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ABSTRACT

Lindley-geometric (LG) distribution is a mixture of Lindley and geometric distribution. We tackle the problem of estimation
parameters for the LG distribution. For this purpose maximum likelihood, least-squares, weighted least-squares, Anderson-
Darling, and Cramer—von-Mises methods are used to estimate the two parameters of the LG distribution. We also consider an
extensive Monte Carlo simulation study to evaluate these methods according to the biases and mean-squared errors (MSEs).
Finally, eight real data applications are presented.

Keywords: Point estimation, Geometric distribution, Lindley distribution, Lindley-geometric distribution, Monte Carlo
simulation

1. INTRODUCTION

Statistical distributions are crucial in various lifetime modeling. The parameter(s) of the distribution
provides information about the shape, skewness, or kurtosis of the distribution. It is necessary to
estimate the parameter as accurately as possible to obtain efficient information about the distribution.
The maximum likelihood method is generally preferred for parameter estimation. However, some
methods of estimation are alternative to maximum likelihood method have been used. Many authors or
researchers have studied the comparison of different estimation methods for various distributions. It is
well-known that it is very important to support these studies with simulations and real data
applications. Some of such studies in the literature can be listed as follows: Mazucheli et al. [1]
compared different methods of parameters for the weighted Lindley distribution through Monte Carlo
simulations. Gupta and Singh [2] discussed the estimation of the parameter of Lindley distribution
under hybrid censoring. Singh et al. [3] considered Bayes estimation of parameters for Lindley
distribution. Al-Zahrani and Gindwan [4] studied about two parameters Lindley distribution under
hybrid censoring. Santo and Mazucheli [5] discussed the comparison of methods of estimation for
Marshall-Olkin extended Lindley distribution. They considered six different methods to estimate the
parameters of Marshall-Olkin extended Lindley distribution such as maximum likelihood, maximum
product of spacing method, least-squares, weighted least-squares, Cramér-von Mises, and Anderson—
Darling methods in this study. Generalized Lindley distribution which is a generalization of Lindley
distribution was examined by Gui and Chen [6] in terms of joint confidence regions of its parameters.

The main purpose of this paper is to compare five methods (maximum likelihood, least-squares,
weighted least-squares, Anderson-Darling, and Cramer—von-Mises) of estimation for Lindley-
geometric distribution which is a compound a Lindley distribution and geometric distribution. The rest
of this paper is organized as follows: In Section 2, Lindley-geometric distribution and a relevant
literature review are given. Five methods of estimation are described in Section 3. A Monte Carlo
simulation study is conducted to assess the performances of these estimators according to bias and
MSEs criteria in Section 4. Section 5 provides eight real data applications. Lastly, conclusions are
presented in Section 6.
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2. LINDLEY-GEOMETRIC (LG) DISTRIBUTION

LG distribution is suggested by Zakerzadeh and Mahmoudi [7]. The probability density function (pdf)
and cumulative distribution function (cdf) are given by

where 6>0,pe(0,1)and x>0. The LG distribution reduces the Lindley distribution when p=0 in

(1). Some authors have generated new models based on modifications of the LG distribution.
Liyanage and Pararai [8] investigated the Lindley power series class of distributions. They described
special cases of Lindley power series including LG, Lindley binomial, Lindley Poisson, and Lindley
logarithmic (LL) distributions. They examined some properties of these models. Besides, they
performed simulations and applications based on LL, including also their properties in [8]. Merovci and
Elbatal [9] suggested a new distribution called transmuted Lindley geometric distribution. Diab and
Muhammed [10] produced a new extension of LG distribution called Quasi Lindley geometric
distribution. Gui and Zhang [11] proposed the complementary Lindley geometric distribution as an
alternative LG and Lindley distribution. Elbatal and Khalil [12] introduced a new three parameters LG
distribution using pdf (1).

3. METHODS OF ESTIMATION

In this section, five estimation methods are examined for estimating the unknown parameters of LG
distribution. We study the maximum likelihood, least-squares, weighted least squares, Anderson-
Darling, and Cramer—von-Mises methods of estimation.

