Korhan ÖZGAN* Ayşe T. DALOĞLU**

ÖZ

Bu çalışmada, kalınlık doğrultusundaki kayma şekil değiştirmelerini dikkate alan 4 düğüm noktalı (PBQ4) ve 8 düğüm noktalı (PBQ8) Mindlin plak elemanlar kullanılarak elastik zemine oturan kalın plakların hesabi incelenmiştir. Küçük plak kalınlıklarında meydana gelen kayma kilitlenmesini önlemek amacıyla her iki tip elemanın plak rijitlik matrisleri tam integrasyon (Tİ) tekniğinin yanı sıra seçilerek azaltılmış integrasyon (SAİ) tekniği de kullanılarak elde edilmektedir. Çeşitli yükleme durumları ve sınır şartları dikkate alınarak çözümler yapılmakta ve elde edilen sonuçlar literatürden alınan bir örnekle karşılaştırılmaktadır. Çalışmanın sonunda PBQ4 ve PBQ8 elemanlarının kalınlık arttıkça iyi sonuçlar verdiği ancak kalınlık azaldıkça seçilerek azaltılmış integrasyon (SAİ) tekniği kullanılan elemanların daha güvenilir olduğu sonucuna ulaşılmaktadır.

Anahtar Kelimeler: Sonlu eleman, kalın plak, elastik zemin, kayma kilitlenmesi.

ABSTRACT

Shear Locking Free Finite Elements for Thick Plates on Elastic Foundations

In this study, the analysis of thick plates resting on elastic foundation is investigated by using four-noded (PBQ4) and eight-noded (PBQ8) quadrilateral finite elements based on Mindlin plate theory and by taking into account transverse shear deformations. In order to avoid shear locking problem in case of small thicknesses, selective reduced integration technique is used in addition to full integration technique for the evaluation of the stiffness matrices of both elements. Various loading and boundary conditions are considered and a reference example is solved for comparison. It is concluded that the results obtained by using PBQ4 and PBQ8 elements are both satisfactory for thicker plates. However selective reduced integration technique is more reliable for thinner plates.

Key Words: Finite element, thick plate, elastic foundation, shear locking problem.

Not: Bu yazı

⁻ Yayın Kurulu'na 10.10.2008 günü ulaşmıştır.

^{- 30} Haziran 2011 gününe kadar tartışmaya açıktır.

^{*} Karadeniz Teknik Üniversitesi, İnşaat Mühendisliği Bölümü, Trabzon - korhanozgan@yahoo.com

^{**} Karadeniz Teknik Üniversitesi, İnşaat Mühendisliği Bölümü, Trabzon - aysed@ktu.edu.tr

1. GİRİŞ

Yapı temelleri, karayolları, havaalanları ve yüzme havuzları gibi pratik uygulamalara örnek teşkil etmesi bakımından elastik zemine oturan plak problemleri ile ilgili teknik literatürde birçok çalışma bulunmaktadır. Bu çalışmaların çoğunda Kirchhoff ince plak teorisi kullanılmaktadır. Kirchhoff plak teorisine göre şekil değiştirmeden önce düzlem ve orta yüzeye dik olan kesitler sekil değiştirmeden sonra da orta yüzeye düzlem ve dik kalırlar. Bu varsayım neticesinde düzleme dik kayma sekil değiştirmelerinin etkisi göz ardı edilmiş olmaktadır. Ancak plak kalınlığı arttıkca söz konusu sekil değistirmelerin etkisi büyümekte ve Kirchhoff plak teorisi doğru olmayan sonuçlara götürebilmektedir. Bu nedenle özelikle kalın plak problemlerinde düzleme dik kayma şekil değiştirmelerinin etkisini de dikkate almak gerekmektedir. Mindlin plak elemanlarla düzleme dik kayma şekil değiştirmelerinin etkisi kolayca dikkate alınabilmektedir. Ancak Mindlin plak elemanlarda özellikle plak kalınlığı azaldıkça kayma kilitlenmesi adı verilen problemle karşılaşılmaktadır. Zira kalınlık azaldıkça eğilme etkilerinin yanında kayma etkileri baskın olmakta ve plak gerçekte olduğundan daha rijit davranmaktadır. Birçok literatürde bu sorunun önüne geçebilmek için, rijitlik matrislerinin hesabında azaltılmış integrasyon (Aİ) veya seçilerek azaltılmış integrasyon (SAİ) teknikleri önerilmektedir. Bu sayede rijitlik matrisinin hesabında integrasyon nokta adedi azaltılarak matris daha esnek hale getirilmekte ve daha doğru sonuçlar alınmaktadır.

Yapı zemin etkileşimi problemlerinde en önemli konu zeminin yapıya etkisinin çözümlerde nasıl dikkate alınacağı sorusudur ve bu konuda birçok model geliştirilmiştir. Bu modellerden en basiti 1867 yılında Winkler tarafından ortaya atılmıştır, modelde sadece yükün uygulandığı noktada düşey deplasman olduğu ve deplasmanın yük ile orantılı olduğu kabul edilmektedir. Zemin aralarında etkileşim olmayan bir dizi yaylarla temsil edilmektedir [1]. Bu modele göre elastik zemine oturan plağın denge denklemi, D plağın eğilme rijitliğini, q plağa etkiyen yayılı yükü, w plağın düşey deplasmanını ve k zemin yatak katsayısını göstermek üzere,

$$\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} + \frac{k}{D} w = \frac{q}{D}$$
(1)

şeklinde verilmektedir.

