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Abstract: Analytical models are developed to estimate the transient elastic response of cooling two-layer solid cylinders
with different end and boundary conditions. Such cylinders contain two layers that are in perfect contact. The hot
assembly loses energy from its surface to either zero ambient by convection or by a prescribed lower surface
temperature. In any case, as the cooling takes place slowly, the problem is amenable to use of the uncoupled theory of
elasticity. A generalized plane strain solution is derived and then reduced to the state of plane strain by simply setting
the axial strain equal to zero. The results of these solutions revealed that the radial and circumferential stresses remain
unchanged by end conditions when the boundaries are free. However, in case of plane strain, the axial stress becomes
the dominant stress component and it is much larger than that in free ends. Radially constrained boundaries create very
large stresses in the assembly but the corresponding stress state is far away from yielding.

Keywords: Two-layer solid cylinder, Transient heat conduction, Cooling, Thermoelasticity, Generalized plane strain.

IKI KATMANLI DOLU BIiR SIiLINDIiRIN ELASTiK DAVRANISININ FARKLI UC VE
SINIR KOSULLARI iCIN ANALITIK OLARAK iINCELENMESI

Ozet: iki katmanli dolu silindirlerin zamana bagl termoelastik davranislarmin farkli u¢ ve smr kosullar igin
belirlenmesi amaciyla analitik modeller gelistirilmistir. S6z konusu silindirler, aralarinda miikemmel temas olan iki
katmandan olusmaktadir. Baglangicta sicak olan silindir, yiizeyinden konveksiyon yolu ile sifir derecelik ¢evresel
sicakliga veya Onceden daha diisiik olarak belirlenen ylizey sicaklifina ulasana kadar enerji kaybetmektedir. Tim
durumlarda soguma yavas bir bigimde gerceklestiginden problemde kuplajsiz elastisite teorisinin kullanilmasi miimkiin
olmustur. Genellestirilmis diizlemsel sekil degistirme ¢6ziimii elde edilmis ve bu ¢6ziim, eksenel yondeki birim sekil
degistirmeyi sifira esitleyerek diizlemsel sekil degistirme durumuna ait ¢dziime indirgenmistir. Bu ¢ozumlere ait
sonuclar, smir kosullarinin serbest oldugu durumlarda radyal ve tegetsel yondeki gerilmelerin u¢ kosullarina gore
degismedigini gostermistir. Ancak diizlemsel sekil degistirme durumunda, eksenel gerilme baskin gerilme olmakta ve
uglarin serbest oldugu duruma gore oldukca yiiksek degerlere ulagsmaktadir. Kompozit silindirin eksenel ve radyal
yonde yer degistirmesinin kisitlanmasi biiyiik gerilmelere yol agmasina ragmen ilgili gerilme durumu silindirde akmaya
yol agmamaktadir.

Anahtar Kelimeler: iki katmanli dolu silindir, Zamana bagli 1s1 iletimi, Soguma, Termoelastisite, Genellestirilmis
diizlemsel sekil degistirme.

NOMENCLATURE h convection heat transfer coefficient
[W/(m? °K)]

a,b interface and outer radii of the k thermal conductivity [W/(m °K)]
assembly, respectively [m] v Poisson’s ratio

a coefficient of thermal expansion r,o,z cylindrical coordinates
[a;=EajTy/oy] oy uniaxial yield stress [MPa]

ar thermal diffusivity [m?/s] o stress components [o; =oj / og ]

C integration constants O von Mises stress

E modulus of elasticity [GPa] t time [t =oqqt/b]

& strain components [ £; = ¢;E; /o] T temperature [-Fj =T, /To]



Te temperature of the casing [°C]
To initial temperature [°C]
u radial displacement [ U = E;u/(og;b) ]

INTRODUCTION

Basic structural elements such as disks, cylinders, tubes,
spherical shells and plates have been commonly used in
different branches of industry and in daily life. The
composite versions of these elements are also used
especially in mechanical, aerospace, and automotive
engineering. Due to this reason, a detailed knowledge of
the stress response of such components under different
loading and boundary conditions is needed for various
engineering applications.

The existence of temperature gradients in the elements
constitutes an important and unavoidable class of loads
as it may occur for many reasons. Consequently,
theoretical and experimental investigations of thermally
induced stresses and deformations in the above
mentioned assemblies have extensively been studied by
researchers. Being one of the classical problems of
thermal sciences, the transient heat conduction in
homogenous solid and hollow circular cylinders, slabs
and solid and hollow spheres have been investigated by
many researchers in the past. Solutions of some of these
classical problems with different methods can be found
in books Carslaw and Jaeger (1959), Boley and Weiner
(1960), Noda et al. (2003), Hetnarski and Eslami (2009),
and Hahn and Ozisik (2012).