Let X,,X,...., X, be a random sample from the LG distribution. X, <X, <...<X, symbolize the

@ 2

corresponding order statistics. Also, Xi) indicate the observed value of X(i) for i=1,2,...,n. Then,

the likelihood and log-likelihood function of the LG distribution are given, respectively, by

n 2

He)=[T.2 1(1—p)(1+x,)exp(—@x,.){l—p(lJr%jexp(—exi)}2 @

i=1

and

((®)=2nlog(8)—nlog(&+1)+nlog(1 —p)ilog(l—x,. )— Qix, —Zilog{l—p(l+ %jexp(—&x,. )} 3

, Where @=(6,p).
Then, maximum likelihood estimator (MLE) of @ is given by

0. =arggnax{€(0)}. 4

Let us define the following functions which are used to obtain the least-squares, weighted least
squares, Anderson-Darling and Cramer—von-Mises estimators:
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Then, least square estimator (LSE), weighted least square estimator (WLSE), Anderson-Darling
estimator (ADE) and Cramer—von-Mises estimator (CvME) of the parameter vector © are given,
respectively by

0, =arg£nin{QLs (@)}, ®)
6, :arg;nin{QWLS (@)}, (6)
o, :arg;nin{QAD (@)}, )
0, :arg;nin{QCVM (@)}, 8

Five estimates given in (4)-(8) can be obtained by optim function included in the stats package in R
with Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm which is known as a quasi-Newton
method. The BFGS algorithm was firstly studied by Fletcher [13].
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4. SIMULATION STUDY

In this section, 5000 trials are conducted to estimate the biases and MSEs of all estimators. Four true
parameter settings are considered as follows:@=(0.5,0.3),(0.75,0.9),(1.25,0.5),(1.5,0.7).  The
sample sizes are selected as n=(25,50,100,150,200,250) . The acceptance-rejection algorithm is used
to generate data from LG(®) distribution. The BFGS algorithm which is available in R is used to

obtain five estimates given in (4)-(8). In Tables 1-2, biases and MSEs of MLE, LSE, WLSE, ADE,
and CVME are reported. Tables 1-2 indicate that the biases and MSEs of five estimators are close to
zero when the sample size increases as expected. From the simulation results, if one will use LG
distribution in real data modeling, one can choose any estimation methods.

Table 1. Average biases of all estimators

e, o, o, e, e,

() n % p 0 p 0 p 0 p 0 p

(0.5,0.3) 25 -0.0291 0.1437 -0.1396 0.2557 -0.1276 0.2486 -0.0963 0.2499 -0.0416 0.0206
50 -0.0140 0.0853 -0.0733 0.1630 -0.0565 0.1483 -0.0469 0.1433 -0.0231 0.0421
100 -0.0084 0.0504 -0.0377 0.0917 -0.0259 0.0786 -0.0242 0.0800 -0.0129 0.0290
150 -0.0027 0.0234 -0.0223 0.0539 -0.0134 0.0424 -0.0130 0.0442 -0.0061 0.0112
200 -0.0001 0.0129 -0.0124 0.0304 -0.0061 0.0220 -0.0065 0.0252 -0.0004 -0.0020
250 0.0023 0.0020 -0.0094 0.0237 -0.0035 0.0132 -0.0038 0.01526 -0.0002 -0.0022

(0.75,0.9) 25 0.4227 -0.1371 0.2556 -0.1312 0.1970 -0.1116 0.1902 -0.0817 0.5950 -0.2602
50 0.2563 -0.0827 0.1998 -0.0879 0.1584 -0.0751 0.1430 -0.0606 0.3692 -0.1407
100 0.1387 -0.0431 0.1347 -0.0541 0.0978 -0.0426 0.0886 -0.0362 0.2259 -0.0790
150 0.0984 -0.0297 0.0947 -0.0369 0.0682 -0.0281 0.0611 -0.0243 0.1577 -0.0531
200 0.0688 -0.0212 0.0678 -0.0276 0.0449 -0.0199 0.0361 -0.0164 0.1153 -0.0394
250 0.0507 -0.0158 0.0564 -0.0231 0.0368 -0.0163 0.0293 -0.0135 0.0961 -0.0328