Teknik literatürde elastik zemine oturan plaklar hakkında birçok çalışma bulunmaktadır. Briassoulis [2] Mindlin plakların eğilme ve kayma davranışlarını incelemiş ve kabuk eleman kullanarak integrasyon tekniği, sonlu eleman ağı gibi parametrelerin kayma kilitlenmesi üzerindeki etkilerini ortaya koymaya çalışmıştır. Crisfield [3] ince ve kalın plakların çözümünde kullanmak üzere bir kuadratik Mindlin plak eleman geliştirmiştir. Pugh vd.[4] çalışmasında kayma kilitlenmesi probleminin üstesinden gelebilmek için azaltılmış integrasyon tekniğini beş farklı Mindlin plak eleman üzerinde denemiştir. Voyiadjis ve Kattan [5] normal şekil değiştirmeleri, kayma şekil değiştirmelerini ve normal gerilmeleri birlikte dikkate alarak elastik zemine oturan plakları incelemişlerdir. Eratli ve Aköz [6], Gateaux diferansiyel metodunu kullanarak elastik zemine oturan kalın plakların analizinde yeni bir karma sonlu elaman geliştirmişlerdir. Yettram vd. [7] plak kalınlığının elastik zemine oturan plakların analizi üzerindeki etkilerini araştırmışlardır. Winkler elastik zemin modelini kullanarak boyutsuz deplasman, moment ve kesme kuvveti değerlerini sunmuşlardır. Mishra ve Chakrabarti [8] 9 düğüm noktalı Mindlin plak eleman kullanarak kayma şekil değiştirmelerinin elastik zemine oturan plakların davranışına etkisini araştırmışlardır. Liu [9] Winkler elastik zeminine oturan plakların analizi için DQEM elemanını geliştirmiştir. Daloglu ve Vallabhan [10] çalışmalarında elastik zemine oturan plak çözümlerinde kullanılmak üzere yatak katsayısı değerlerini veren grafikler sunmuslardır. Abdalla ve Ibrahim [11] Winkler zeminine oturan kalın plakların çözümü için üçgen Reissner-Mindlin plak eleman geliştirmişlerdir. Wang vd. [12] tabakalı zemine oturan plak problemlerinin çözümünde yarı analitik yarı nümerik metot kullanmışlardır. Buczkowski ve Torbacki [13], 18 düğüm noktalı sıfır kalınlıklı izoparametrik eleman kullanarak kayma şekil değiştirmelerini dikkate almış ve iki parametreli elastik zemine oturan plakları incelemiştir. Çelik ve Saygun [14] plak düzlemine dik kayma şekil değiştirmelerinin etkisini de dikkate alan yeni bir sonlu eleman formülasyonu geliştirmiştir. Chucheepsakul ve Chinnaboon [15] iki parametreli elastik zemine oturan plaklar için alternatif bir sınır eleman metodu sunmuşlardır. Ozgan ve Daloglu [16] bu çalışmada kullanılan 4 ve 8 düğüm noktalı elemanlar için rijitlik matrislerini tam integrasyon tekniği ile elde etmişler ve farklı yükleme durumları, sınır şartları ile farklı zemin özelliklerinin Winkler tipi elastik zemine oturan kalın plakların çözümüne etkisini araştırmışlardır.

Bu çalışmada 4 düğüm noktalı 12 serbestlik dereceli (PBQ4) ve 8 düğüm noktalı 24 serbestlik dereceli (PBQ8) Mindlin plak elemanlar Winkler zeminine oturan kalın plakların çözümüne tatbik edilmiştir. Rijitlik matrislerinin elde edilmesinde tam integrasyon (Tİ) ve seçilerek azaltılmış integrasyon (SAİ) olmak üzere iki farklı teknik kullanılmıştır. Elemanların güvenilirliğini test etmek amacıyla farklı plak kalınlıkları, zemin yatak katsayıları, sınır şartları ve yükleme durumları dikkate alınmıştır.

2. SONLU ELEMAN MODELİ

Yapı-zemin sisteminin toplam potansiyel enerjisi,

$$\prod = U + V \tag{2}$$

ifadesiyle verilmektedir. Burada, Π_p plağın potansiyel enerjisini, Π_w Winkler zemininin potansiyel enerjisini göstermek üzere, $U=\Pi_p+\Pi_w$ 'dir. V ise dış yüklerden doğan potansiyel enerjiyi göstermektir.

Şekil 1'de gösterildiği gibi rijit bir tabaka ile son bulan elastik zemine oturan plağın (2)'de verilen toplam potansiyel enerji ifadesi açılır ve plağın eğilme ve kayma terimleri için ayrı ayrı yazılırsa

$$\Pi = \frac{1}{2} \int \{w_e\}^T [B_e]^T [D_e] B_e] \{w_e\} dA$$

+ $\frac{1}{2} \int \{w_e\}^T [B_k]^T [D_k] B_k] \{w_e\} dA$
+ $\frac{1}{2} \int [w(x, y)]^T k [w(x, y)] dA + \int \{w_e\}^T N^T q dA$ (3)

ifadesi elde edilir [17].

Şekil 1. Elastik zemine oturan bir plak şeması

Burada $[B_e]$ eğrilik-deplasman matrisini, $[B_k]$ kayma-deplasman matrisini, $[D_e]$ eğilme rijitliği terimlerini içeren elastisite matrisini $[D_k]$ kayma rijitliği terimlerini içeren elastisite matrisini göstermektedir. k zemin yatak katsayısını, w plak düzlemine dik deplasmanları, qyayılı yükü, ve N şekil fonksiyonlarını temsil etmektedir. Bu çalışmada rijitlik matrisleri hesaplanırken Şekil 2'de görülen 4 düğüm noktalı 12 serbestlik dereceli (PBQ4) ve 8 düğüm noktalı 24 serbestlik dereceli (PBQ8) Mindlin plak elemanlar kullanılmıştır [18].

Her bir düğüm noktasındaki 3 serbestlik derecesi

$$w, \varphi_x, \varphi_y$$
 (4)

ile gösterilebilir. Burada w düşey deplasman, φ_x , φ_y ise diğer iki eksen etrafındaki dönmelerdir. Deplasmanların PBQ4 elaman için lineer, PBQ8 eleman için ise kuadratik değiştiği kabul edilmiştir.

$$u = z\varphi_{y} = z\sum_{i=1}^{n} N_{i}\varphi_{yi}$$

$$v = -z\varphi_{x} = -z\sum_{i=1}^{n} N_{i}\varphi_{xi}$$

$$w = \sum_{i=1}^{n} N_{i}w_{i}$$
(5)

n, PBQ4 elaman için 4 ve PBQ8 eleman için 8 dir. Buna göre PBQ4 eleman için eleman şekil fonksiyonları,

$$[N_i] = \begin{bmatrix} N_1 & 0 & 0 & N_2 & 0 & 0 & N_3 & 0 & 0 & N_4 & 0 & 0 \end{bmatrix},$$
(6)

ve PBQ8 eleman için eleman şekil fonksiyonları,

$$[N_i] = \begin{bmatrix} N_1 & 0 & 0 & N_2 & 0 & 0 & \dots & N_8 & 0 & 0 \end{bmatrix},$$
(7)

şeklindedir. Şekil fonksiyonlarının açık ifadelerine [17] ve [18] nolu referanslardan ulaşılabilir. Burada Kirchhoff plak teorisinden farklı olarak dönmeler, φ_x ve φ_y , düşey deplasmanlardan, w, bağımsız olarak ifade edilmektedir. Mindlin plak teorisi için eğrilik ifadesi,

$$\left\{\chi\right\} = \begin{cases} \frac{\partial \varphi_{y}}{\partial x} \\ -\frac{\partial \varphi_{x}}{\partial y} \\ \frac{\partial \varphi_{y}}{\partial y} - \frac{\partial \varphi_{x}}{\partial x} \\ \frac{\partial w}{\partial x} + \varphi_{y} \\ \frac{\partial w}{\partial y} - \varphi_{x} \end{cases}$$
(8)

5345

şeklindedir. Bu ifadedeki ilk üç terim eğilmeye, son iki terim ise kaymaya karşılık gelmektedir.