The transient temperature response of composite solids
has been handled using different methods. The common
analytical techniques used are Green functions,
orthogonal expansions and the Laplace transformation
(Hahn and Ozisik, 2012). Applications of these
techniques and the use of other approaches can be found
in the studies of Monte (2002), Sun and Wichman (2004),
and Lu et al. (2006a). Other related investigations with
different geometries and boundary conditions can be
found in Lu et al. (2006b), Lu and Viljanen (2006), and
Singh et al. (2008).

The thermomechanical response due to heat conduction
in homogenous solid and hollow elements such as
cylinders and spheres were studied by several researchers
in the past. These are by Ishikawa (1978), by Tanigava et
al. (1984), by Thomas et al. (1985), and by Kandil et al.
(1995). A collection of solutions to the thermoelastic
response of cylinders, plates and spheres in transient heat
conduction can be found in Noda et al. (2003) .

Recently, Eraslan and Apatay (2015) investigated the
thermoelastic stresses in cylindrical rods subjected to
periodic boundary conditions by Duhamel’s theorem. In
the following investigation by the same authors (Eraslan
and Apatay, 2016), they extended their analytical model
to include partially plastic deformation and sudden
unloading of the solid cylinder by the use of classical
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theories of plasticity. The application of a similar
procedure to the solution of loading and unloading
problem of periodic heat generating cylinder can be
found in Eraslan and Apatay (2017). On the other hand,
transient response of an infinitely long annular cylinder
composed of two different materials was studied by Yu-
Ching and Cha’o-Kuang (1986), Jane and Lee (1999),
Lee et al. (2001), Wang et al. (2004), Lee (2006), and
Mashat et al. (2010).

The transient thermoelastic two-layer solid cylinder
problem has been treated in an earlier work by Pardo et
al. (1987). Following the approaches of Ozisik (1980) for
the transient heat transfer part and Boley and Weiner
(1960) for the thermoelastic part two different problems
have been solved. A composite circular disk with
insulated ends (plane stress problem) and an infinitely
long cylinder with fixed ends (plane strain problem). In
this work, we extend their study to include the state of
generalized plane strain, radially constrained boundaries
and the use of physical properties of real engineering
materials. In the following sections we describe the
problems handled, present our analytical models, their
detailed solutions and numerical results as the assemblies
cool down slowly with different modes of heat transfer.

THERMOELASTIC MODEL AND ITS
SOLUTION

Temperature Distribution for Convective Boundary
Condition

The coordinate system and the dimensions of the two-
layer solid cylinder are depicted in Fig. 1. An infinitely
long cylinder contains an inner region 0<r <a and an
outer region a<r<b that are in perfect contact as
shown in Fig. 1. Initially both cylinders are at
temperature Ty > 0. For times t >0 the cylinder loses
energy from its surface by convection to the zero ambient
temperature. The temperature distribution in the inner
and outer regions are governed by unsteady heat
conduction equations as (Hahn and Ozisik, 2012)

2

T. T. T
%:%{Z—:JJZ 21} in 0<r<a, t>0 (1)

r

2
%:%{%Jﬁz—?} in a<r<b,t>0 (2

r

where T, (r,t) and T,(r,t) are the temperature distributions
in the inner (0<r<a) and outer (a<r<b) regions,
respectively, and a4 is the thermal diffusivity of the inner
while a5, is that of the outer region.

The boundary conditions are

T,(0,t) = finite



aT, (b,t)
k,
or

+hT,(b,t)=0 (3)

The interface conditions are

T (at) =T,(at)
oTi(a,t) | dT,(at)
Yoar T ar

k k

(4)

Finally, the initial conditions are

T,(r,0)=T,, 0<r<a

T,(r0)=T,, a<r<b (5)

Figure 1. The cylindrical coordinate system and the dimensions
of the long cylinder.

The solution is realized by separation of variables as

Ty(r,t) = 6 (DR (r) and T,(r,t) = 6, ()R, (r) (6)
Substituting into Egs. (1) and (2) one obtains

id‘gln — a11 den +r dlen =—ﬂﬁ

6, dt  Ryr| dr dr?

idHZn _ 912 dRy, rdZRZn =—ﬂﬁ )
0,y dt  R,,r| dr dr?