(1.25,0.5) 25 0.0055 0.0062 -0.2593 0.0853 -0.2341 0.0856 -0.1759 0.0952 0.0182 -0.1122
50 0.0218 -0.0185 -0.1403 0.0490 -0.0950 0.0359 -0.0753 0.0332 0.0008 -0.0472
100 0.0338 -0.0330 -0.0403 -0.0033 -0.0086 -0.0141 -0.0079 -0.0105 0.0302 -0.0531
150 0.0304 -0.0329 -0.0180 -0.0130 0.0039 -0.0206 0.0020 -0.0174 0.0286 -0.0462
200 0.0313 -0.0306 -0.0035 -0.0162 0.0136 -0.0225 0.0117 -0.0199 0.0313 -0.0410
250 0.0257 -0.0272 0.0020 -0.0183 0.0149 -0.0230 0.0126 -0.0205 0.0297 -0.0381

(1.5,0.7) 25 0.2146 -0.0911 -0.1559 -0.0256 -0.1399 -0.0210 -0.0751 -0.0109 0.2602 -0.1875
50 0.1564 -0.0774 -0.0449 -0.0404 -0.0071 -0.0428 0.0055 -0.0370 0.1715 -0.1189
100 0.1039 -0.0509 -0.0136 -0.0282 0.0280 -0.0343 0.0283 -0.0312 0.0985 -0.0661
150 0.0682 -0.0340 -0.0061 -0.0205 0.0269 -0.0253 0.0228 -0.0227 0.0693 -0.0455
200 0.0604 -0.0286 -0.0072 -0.0151 0.0241 -0.0205 0.0188 -0.0178 0.0494 -0.0337
250 0.0531 -0.0248 0.0003 -0.0147 0.0283 -0.0199 0.0233 -0.0176 0.0456 -0.0296
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Table 2. Average MSEs of all estimators

0, o, o, o, o,
(c] n 0 p 0 p 0 p 0 p 0 p
(050.3) 25 0.0155 0.0782 0.0693 0.4962 0.0578 0.6842 0.0340 0.1709 0.0668 0.7935

50 0.0092 0.0548 0.0344 0.2103 0.0233 0.1539 0.0179 0.1041 0.0321 0.2488
100 0.0056 0.0392 0.0174 0.1140 0.0109 0.0779 0.0096 0.0646 0.0166 0.1219
150 0.0043 0.0314 0.0116 0.0822 0.0073 0.0544 0.0067 0.0480 0.0112 0.0867
200 0.0033 0.0253 0.0085 0.0629 0.0053 0.0420 0.0050 0.0381 0.0084 0.0661
250 0.0029 0.0243 0.0068 0.0518 0.0044 0.0359 0.0042 0.0340 0.0068 0.0538
(0.75,0.9) 25 0.6821 0.0655 1.2410 0.2586 1.0630 0.2213 0.6216 0.0615 2.1034 0.5247
50 0.3292 0.0307 0.6448 0.0757 0.5444 0.0618 0.3737 0.0348 0.8815 0.1133
100 0.1419 0.0111 0.3149 0.0287 0.2479 0.0215 0.1934 0.0152 0.3876 0.0374
150 0.0926 0.0064 0.2079 0.0164 0.1554 0.0114 0.1283 0.0088 0.2430 0.0201
200 0.0637 0.0041 0.1618 0.0115 0.1153 0.0077 0.0969 0.0061 0.1828 0.0136
250 0.0481 0.0030 0.1313 0.0090 0.0906 0.0058 0.0779 0.0048 0.1456 0.0104
(1.25,05) 25 0.1580 0.0601 0.5947 0.4159 0.4908 0.3695 0.2725 0.1010 0.6709 0.7187
50 0.0983 0.0489 0.2899 0.1361 0.2032 0.1003 0.1609 0.0721 0.2962 0.1763
100 0.0650 0.0378 0.1561 0.0834 0.1054 0.0604 0.0927 0.0502 0.1592 0.0970
150 0.0456 0.0295 0.1080 0.0597 0.0710 0.0432 0.0659 0.0389 0.1100 0.0665
200 0.0379 0.0246 0.0835 0.0468 0.0560 0.0343 0.0528 0.0317 0.0852 0.0509
250 0.0311 0.0200 0.0658 0.0374 0.0445 0.0274 0.0426 0.0258 0.0671 0.0402
(15,0.7) 25 05394 0.0649 1.4047 0.2946 1.2132 0.2475 0.6856 0.0751 1.9377 0.5644
50 0.3362 0.0505 0.7723 0.1148 0.5975 0.0897 0.4576 0.0607 0.9083 0.1643
100 0.1847 0.0280 0.4098 0.0547 0.2885 0.0413 0.2544 0.0347 0.4374 0.0655
150 0.1186 0.0179 0.2813 0.0348 0.1861 0.0254 0.1717 0.0229 0.2924 0.0394
200 0.0908 0.0131 0.2161 0.0272 0.1403 0.0193 0.1307 0.0173 0.2212 0.0297
250 0.0717 0.0100 0.1761 0.0212 0.1128 0.0149 0.1073 0.0139 0.1798 0.0229