Eğrilik-deplasman matrisi,

_

$$\begin{bmatrix} B_e \end{bmatrix}_i = \begin{bmatrix} 0 & 0 & \frac{\partial N_i}{\partial x} \\ 0 & -\frac{\partial N_i}{\partial y} & 0 \\ 0 & -\frac{\partial N_i}{\partial x} & \frac{\partial N_i}{\partial y} \end{bmatrix}, \quad \begin{bmatrix} B_e \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} B_e \end{bmatrix}_1 & \begin{bmatrix} B_e \end{bmatrix}_2 & \dots & \begin{bmatrix} B_e \end{bmatrix}_n \end{bmatrix}$$
(9)

ve kayma-deplasman matrisi,

$$\begin{bmatrix} B_k \end{bmatrix}_i = \begin{bmatrix} \frac{\partial N_i}{\partial x} & 0 & N_i \\ \frac{\partial N_i}{\partial y} & -N_i & 0 \end{bmatrix}, \begin{bmatrix} B_k \end{bmatrix} = \begin{bmatrix} B_k \end{bmatrix}_1 \begin{bmatrix} B_k \end{bmatrix}_2 \dots \begin{bmatrix} B_k \end{bmatrix}_n \end{bmatrix}$$
(10)

şeklindedir. Yukarıdaki ifadelerde n, PBQ4 elaman için 4 ve PBQ8 eleman için 8 değerini alacaktır.

(5) ifadesi (2) ve (3) de yerine yazılırsa, toplam potansiyel enerji ifadesinden rijitlik matrisleri ve yük vektörü elde edilebilir.

$$U = \frac{1}{2} \{ w_e \}^T \left(\left[k_p \right] + \left[k_w \right] \right) \{ w_e \}$$
⁽¹¹⁾

Yukarıdaki ifadede $[k_p]$ plak elemanın rijitlik matrisini, $[k_w]$ Winkler zemini eleman rijitlik matrisini, {w_e} eleman düğüm noktası deplasmanları vektörünü temsil etmektedir. Plak eleman rijitlik matrisi, det(J) Jacobian matrisinin determinantını göstermek üzere,

$$\begin{bmatrix} k_p \end{bmatrix} = \int_{-1-1}^{1} \begin{bmatrix} B_e \end{bmatrix}^T \begin{bmatrix} D_e \end{bmatrix} \begin{bmatrix} B_e \end{bmatrix} \det(J) d\xi d\eta$$

+
$$\int_{-1-1}^{1} \begin{bmatrix} B_k \end{bmatrix}^T \begin{bmatrix} D_k \end{bmatrix} \begin{bmatrix} B_k \end{bmatrix} \det(J) d\xi d\eta$$
(12)

ifadesiyle, Winkler zemini eleman rijitlik matrisi,

$$[k_{w}] = k \int_{-1-1}^{1} [N]^{T} [N] \det(J) d\xi d\eta$$
(13)

ifadesiyle ve yayılı yüke maruz plağın eleman yük vektörü,

$$\{f\} = \int_{-1-1}^{1} [N]^T q \det(J) d\xi d\eta$$
(14)

ifadesiyle hesaplanmaktadır.

Bu çalışmada kullanılan eleman rijitlik matrisleri yukarıdaki eşitlikler kullanılarak çıkartılmıştır. (12) eşitliği için önce tam integrasyon (Tİ) tekniği kullanılmış, daha sonra kayma kilitlenmesi probleminin önüne geçebilmek için (12) eşitliğindeki sadece kayma terimleri üzerinde seçilerek azaltılmış (SAİ) integrasyon tekniği uygulanmıştır. Çizelge 1'de bu çalışmada kullanılan integrasyon adımları görülmektedir. Plak eleman rijitlik matrisleri çok yer tuttuğundan burada verilmemiştir, söz konusu matrislere [19] nolu referanstan ulaşılabilir. Her iki eleman için (13) eşitliğinden hesaplanan Winkler zeminine ait eleman rijitlik matrisleri ise referans [16] ve [19]'da verilmektedir.

	Tam İntegr	asyon (Tİ)	Seçilerek Azaltılmış İntegrasyon (SAİ)				
	$[K_b]^e$	$[K_s]^e$	$[K_b]^e$	$[K_s]^e$			
PBQ4	2x2	2x2	2x2	1x1			
PBQ8	3x3	3x3	3x3	2x2			

Çizelge 1. Bu çalışmada kullanılan integrasyon adımları

Yukarıda hesaplanan her bir eleman rijitlik matrisi toplanarak sistem rijitlik matrisi

$$\begin{bmatrix} K \end{bmatrix} = \sum_{i=1}^{n_e} \left(\begin{bmatrix} k_p \end{bmatrix} + \begin{bmatrix} k_w \end{bmatrix} \right)$$
(15)

ifadesinden hesaplanır, burada n_e sonlu eleman sayısını göstermektedir. Sonuç olarak çözülmesi gereken ifade, [K] sistem rijitlik matrisini, $\{W\}$ sistem deplasman vektörünü ve $\{F\}$ sistem yük vektörünü göstermek üzere,

$$[K]{W} = {F}$$

$$(16)$$

şeklini alır [20].

3. SAYISAL ÖRNEKLER

Bu çalışmada kullanılan formülasyonun doğruluğunu ve güvenilirliğini göstermek amacıyla daha önce Voyiadjis ve Kattan [5] tarafından çözülen dörtkenarından basit mesnetli kare plak örneği dikkate alınmıştır. Söz konusu örnek yazarlar tarafından Navier Yöntemi kullanılarak çözülmüştür. Bu çalışmada aynı örnek 3 farklı sınır şartı ve iki farklı yükleme durumu için analiz edilmiştir. Plağın boyutları 1.016x1.016 m, plağın elastisite modülü 206700000 kN/m², plağın Poisson oranı 0.3, plağa etkiyen yayılı yük 68900 kN/m² ve tekil yük 72575 kN dur. Örnekte 55360, 553600 ve 5536000 kN/m³ olmak üzere üç farklı yatak katsayısı kullanılmıştır. Ayrıca 0.05, 0.10, 0.20, 0.30, 0.40 ve 0.50 olmak üzere altı farklı h/L oranı (plak kalınlığının kısa kenar uzunluğuna oranı) için çözüm yapılmıştır.

