper ideal
I such that ωR(I) < ∞, we have ωR(I) = |MinR(I)|.

As illustrative examples of Definition 4.2, we provide families of rings satisfying the
property (**).

Example 4.3. If R is a field, then R satisfies (**).

Example 4.4. If R is a Von Neumann regular ring, then R satisfies (**), since every ideal
of I is a radical ideal.

Example 4.5. Let R be a two-dimensional valuation domain with prime ideals 0 ⊂ P ⊂
M and value group G = Q

⊕
Q. Notice that M2 = M and P 2 = P ; so 0, P and M are the

only n-absorbing ideals of R with ωR(0) = ωR(P ) = ωR(M) = 1. Then R satisfies (**).

The next example exhibits a ring R satisfying the property (**) and having an ideal I
that is not n-absorbing ideal.
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Example 4.6. The ring R =
∏∞

i=1 Z2 satisfies (**) since it is a Von Neumann regular
ring. Let I = {(xi) ∈ R; x2i+1 = 0, i ∈ N} be an ideal of R. One can easily check that I is
not an n-absorbing ideal of R for every positive integer n. Therefore, ωR(I) = ∞.

Now, we give the following characterization of an n-absorbing ideal I of an integral
domain R which satisfies (**) with dim(R) ≤ 1 or a ring R satisfying (**) with dim(R) = 0
with ωR(I) = n for some positive integer n.

Theorem 4.7. Let R be a ring satisfying (**) and which is either an integral domain with
dim(R) ≤ 1 or dim(R) = 0. Let I be a proper ideal of R. Then I is an n-absorbing ideal
of R with ωR(I) = n if and only if I is a product of n incomparable prime ideals.

Proof. Assume that R is an integral domain satisfying (**) with dim(R) ≤ 1 and pick
an ideal I of R with ωR(I) = n. Then I has exactly n minimal prime ideals which are
comaximal by assumption. From [1, Corollary 2.15], we obtain I = P1...Pn where Pi is a
minimal prime ideal over I, for every i = 1, 2, ..., n. The converse is straightforward via
[1, Remark 2.2].
Now, assume that R satisfies (**) with dim(R) = 0. Let I be an n-absorbing ideal of R.
Since ωR(I) = n, then the ideal I has exactly n minimal prime ideals, say P1, ..., Pn which
are maximal, as dim(R) = 0. From [1, Corollary 2.15], I = P1...Pn. The converse follows
from [1, Theorem 2.9]. �

Let n ≥ 1 be an integer and I be a proper ideal of a ring A. Recall that Anderson and
Badawi in [1] proposed the following three conjectures.

(1) Conjecture one: I is an n-absorbing ideal of A if and only if I is a strongly n-
absorbing ideal of A.

(2) Conjecture two: If I is an n-absorbing ideal of A, then (
√

I)n ⊆ I. Notice that an
affirmative answer to this conjecture is given in [7].

(3) Conjecture three: If I is an n-absorbing ideal of A, then I[X] is an n-absorbing
ideal of A[X].

The next theorem studies some properties of a ring R which satisfies (**).

Theorem 4.8. Let R be a ring which satisfies (**), I be an ideal of R and P be a prime
ideal of R. Then the following statements hold:

(1) If there exists a positive integer n ≥ 2 such that P n is P - primary, then P is
idempotent. In particular, this holds if R is a valuation domain.

(2) Every maximal ideal of R is idempotent.
(3) Assume that P is a divided prime ideal of R such that Nil(R) ⊂ P . Then P

is idempotent. Moreover, if I is an ideal of R such that
√

I = P, then I is an
n-absorbing ideal of R for some positive integer if and only if I = P.

(4) If P 2 ̸= P , then there is no n-absorbing ideal of R between P and P 2 for every
positive integer n.

(5) The Conjecture three holds for every radical ideal of R.
(6) The Conjecture one holds for every radical ideal of R.
(7) Let n be a positive integer in Ω(R), then {1, · · · , n} ⊆ Ω(R).