5. REAL DATA APPLICATIONS

In this section, eight real data applications for the LG distribution are applied. LG distribution is fitted
to the real data sets estimating the parameter using five methods of estimation. The MLE, LSE,
WLSE, ADE, and CVME of the parameters of LG distribution are also obtained by the BFGS
algorithm and reported in Table 4. The detailed information on the real data is given in Appendix, also
descriptive information about the data is presented in Table 3.

Table 3. Descriptive statistics and their references based on the eight real data sets

Number_of Mean Standard deviation Minimum Maximum References
observation
Datal 55 259.1636 258.8003 1 1146 Mudholkar et al. [14]
Data?2 101 1.0248  1.1193 0.01 7.89 Andrews and Herzberg [15]
Data 3 40 4.0125  5.1652 0.5 245 Jorgensen [16])
Data4 15 27.5466 20.7633 1.4 66.2 Lawless [17]
Data5 50 7.8210  9.2063 0.013 48.105 Murthy et al. [18])
Data6 34 1.8794  1.9525 0.1 8 Bhaumik [19]
Data7 116 42.1293 32.9878 1 168 Nadarajah [20], Leiva et al. [21]
Data8 45 1.3414  1.2466 0.047 4.033 Bekker et al. [22]
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Table 4. The parameter estimates of the parameters of LG distribution for all data sets

0, 9, o, 9, o,

Data set 0 p 0 p 0 p 0 p 0 p

0.0039 0.8133 0.0038 0.8116 0.0038 0.8112 0.0036 0.8482 0.0038 0.8116
1.0886 0.4375 1.2537 0.2068 1.2343 0.2688 1.1035 0.4229 1.3065 0.1407
0.1224 0.9390 0.1030 0.9572 0.0604 0.9825 0.0760 0.9749 0.0968 0.9618
0.0661 0.1590 0.0308 0.8117 0.0362 0.7525 0.0450 0.6271 0.0420 0.6603
0.1026 0.8764 0.0927 0.8837 0.0792 0.9147 0.0919 0.8996 0.1007 0.8649
0.5455 0.6348 0.3010 0.8781 0.3670 0.8222 0.4774 0.7149 0.4402 0.7587
0.0365 0.4662 0.0252 0.7474 0.0306 0.6254 0.0305 0.6298 0.0264 0.7238
0.9136 0.3791 0.4691 0.8196 0.7253 0.6022 0.6858 0.6378 0.5668 0.7476