Her iki eleman (PBQ4 ve PBQ8) için her iki integrasyon tekniği (Tİ ve SAİ) kullanılarak çözümler gerçekleştirilmiştir. Plak kalınlığı arttıkça kalınlığa dik kayma şekil değiştirmelerinin etkisini göstermek amacıyla aynı problem, Melosh, Zienkiewicz and Cheung tarafından geliştirilen, temeli Kirchhoff plak teorisine dayanan ve kayma şekil değiştirmelerini dikkate almayan MZC eleman ile de çözülmüştür[18]. Elde edilen sonuçlar ayrıca SAP 2000 Yapısal Analiz Programından elde edilen sonuçlarla da karşılaştırılmıştır.

Çalışmada kullanılacak sonlu eleman ağını belirlemek amacıyla plağın maksimum düşey yerdeğiştirmeleri için bir yakınsama çalışması yapılmış ve PBQ4 ve MZC eleman için 20x20, PBQ8 eleman için 10x10 eleman ağının yeterli olduğu belirlenmiştir.

Basit Mesnetli Plak

Basit mesnetli yayılı yükle yüklü plak için elde edilen sonuçlar referans [5]'teki sonuçlar ile birlikte Çizelge 2'de verilmektedir. Kayma kilitlenmesini göstermek amacıyla Şekil 3'te basit mesnetli yayılı yükle yüklü plak için bu çalışmada dikkate alınan tüm elemanların maksimum deplasmanları birlikte verilmiştir. Mindlin plak teorisinde dikkate alınan düzleme dik kayma şekil değiştirmelerinin etkisini göstermek için bu çalışmada elde edilen sonuçlar ile Kirchhoff plak teorisinden (MZC) elde edilen sonuçlar arasındaki farklar Çizelge 3'te sunulmaktadır. Basit mesnetli tekil yükle yüklü plak için benzer karşılaştırmalar Çizelge 4'te verilmektedir. Her iki yükleme durumunda PBQ8 eleman ile çözümden elde edilen plağın maksimum deplasmanlarının h/L oranı ile değişimi Şekil 4'te verilmektedir.

Daha öncede bahsedildiği gibi PBQ elemanlarda plak kalınlığı küçüldükçe kayma terimleri eğilme terimlerine baskın olmakta ve plak çok rijit davranmaktadır. Bu durum kayma kilitlenmesi olarak adlandırılmaktadır. Şekil 3'te de görüldüğü gibi PBQ4 (Tİ) elemanda h/L < 0.10 olması durumunda kayma kilitlenmesi görülmektedir. Daha küçük kalınlıklarda söz konusu kilitlenme daha belirgin şekilde ortaya çıkmaktadır. Diğer taraftan PBQ8 (Tİ) elemanda kayma kilitlenmesi bu kadar net olmamakta ancak h/L oranının 0.05 ten küçük olması durumunda görülmektedir [19]. Bu problem plak kalınlığı ve zeminin rijitliği arttıkça ortadan kaybolmaktadır. Kayma şekil değiştirmelerinin düşey deplasmanlar üzerindeki etkisi tekil yük durumunda yayılı yük durumuna nazaran daha fazladır ve bu etki (%fark) tüm sınır şartları için artan h/L oranı ile birlikte azalmaktadır. Deplasmanlardaki bu azalma büyük k değerlerinde daha küçüktür. Yatak katsayısının deplasmanlar üzerindeki

etkisi büyük h/L değerlerinde daha azdır. Yayılı yük durumunda sabit bir h/L oranı için artan k ile birlikte kayma şekil değiştirmelerinden kaynaklanan fark azalmakta fakat tekil yük durumunda $h/L \le 0.30$ için artmaktadır.

Şekil 3. Elastik zemine oturan basit mesnetli plağın yayılı yüklü plağın deplasmanların h/L oranı ile değişimi. (—◊—, PBQ4(Tİ); —□—, PBQ8(Tİ); —Δ—, PBQ4(SAİ); —×—, PBQ8(SAİ))

Şekil 4. Elastik zemine oturan basit mesnetli plağın PBQ8 (SAİ) eleman ile çözümünden elde edilen maksimum deplasmanların h/L oranı ile değişimi. Yayılı yük (---,k=55360 kN/m³; -----, k=553600 kN/m³; ------, k=553600 kN/m³; ---Δ---, k=5536000 kN/m³; ---Δ---, k=5536000 kN/m³)

				w(cm)					
L	-	Voyiadjis ve	Kattan[5]	Bu çalışma					
(kN/m^3)	h/L	Klasik plak teorisi (Timoshenko)	Kalın plak teorisi	PBQ4 (Tİ)	PBQ8 (Tİ)	PBQ4 (SAİ)	PBQ8 (SAİ)		
55360	0.05	11.6152	11.7493	10.1096	11.4540	11.4572	11.4616		
	0.10	1.5273	1.6001	1.5153	1.5671	1.5666	1.5674		
	0.20	0.1922	0.2290	0.2247	0.2264	0.2264	0.2264		
	0.30	0.0570	0.0816	0.0813	0.0816	0.0816	0.0816		
	0.40	0.0240	0.0425	0.0429	0.0429	0.0429	0.0429		
	0.50	0.0123	0.0271	0.0276	0.0276	0.0276	0.0276		
553600	0.05	7.7037	7.7735	6.8968	7.4692	7.4835	7.4710		
	0.10	1.4317	1.4971	1.4165	1.4610	1.4612	1.4614		
	0.20	0.1906	0.2268	0.2224	0.2240	0.2241	0.2241		
	0.30	0.0568	0.0813	0.0810	0.0812	0.0813	0.0812		
	0.40	0.0240	0.0424	0.0428	0.0428	0.0429	0.0428		
	0.50	0.0123	0.0270	0.0276	0.0275	0.0275	0.0275		
5536000	0.05	1.7638	1.7732	1.5369	1.5290	1.5367	1.5376		
	0.10	0.8806	0.9107	0.8514	0.8648	0.8667	0.8649		
	0.20	0.1759	0.2074	0.2013	0.2025	0.2026	0.2026		
	0.30	0.0554	0.0788	0.0780	0.0782	0.0782	0.0782		
	0.40	0.0238	0.0418	0.0419	0.0420	0.0420	0.0420		
	0.50	0.0122	0.0268	0.0272	0.0272	0.0272	0.0272		

Çizelge 2. Basit mesnetli yayılı yükle yüklü elastik zemine oturan plağın maksimum deplasmanları