Proof. (1) Let P be a prime ideal of R such that P n is P -primary for some positive
integer n ≥ 2. From [1, Theorem 3.1], P n is an n-absorbing ideal of R and so P n

is a prime ideal of R since ωR(P n) = |MinR(P n)| = 1. Therefore, P n = P . Hence,
P 2 = P, as desired.
The "In particular" statement follows from [1, Theorem 5.5].

(2) Let M be a maximal ideal of R. Then M2 is an M -primary ideal of R, and hence
M is idempotent by assertion (1) above.
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(3) Suppose Nil(R) ⊂ P. Let n be a positive integer. From [1, Theorem 3.3], P n is a
P -primary ideal of R which satisfies (**). Then ωR(P n) = 1. Consequently, P n

is a prime ideal and so P 2 = P. Next, let I be an ideal of R. If I = P , then the
claim is clear. Conversely, assume that I is an n−absorbing ideal of R such that√

I = P. Then P is the unique minimal prime ideal over I. Suppose that ωR(I) = n
for some positive integer n. So, P n = P ⊆ I ⊆ P. Hence, I = P.

(4) Assume by the way of contradiction that there exists an n-absorbing ideal I such
that P 2 ⊂ I ⊂ P . One can easily check that

√
I = P. Therefore, by statement

(3) above, it follows that I = P , which is a contradiction. Hence, there is no
n-absorbing ideal between P and P 2 for every positive integer n.

(5) Let I be a radical ideal, which is an n-absorbing ideal of R and ωR(I) = n. Since
R satisfies (**), the ideal I has exactly n minimal prime ideals, say P1, · · · , Pn. It
is well known that I[X] has exactly n-minimal prime ideals, say P1[X], · · · , Pn[X].
Then

√
I[X] = P1[X] ∩ · · · ∩ Pn[X] = (P1 ∩ · · · ∩ Pn)[X] =

√
I[X] = I[X]. From

[1, Remark 2.2], we have ωR[X](I[X]) = n = ωR(I). Therefore, I[X] is an n-
absorbing ideal of R[X]. Hence, Conjecture three holds for I.

(6) Let I be a radical ideal of R which is n-absorbing. By assertion (5) above, we have
I[X] is an n-absorbing ideal of R[X]. By [16, Proposition 2.9(i)], it follows that I
is a strongly n-absorbing ideal of R. The converse is trivial. Hence, Conjecture
one holds for I.

(7) Let n ∈ Ω(R) be a positive integer. Then there exists an n-absorbing ideal I of R
that ωR(I) = n. Since R satisfies (**), the ideal I has exactly n minimal prime
ideals, say P1, P2, ..., Pn. Let k ∈ {1, ..., n}. Consider the ideal J = P1 ∩ ... ∩ Pk of
R. We infer by [1, Remark 2.2] that k = ωR(J). Therefore, k ∈ Ω(R), as desired.

�

The next theorem gives a characterization of a Dedekind domain satisfying (**).

Theorem 4.9. Let R be a ring. Then R is a Dedekind domain which satisfies (**) if and
only if R is a field.

The proof of this theorem requires the following lemma.

Lemma 4.10. Let R be a Dedekind domain and I be a proper ideal of R. Then I is a
radical ideal if and only if ωR(I) = ωR(

√
I).

Proof. Assume that R is a Dedekind domain and I be a proper ideal of R such that
ωR(I) = ωR(

√
I). Since I ⊆

√
I, then the result follows readily from [17, Lemma 2.17]. �

Proof of Theorem 4.9. Assume that R is a Dedekind domain which satisfies (**) and
let I be a proper ideal of R. Since I is a product of prime ideals, then ωR(I) < ∞,

set ωR(I) = n, where n is a positive integer. So,
√

I = ∩n
i=1Pi, where Pi is a minimal

prime ideal over I, for every 1 ≤ i ≤ n. Since P1, · · · , Pn are incomparable prime ideals,
we have ∩n

i=1Pi is an n-absorbing ideal of R. Moreover, ωR(∩n
i=1Pi) = n. Therefore,

ωR(
√

I) = ωR(I) and I ⊆
√

I. Since R is a Dedekind domain, then by Lemma 4.10,√
I = I. Hence, R is a field as it is a Von Neumann regular domain. �

Let R be a ring, E be an R-module and R ∝ E be the trivial ring extension of R by E. It
is well known that Ω(R) ⊆ Ω(R ∝ E) [1, Theorem 5.11]. Notice that the inclusion may be
strict. This allows us to investigate about when the equality between Ω(R) = Ω(R ∝ E)
is satisfied. In the next theorem, we show that Ω(R ∝ E) = Ω(R) ∪ {2, ∞} in the case R
is an integral domain and E is a divisible R-module. Note that in this case, the ideals of
R ∝ E are the form I ∝ E or 0 ∝ N where I is a proper ideal of R and N a submodule
of E such that IE ⊆ N [2, Theorem 3.11].
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Theorem 4.11. Let R be an integral domain which is not a field with quotient field K
and E be a K-vector space. Then Ω(R ∝ E) = Ω(R) ∪ {2, ∞}.

Proof. Notice that Ω(R) ⊆ Ω(R ∝ E) from [1, Theorem 5.11(e)]. On the other hand,
0 ∝ E is not an n-absorbing ideal for every positive integer n from [4, Corollary 3.3]. So,
∞ ∈ Ω(R ∝ E). Thus Ω(R) ∪ {∞} ⊆ Ω(R ∝ E). Now if N is a proper K-subspace of
E and by [4, Theorem 3.2], 0 ∝ N is a 2-absorbing ideal of R ∝ E which is not a prime
ideal of R ∝ E. Then ωS(0 ∝ N) = 2 ∈ Ω(R ∝ E). Hence, Ω(R) ∪ {2, ∞} ⊆ Ω(R ∝ E).
Now let n ∈ Ω(R ∝ E) and let J be a proper ideal of R ∝ E such that ωS(J) = n. If
J = I ∝ E, then from [1], we have ωR(I) = n ∈ Ω(R). If J = 0 ∝ E, then J is a prime
ideal (as R is an integral domain) and so ωS(J) = 1. If N is a proper K-subspace of E,
the ideal 0 ∝ N is a 2-absorbing ideal of R ∝ E by [4, Theorem 3.3]. Therefore, n = 2.
If N is not K-subspace of E, then the ideal 0 ∝ N is not n-absorbing ideal of R ∝ E
for every positive integer n [4, Corollary 3.3]. Thus, ω(J) = ∞. Finally, we conclude that
Ω(R ∝ E) = Ω(R) ∪ {2, ∞}. �

For the special case of trivial extensions of a Prüfer domain R or an integral domain
R with dim(R) = 0 by vector spaces over their quotient fields, we obtain the following
result.

Corollary 4.12. Let R be an integral domain which is not a field with quotient field K
and E be a K-vector space. Then the following assertions hold:

(1) If R is a Prüfer domain, then Ω(R ∝ E) = Ω(R) ∪ {∞}.
(2) If dim(R) = 0, then Ω(R ∝ E) = Ω(R) ∪ {∞}.

Proof. (1) By Theorem 2.15, we have Ω(R ∝ E) = Ω(R)∪{2, ∞}. Since R is a Prüfer
domain, then there exists n ≥ 2 such that 2 ∈ Ω(R), thus 2 ∈ {1, ..., n} ⊆ Ω(R) by
Theorem 2.14. Hence, 2 ∈ Ω(R) and so Ω(R ∝ E) = Ω(R) ∪ {∞}, as desired.

(2) Let P ̸= Q be two prime ideals, which are incomparable since dim(R) = 0. From
[1, Theorem 2.1], we have P ∩ Q is a non-prime 2-absorbing ideal. Consequently,
2 ∈ Ω(R). Hence, Ω(R ∝ E) = Ω(R) ∪ {∞}.

�
The next example completes Theorem 4.11 by treating the case the ring R is a field. In

this case, we show that Ω(R ∝ R) = Ω(R) ∪ {2}.

Example 4.13. Let K be a field and S := K ∝ K be the trivial ring extension of K by
the K-vector space K. It is clear that the only proper ideals of S are 0 ∝ K and 0 ∝ 0.
Furthermore, ωS(0 ∝ K) = 1 and ωS(0 ∝ 0) = 2. So, Ω(S) = {1, 2} and Ω(K) = {1}.
Therefore, Ω(S) = Ω(K) ∪ {2}.
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