O~NO O~ WN -

6. CONCLUSION

In this paper, LG distribution is studied in terms of some point estimations. LG distribution is
proposed by Zakerzadeh and Mahmoudi [7]. They only examined the maximum likelihood for point
estimation of LG distribution. Unlike their study, we provide five estimators including MLE, LSE,
WLSE, ADE, and CvME of parameters of LG distribution. Thus, a new extension is provided for the
estimation of the parameters for LG distribution. Monte Carlo simulation studies are performed for
different parameter values and different sample sizes. It is concluded that as the sizes of samples
increase, the MSEs and biases of all estimators decrease and close to zero. According to the simulation
study results, it is seen that any of the five methods of estimation examined in this paper can be used
in modeling real data. Also, we analyze eight real data set to illustrate the usefulness of LG
distribution. The parameter estimates of LG distribution are also obtained using five different
estimation methods for these practical data sets.
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APPENDIX
The eight real data sets used in the real data applications are given in detail below:

Data Set 1: 7, 34, 42, 63, 64, 74, 83, 84, 91, 108, 112, 129, 133, 133, 139, 140, 140, 146, 149, 154,
157, 160, 160, 165, 173, 176, 185, 218, 225, 241, 248, 273, 277, 279, 297, 319, 405, 417, 420, 440,
523, 523, 583, 594, 1101, 1116, 1146, 1, 226, 1, 349, 1, 412,1, 417.

Data Set 2: 0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.10,
0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42,
0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80,
0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29,
1.31, 1.33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80,
1.80, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89.

Data Set 3: 0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 1.00, 1.00, 1.00, 1.00, 1.10, 1.30, 1.50, 1.50,
1.50, 1.50, 2.00, 2.00, 2.20, 2.50, 2.70, 3.00, 3.00, 3.30, 4.00, 4.00, 4.50, 4.70, 5.00, 5.40, 5.40, 7.00,
7.50, 8.80, 9.00, 10.20, 22.00, 24.50.

Data Set 4: 1.4,5.1, 6.3, 10.8, 12.1, 18.5, 19.7, 22.2, 23, 30.6, 37.3, 46.3, 53.9, 59.8, 66.2.

Data Set 5: 0.013, 0.065, 0.111, 0.111, 0.163, 0.309, 0.426, 0.535, 0.684, 0.747, 0.997, 1.284, 1.304,
1.647, 1.829, 2.336, 2.838, 3.269, 3.977, 3.981, 4.520, 4.789, 4.849, 5.202, 5.291, 5.349, 5.911, 6.018,
6.427, 6.456, 6.572, 7.023, 7.087, 7.291, 7.787, 8.596, 9.388, 10.261, 10.713, 11.658, 13.006, 13.388,
13.842, 17.152, 17.283, 19.418, 23.471, 24.777, 32.795, 48.105.

Data Set 6: 5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9,
2.5,23,10,0.2,0.1,01, 1.8,0.9, 2.0,4.0,6.8,1.2,0.4,0.2.

Data Set 7: 41, 36, 12, 18, 28, 23, 19, 8, 7, 16, 11, 14, 18, 14, 34, 6, 30, 11, 1, 11, 4, 32, 23, 45, 115,
37,29, 71, 39, 23, 21, 37, 20, 12, 13, 135, 49, 32, 64, 40, 77, 97, 97, 85, 10, 27, 7, 48, 35, 61, 79, 63,
16, 80, 108, 20, 52, 82, 50, 64, 59, 39, 9, 16, 78, 35, 66, 122, 89, 110, 44, 28, 65, 22, 59, 23, 31, 44,
21,9, 45, 168, 73, 76, 118, 84, 85, 96, 78, 73, 91, 47, 32, 20, 23, 21, 24, 44, 21, 28, 9, 13, 46, 18, 13,
24,16, 13, 23, 36, 7, 14, 30, 14, 18, 20.

Data Set 8: 0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458,
0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326,
1.447,1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978,
4.003, 4.033.
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