Kalın plak teorisi ile elde edilen sonuçlar (PBQ elemanlar) kalınlık arttıkça ince plak teorisi (MZC eleman) ile elde edilen sonuçlardan uzaklaşmaktadır. Bu beklenen bir durumdur çünkü Mindlin plak teorisi (PBQ elemanlar) ile Kirchhoff plak teorisinde (MZC eleman) göz ardı edilen kayma şekil değiştirmelerinin etkisi de hesaba katılmaktadır.

k (kN/m ³)	h/L					w(0	cm)					
		Înce p.t.	5 - G1	Kalın p.t.								
		MZC	PBQ4 (Tİ)	%fark	PBQ8 (Tİ)	%fark	PBQ4 (SAİ)	%fark	PBQ8 (SAİ)	%fark	SAP 2000	
55360	0.05	11.35327	10.10961	-10.95	11.45400	0.89	11.45720	0.92	11.46157	0.95	11.61059	
	0.10	1.49487	1.51526	1.36	1.56715	4.84	1.56665	4.80	1.56746	4.86	1.62382	
	0.20	0.18811	0.22469	19.44	0.22642	20.36	0.22644	20.38	0.22644	20.38	0.24562	
	0.30	0.05578	0.08133	45.81	0.08156	46.22	0.08161	46.31	0.08156	46.22	0.09068	
	0.40	0.02355	0.04288	82.09	0.04293	82.31	0.04298	82.52	0.04293	82.31	0.04801	
	0.50	0.01204	0.02758	129.11	0.02758	129.11	0.02764	129.54	0.02758	129.11	0.30480	
553600	0.05	7.43212	6.89684	-%7.20	7.46920	0.50	7.48355	0.69	7.47105	0.52	7.52424	
	0.10	1.39888	1.41651	1.26	1.46101	4.44	1.46124	4.46	1.46141	4.47	1.50978	
	0.20	0.18651	0.22238	19.23	0.22403	20.11	0.22408	20.14	0.22405	20.13	0.24282	
	0.30	0.05563	0.08103	45.66	0.08123	46.03	0.08131	46.16	0.08123	46.03	0.09017	
	0.40	0.02352	0.04280	81.97	0.04282	82.07	0.04290	82.40	0.04282	82.07	0.04775	
	0.50	0.01204	0.02756	128.90	0.02753	128.69	0.02758	129.11	0.02753	128.69	0.03048	
5536000	0.05	1.53436	1.53685	0.16	1.52903	-0.35	1.53678	0.16	1.52761	-0.44	1.52603	
	0.10	0.84661	0.85138	0.56	0.86484	2.15	0.86678	2.38	0.86490	2.16	0.88011	
	0.20	0.17178	0.20130	17.18	0.20257	17.92	0.20269	17.99	0.20257	17.92	0.21768	
	0.30	0.05425	0.07798	43.73	0.07816	44.05	0.07823	44.19	0.07816	44.05	0.08661	
	0.40	0.02327	0.04191	80.13	0.04194	80.24	0.04201	80.57	0.04194	80.24	0.04674	
	0.50	0.01199	0.02718	126.69	0.02718	126.69	0.02723	127.12	0.02718	126.69	0.02997	

Çizelge 3. Basit mesnetli yayılı yükle yüklü elastik zemine oturan plağın maksimum deplasmanları

Çizelge 4. Basit mesnetli tekil yükle yüklü elastik zemine oturan plağın maksimum deplasmanları

k (kN/m ³)	h/L	h/L	h/L	h/L					w(0	cm)				
		İnce p.t.					Kalın p.t.	6						
		MZC	PBQ4 (Tİ)	%fark	PBQ8 (Tİ)	%fark	PBQ4 (SAİ)	%fark	PBQ8 (SAİ)	%fark	SAP 2000			
55360	0.05	32.73029	29.87192	-8.73	33.87118	3.49	34.96833	6.84	34.03567	3.98	34.57194			
	0.10	4.27896	4.86128	13.61	5.00215	16.90	5.48091	28.09	5.01823	17.27	5.16280			
	0.20	0.53797	0.91219	69.56	0.91194	69.51	1.14884	113.55	0.91768	70.61	0.96062			
	0.30	0.15949	0.41280	158.83	0.41003	157.10	0.56789	256.08	0.41382	159.46	0.43357			
	0.40	0.06728	0.25789	283.28	0.25550	279.73	0.37389	455.68	0.25834	283.97	0.26898			
	0.50	0.03447	0.18712	442.89	0.18514	437.14	0.27986	711.94	0.18740	443.66	0.19380			
553600	0.05	22.98268	21.85878	-4.89	23.95893	4.25	25.04448	8.97	24.10727	4.89	24.39111			
	0.10	4.04101	4.61488	14.20	4.73873	17.27	5.21772	29.12	4.75465	17.66	4.88111			
	0.20	0.53398	0.90630	69.72	0.90594	69.66	1.14282	114.02	0.91168	70.73	0.95377			
	0.30	0.15659	0.41199	163.10	0.40922	161.33	0.56708	262.14	0.41300	163.75	0.43281			
	0.40	0.06723	0.25766	283.23	0.25527	279.68	0.37366	455.76	0.25809	283.89	0.26873			
	0.50	0.03444	0.18702	442.99	0.18504	437.24	0.27973	712.17	0.18730	443.84	0.19354			
5536000	0.05	7.83900	8.13021	3.71	8.64954	10.34	9.66838	23.34	8.77573	11.95	8.88517			
	0.10	2.66705	3.19811	19.91	3.24871	21.81	3.72562	39.69	3.26400	22.38	3.31216			
	0.20	0.49751	0.85319	71.49	0.85204	71.26	1.08864	118.82	0.85778	72.41	0.89154			
	0.30	0.15570	0.40422	159.61	0.40142	157.81	0.55913	259.10	0.40518	160.23	0.42316			
	0.40	0.06662	0.25537	283.30	0.25298	279.72	0.37130	457.30	0.25580	283.97	0.26593			
	0.50	0.03426	0.18603	442.92	0.18405	437.14	0.27871	713.42	0.18631	443.81	0.19253			

Ankastre Mesnetli Plak

Ankastre mesnetli ve yayılı yükle yüklü plak için elde edilen maksimum deplasmanlar Kirchhoff plak teorisinden elde edilenler ile karşılaştırılarak Çizelge 5'te sunulmaktadır. Tekil yük durumu için benzer karşılaştırmalar Çizelge 6'da verilmektedir. Yayılı ve tekil yük durumu için maksimum deplasmanların h/L oranı ile değişimi Şekil 5'te gösterilmektedir.

Ankastre mesnet durumunda da basit mesnet durumunda elde edilen sonuçlara benzer sonuçlara ulaşılmaktadır. Her iki yükleme durumunda da ankastre mesnetli plakta elde edilen maksimum deplasmanlar basit mesnetli plağa nazaran daha küçüktür.

						w(c	m)						
k	h/L	h/L	h/L	İnce p.t.					Kalın p.t	t.			
(kN/m ²)		MZC	PBQ4 (Tİ)	%fark	PBQ8 (Tİ)	%fark	PBQ4 (SAİ)	%fark	PBQ8 (SAİ)	%fark	SAP 2000		
55360	0.05	3.69237	3.17840	-13.92	3.82547	3.60	3.84505	4.13	3.85026	4.28	3.85089		
	0.10	0.46916	0.52840	12.63	0.55390	18.06	0.55428	18.14	0.55486	18.27	0.54788		
	0.20	0.05878	0.09936	69.06	0.10033	70.70	0.10038	70.79	0.10036	70.74	0.09779		
	0.30	0.01742	0.04432	154.37	0.04445	155.10	0.04450	155.39	0.04445	155.10	0.04343		
	0.40	0.00734	0.02731	271.97	0.02733	272.32	0.02738	273.01	0.02733	272.32	0.02692		
	0.50	0.00376	0.01963	422.30	0.01961	421.62	0.01966	422.97	0.01961	421.62	0.01930		
553600	0.05	3.16001	2.77848	-12.07	3.25389	2.97	3.27297	3.57	3.27104	3.51	3.27152		
	0.10	0.45941	0.51587	12.29	0.54000	17.54	0.54051	17.65	0.54094	17.75	0.53442		
	0.20	0.05862	0.09891	68.72	0.09985	70.32	0.09990	70.41	0.09987	70.36	0.09754		
	0.30	0.01740	0.04422	154.16	0.04435	154.89	0.04440	155.18	0.04435	154.89	0.04343		
	0.40	0.00734	0.02728	271.63	0.02728	271.63	0.02736	272.66	0.02731	271.97	0.02692		
	0.50	0.00376	0.01961	421.62	0.01961	421.62	0.01963	422.30	0.01961	421.62	0.01930		
5536000	0.05	1.24290	1.18875	-4.36	1.24833	0.44	1.25893	1.29	1.24866	0.46	1.24866		
	0.10	0.37965	0.41593	9.55	0.43058	13.41	0.43177	13.73	0.43114	13.56	0.42697		
	0.20	0.05710	0.09441	65.35	0.09522	66.77	0.09530	66.90	0.09525	66.81	0.09296		
	0.30	0.01725	0.04326	150.81	0.04338	151.55	0.04343	151.84	0.04338	151.55	0.04242		
	0.40	0.00732	0.02690	267.71	0.02692	268.06	0.02697	268.75	0.02692	268.06	0.02642		
	0.50	0.00376	0.01941	416.22	0.01941	416.22	0.01946	417.57	0.01941	416.22	0.01905		

Çizelge 5.Ankastre mesnetli yayılı yükle yüklü elastik zemine oturan plağın maksimum deplasmanları

					w(ci	m)					
k (kN/m ³)	h/L	İnce p.t.	Kalın p.t.								
(((())))		MZC	PBQ4 (Tİ)	%fark	PBQ8 (Tİ)	%fark	PBQ4 (SAİ)	%fark	SAP 2000		
55360	0.05	16.47530	14.93335	-9.36	17.69669	7.41	18.75574	13.84	18.04416		
	0.10	2.08664	2.74043	31.33	2.84173	36.19	3.31295	58.77	2.85801		
	0.20	0.26126	0.64412	146.54	0.64379	146.41	0.87955	236.65	0.64465		
	0.30	0.07742	0.33378	331.14	0.33142	328.08	0.48877	531.33	0.33249		
	0.40	0.03266	0.22469	587.87	0.22248	581.10	0.34069	943.00	0.22403		
	0.50	0.01671	0.17015	918.09	0.16828	906.84	0.26289	1472.95	0.16967		
553600	0.05	14.57048	13.51128	-7.27	15.67160	7.56	16.72755	14.80	15.98981		
	0.10	2.05179	2.69743	31.47	2.79418	36.18	3.26555	59.16	2.81102		
	0.20	0.26071	0.64259	146.48	0.64224	146.35	0.87795	236.76	0.64287		
	0.30	0.07737	0.33350	331.06	0.33101	327.84	0.48844	531.32	0.33223		
	0.40	0.03266	0.22459	587.56	0.22235	580.72	0.34056	942.61	0.22377		
	0.50	0.01671	0.17010	917.78	0.16822	906.53	0.26289	1472.95	0.16967		
5536000	0.05	7.55437	7.73773	2.43	8.37578	10.87	9.39884	24.42	8.61238		
	0.10	1.76627	2.35285	33.21	2.41750	36.87	2.88930	63.58	2.43865		
	0.20	0.25530	0.62812	146.04	0.62741	145.76	0.86291	238.01	0.62865		
	0.30	0.07689	0.33056	329.93	0.32804	326.66	0.48539	531.32	0.32944		
	0.40	0.03256	0.22347	586.27	0.22123	579.41	0.33937	942.20	0.22276		
	0.50	0.01669	0.16952	915.83	0.16764	904.57	0.26220	1471.23	0.16916		

Çizelge 6.Ankastre mesnetli tekil yükle yüklü elastik zemine oturan plağın maksimum deplasmanları

Şekil 5. Elastik zemine oturan ankastre mesnetli plağın PBQ8 (SAİ) elaman ile çözümünden elde edilen maksimum deplasmanların h/L oranı ile değişimi. Yayılı yük (→→,k=55360 kN/m³; →■→, k=553600 kN/m³; →▲→, k=5536000 kN/m³), tekil yük (---◊---,k=55360 kN/m³; ---□---, k=553600 kN/m³; ---Δ---, k=5536000 kN/m³)

Kenarları Serbest Plak

Elastik zemine oturan serbest plaklar için elde edilen maksimum deplasmanlar Kirchhoff plak teorisi ile elde edilenlerle birlikte yayılı yük için Çizelge 7'de ve tekil yük için Çizelge 8'de verilmektedir. PBQ8 (SAİ) eleman ile çözümden elde edilen maksimum deplasmanların h/L oranı ile değişimi her iki yükleme durumu için Şekil 6'da gösterilmektedir.

Yayılı yüke maruz serbest plaklar için Winkler Modelinin kullanılması durumunda deplasmanlar üniform olmakta ve plakta dönme, moment ve kesme kuvveti oluşmamaktadır. Bu beklenen bir durumdur çünkü modelde birbirine komşu iki yay arasında etkileşim dikkate alınmamakta ve deplasmanlar q/k'ye eşit çıkmaktadır. Bu yüzden yayılı yüke maruz dört kenarı serbest Winkler zeminine oturan plakların çözümünde hangi plak teorisinin veya elemanının kullanıldığı çok önemli değildir çünkü sonuçlar aynı çıkmaktadır.

		<i>w</i> (cm)								
k (kN/m ³)	h/L	İnce p.t.	Kalın p.t.							
		MZC	PBQ4 (Tİ)	PBQ8 (Tİ)	PBQ4 (SAİ)	PBQ8 (SAİ)	SAP 2000			
55360	0.05	127.0	127.0	127.0	127.0	127.0	127.0			
	0.10	127.0	127.0	127.0	127.0	127.0	127.0			
	0.20	127.0	127.0	127.0	127.0	127.0	127.0			
	0.30	127.0	127.0	127.0	127.0	127.0	127.0			
	0.40	127.0	127.0	127.0	127.0	127.0	127.0			
	0.50	127.0	127.0	127.0	127.0	127.0	127.0			
553600	0.05	12.7	12.7	12.7	12.7	12.7	12.7			
	0.10	12.7	12.7	12.7	12.7	12.7	12.7			
	0.20	12.7	12.7	12.7	12.7	12.7	12.7			
	0.30	12.7	12.7	12.7	12.7	12.7	12.7			
	0.40	12.7	12.7	12.7	12.7	12.7	12.7			
	0.50	12.7	12.7	12.7	12.7	12.7	12.7			
5536000	0.05	1.3	1.3	1.3	1.3	1.3	1.3			
	0.10	1.3	1.3	1.3	1.3	1.3	1.3			
	0.20	1.3	1.3	1.3	1.3	1.3	1.3			
	0.30	1.3	1.3	1.3	1.3	1.3	1.3			
	0.40	1.3	1.3	1.3	1.3	1.3	1.3			
	0.50	1.3	1.3	1.3	1.3	1.3	1.3			

Çizelge 7. Yayılı yükle yüklü dörtkenarı serbest elastik zemine oturan plağın maksimum deplasmanları

Çizelge 8'den görüldüğü gibi tekil yük durumunda maksimum deplasmanlar artan k ve h/L oranı ile birlikte azalmaktadır. Ancak k'nın deplasmanlar üzerindeki etkisi kayma şekil değiştirmelerinin etkisinden daha fazladır. Plak herhangi bir mesnete sahip olmadığı için zeminin içerisine batmaktadır. Kayma şekil değiştirmelerinin etkisi k=5536000 ve $h/L \le 0.2$ olması durumunda görülmektedir.

					w(cm)			
k (kN/m ³)	h/L	İnce p.t.				Kalın p	o.t.		
(KIN/III)		MZC	PBQ4 (Tİ)	%fark	PBQ8 (Tİ)	%fark	PBQ8 (SAİ)	%fark	SAP 2000
55360	0.05	145.89417	143.54338	-1.61	146.54375	0.45	147.04319	0.79	147.24812
	0.10	129.42435	129.91722	0.38	129.38824	-0.03	130.05618	0.49	130.08153
	0.20	127.30406	127.62098	0.25	126.32408	-0.77	127.62662	0.25	127.62916
	0.30	127.09012	127.30465	0.17	125.36688	-1.36	127.30592	0.17	127.30632
	0.40	127.03802	127.19944	0.13	124.62990	-1.90	127.20008	0.13	127.20015
	0.50	127.01948	127.14874	0.10	123.95385	-2.41	127.14917	0.10	127.14910
553600	0.05	27.85514	26.63695	-4.37	28.76692	3.27	28.92618	3.85	29.07360
	0.10	15.04462	15.53944	3.29	15.64564	3.99	15.66845	4.15	15.69212
	0.20	13.00277	13.31913	2.43	13.30587	2.33	13.32471	2.48	13.32713
	0.30	12.79002	13.00439	1.68	12.98227	1.50	13.00566	1.69	13.00607
	0.40	12.73800	12.89936	1.27	12.87102	1.04	12.90000	1.27	12.89990
	0.50	12.71946	12.84872	1.02	12.81422	0.75	12.84915	1.02	12.84910
5536000	0.05	8.01776	8.29145	3.41	8.81129	9.90	8.93724	11.47	9.03376
	0.10	3.07302	3.57480	16.33	3.63299	18.22	3.64861	18.73	3.66319
	0.20	1.56045	1.87185	19.96	1.87101	19.90	1.87691	20.28	1.87884
	0.30	1.35887	1.57196	15.68	1.56924	15.48	1.57320	15.77	1.57353
	0,40	1.30780	1.46865	12.30	1.46619	12.11	1.46936	12.35	1.46914
	0,50	1.28941	1.41841	10.01	1.41625	9.84	1.41884	10.04	1.41859

Çizelge 8. Tekil yükle yüklü dört kenarı serbest elastik zemine oturan plağın maksimum deplasmanları

Plağın mesnetli ve plak kalınlığının büyük olması durumunda zemin rijitliğinin deplasmanlar üzerindeki etkisi önemsiz olmakta ve kayma şekil değiştirmelerinin plak davranışı üzerindeki etkisi daha baskın olmaktadır. Ancak kayma şekil değiştirmeleri serbest plaklarda deplasmanları fazla etkilememekte ve zemin rijitliğinin plak davranışı

üzerindeki etkisi daha baskın olmaktadır. Bu nedenle mesnetli plakların aksine elastik zemine serbest oturan plaklarda düzleme dik kayma şekil değiştirmelerinin dikkate alınıp alınmadığı çok önemli olmamaktadır.

Şekil 6. Elastik zemine oturan dört kenarı serbest plağın PBQ8 (SAİ) elaman ile çözümünden elde edilen maksimum deplasmanların h/L oranı ile değişimi. Yayılı yük (—,k=55360 kN/m³; —, k=553600 kN/m³; —, k=5536000 kN/m³), tekil yük (--- φ---, k=55360 kN/m³; --- □---, k=5536000 kN/m³)

4. SONUÇLAR

Bu çalışmada 4 düğüm noktalı 12 serbestlik dereceli (PBQ4) ve 8 düğüm noktalı 24 serbestlik dereceli (PBQ8) Mindlin plak elemanlar kullanılarak elastik zemine oturan kalın plakların analizi incelenmiştir. Kullanılan elemanların güvenilirliği ve doğruluğu farklı sınır şartları, yükleme durumları ve yatak katsayıları için test edilmiştir. Elde edilen sonuçlar bu çalışmada geliştirilen modelin her türlü sınır şartı ve yükleme durumu için elaştik zemine oturan kalın plakların analizinde kolay ve etkili bir sekilde kullanılabileceğini göstermiştir. Kullanılan elemanlarda plak kalınlığı azaldıkça kayma kilitlenmesi problemi ortaya çıkmaktadır. Bu nedenle ince plak çözümlerinde seçilerek azaltılmış integrasyon (SAİ) tekniği tam integrasyon (Tİ) tekniğine nazaran daha güvenlidir. Ancak plak kalınlığı ve zemin rijitliği arttıkça söz konusu problem ortadan kalkmaktadır. Mesnetli plaklarda plak kalınlığı arttıkça kayma şekil değiştirmelerinin etkisi büyümektedir. Serbest plaklarda ise tekil yük durumunda yatak katsayısı değeri arttıkça kayma şekil değiştirmelerinin etkisi görülmeye başlamaktadır. Ancak serbest plaklarda kayma şekil değiştirmelerinin etkisi mesnetli plaklara nazaran oldukça küçüktür ve kayma şekil değiştirmeleri plak kalınlığı arttıkça mesnetli plaklardaki kadar artmamaktadır. Yayılı yüke maruz serbest plaklarda elde edilen sonuçlar bütün eleman tipleri için birbirine eşit çıkmaktadır.

Semboller

$[B_e]$: eğrilik-deplasman matrisi
$[B_k]$: kayma-deplasman matrisi
$[D_e]$: eğilme rijitliği terimlerini içeren elastisite matrisi
$[D_k]$: kayma rijitliği terimlerini içeren elastisite matrisi
$\{F\}$: sistem yük vektörü
h	: plak kalınlığı
k	: zemin yatak katsayısı
$[k_p]$: plağın eleman rijitlik matrisi
$[k_w]$: Winkler zeminin eleman rijitlik matrisi
[K]	: sistem rijitlik matrisi
L	: plağın kısa kenar uzunluğu
$[N_i]$: şekil fonksiyonları
q	: yayılı yük
<i>u</i> , <i>v</i> and <i>w</i>	: plağın x, y ve z doğrultularındaki deplasmanlar
$\{W\}$: sistem deplasman vektörü
φ_x, φ_y	: plağın x ve y doğrultularındaki dönmeleri

Kaynaklar

- [1] Selvaduari, A. P. S., Elastic Analysis of Soil-Foundation Interaction. Elsevier Scientific Publishing Company, Amsterdam, 1979.
- [2] Briassoulis, F., On The Basics of The Shear Locking Problem of C⁰ Isoparametric Plate Elements. Computers & Structures, 33(1), 169-185, 1989.
- [3] Crisfield, M. A., A Quadratic Mindlin Element Using Shear Constraints. Computers & Structures, 18(5), 833-852, 1984.
- [4] Pugh, E. D. L., Hinton, E., Zienkiewicz, O. C., A Study of Quadrilateral Plate Bending Elements with Reduced Integration. International Journal for Numerical Methods in Engineering, 12(7), 1059-1079, 2005.
- [5] Voyiadjis, G. Z., Kattan, P.I., Thick Rectangular Plates on an Elastic Foundation. Journal of Engineering Mechanics, 112(11), 1218-1240, 1986.
- [6] Eratli, N., Aköz, A. Y., The Mixed Finite Element Formulation for the Thick Plates on Elastic Foundations. Computers&Structures, 65(4), 515-529, 1997.
- [7] Yettram, A. L., Whiteman, J. R., Effect of Thickness on The Behaviour of Plates on Foundation. Computers&Structures, 19(4), 501-509, 1984.

- [8] Mishra, R. C., Chakrabarti, S. K., Shear and Attachment Effects on The Behaviour of Rectangular Plates Resting on Tensionless Elastic Foundation. Engineering Structures, 19(7), 551-567, 1997.
- [9] Liu, F. L., Rectangular Thick Plates on Winkler Foundation: Differential Quadrature Element Solution. International Journal of Solids and Structures, 37, 1743-1763, 2000.
- [10] Daloglu, A. T., Vallabhan, C. V. G., Values of k for Slab on Winkler Foundation. Journal of Getechnical and Geoenvironmental Engineering, 126(5), 463-471, 2000.
- [11] Abdalla, J. A., Ibrahim, A. M., Development of a discrete Reissner-Mindlin Element on Winkler Foundation. Finite Elements in Analysis and Design, 42, 740-748, 2006.
- [12] Wang, Y. H., Tham, L. G., Tsui, Y., Yue, Z. Q., Plate on Layered Foundation Analyzed by a Semi-analytical and Semi-numerical Method. Computers and Structures, 30, 409-418, 2003.
- [13] Buczkowski, R., Torbacki, W., Finite Element Modeling of Thick Plates on Twoparameter Elastic Foundation. International Journal for Numerical and Analytical Methods in Geomechanics, 25, 1409-1427, 2001.
- [14] Çelik, M., Saygun, A., A Method for The Analysis of Plates on a Two-parameter Foundation. International Journal of Solids and Structures; 36, 2891-2915, 1999.
- [15] Chucheepsakul, S., Chinnaboon, B., An Alternative Domain/Boundary Element Technique for Analyzing Plates on Two-parameter Elastic Foundations. Engineering Analysis with Boundary Elements, 26, 547-555, 2002.
- [16] Ozgan, K., Daloğlu, A.T., Alternative Plate Finite Elements for The Analysis of Thick Plates on Elastic Foundation. Structural Egineering and Mechanics, 26(1), 69-86, 2007.
- [17] Bathe, K.J., Finite Element Procedures, Upper Saddle River, NJ: Prentice-Hall, 1996.
- [18] Weaver, W, Johnston, P. R., Finite Elements for Structural Analysis, Englewood Cliffs, NJ: Prentice-Hall, Inc, 1984.
- [19] Ozgan, K., Geliştirilmiş Vlasov Modelini Kullanarak Elastik Zemine Oturan Kalın Plakların Sonlu Elemanlar Yöntemiyle Analizi ve Etkin Zemin Derinliğinin Belirlenmesi, Doktora tezi, Karadeniz Teknik Üniversitesi, Trabzon, Türkiye, 2007.
- [20] Turhan, A., A Consistent Vlasov Model for Analysis of Plates on Elastic Foundations Using the Finite Element Method, Ph. D. Thesis, The Graduate School of Texas Tech University, Lubbock, Texas, 1992.