in which 4,, n=12,... are the eigenvalues of the
system. These equations are separated as

d%mﬁem =0 and %mﬁez” =0 (8)
and
2 2
1) Ry ORI, A Ry, =0
ri dr dar? | oy
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2 2
1) dRon , (9 Ren | A Ry, =0 ©)
r| dr dr? ary
followed by the solutions
0, =Cpe ™ and 6, =C,e (10)
and
r r
R1n<r>=AnJo(”“—]+A2nY{”““—] 1)
\VoT1 VoT1
r r
Ron(r) = Bano[ﬂ“—}r anYo(l"—J (12)
Vo2 Vo2

where J,(r) and Y,(r) represent zero order Bessel
functions of the first and second kind, respectively. As
Yo (r)isnot finiteat r =0; A,, =0, and the solutions in
the radial dimension take the forms

Run(r) = AM{%J (13)
T1

Ron(r) = QnJo(—J/ZL} + anY{—j;xi} (14)
T2 T2

since Ry, (r) is an eigenfuction for any nonzero A, , we
select A, =1 for convenience. The interface and
boundary conditions become

Rin (@)= Raon (@)

K dRyy (a) _ K dR; (@)
L =
dr dr
o T2 bRy, ) = 0 (15)

Application of these conditions leads to

Jo[ J_ Bln‘]O[ﬂJ - anYo[ﬂJ =0 (16)
2

ar a2

ay

VOT1

ki @31 at, By, at,
n
ko \ ar; N oy VT2 an
al,
_BZnYl[ L ]:0
VOT2
. hJo[ bA, J_ Ko, Jl[ bA, ]
arp At [25Y] (18)
+ B, | hY, b, |_ kot Y, b 11_¢
a12 arp aro



+ By, [HYO (Uln )_ j*nYl(Tﬂ“n )] =0
B = a y = a K = ﬁ Q12
Jor Jar, ko V an or in matrix notation

n= and H = ka“ (19) 17 [o

912 2 Ax| By, |=|0
these equations become 23) Ban 0
JO('BAH )_ BanO(Mn )_ Bano (Mﬂ): 0 (20) where the coefficient matrix is
K‘]l(ﬁﬂn)_ Bln‘]l(yﬂ’n)_ BZnYl(yﬂ'n =0 (21)

‘]O(ﬁ/ln) _‘]0(7/1n) _Y0(7/1n)
A= K‘]l(ﬂﬂn) _Jl(yﬂ“n) _Y1(7%n) (24)
0 H‘JO(Uﬂ*n)_ ﬂ'n‘]l(nﬂ*n) HYO (nj’n)_/lnYl(Uln)

From the first two of these equations

|:‘]0(7ﬂn) Y0(7An):||:Bln:|:{‘]0(ﬂﬂn)j| (25)
31(A) Ya(7A)][Ban | | KI1(82,)

By, and By, are determined as

N AN ETSRZRACZS) D
Boo = (K300 01052~ ()0 )] (2)
where

A =300 M1 (72 ) = 31 (20 o (2n) (28)
Eigenvalues are calculated from

det[A]=0 (29)

where A is the coefficient matrix given by Eq. (24). The
result is

Yy (720 ) [HI0 (BAn) 36 (1) = 206 (BAn) Iy (4]
+ 31 (720 [0 30 (B )1 (720) = HI o (B Yo (72,)]

30
e 308 ol (KA )~ HIo )] 7
+ 30 (70 )IHKYo (77) = K2 Y1 (72,)]} = 0
The general solutions are then
Tl(rlt) = icne_ﬂﬁt Rln (r) (31)
n=1
T,(r,t) = icnwﬁt Ron(r) (32)
n=1
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It should be noted that since the time dependent functions
6y, and 6,,, are independent of material properties of the
layers, there is no discontinuity at the interface. Due to
this reason in the above two equations instead of C,,, and
C,,, a single constant C, is used. Application of the
initial conditions leads to the equations

To= ch Ryn (1)

(33)
n=1

To = _CaRon(r) (34)
n=1

The orthogonality property is (Hahn and Ozisik, 2012)

— rRln(I’)le(l’)dl’
Qg Y0
(35)
k, J-er (MR, (r)dr 0 fornzm
+_ =
Qppda 200 7m N, for n=m
where the norm N, is
ky r2 k,
N, =—L ern(r)err—ZJ. rR2 (r)dr (36)
Q11 %0 Oy 72

The expression given in Eq. (35) is derived by using the
two equations given in Eq. (9). Both of these equations
are written for two different eigenvalues first. Then, the
first set of these equations are multiplied by R,,(r), and

the second set by Ry, (r) . The results are subtracted and

integrated over the volume. The volume integrals are
changed to surface integrals and the resulting expressions
are summed up taking into consideration of the boundary
conditions.



By performing integrations in Eq. (36) the norm N,
takes the form

N,=E; + EZBlzn +E3B By, +Ey Bzzn (37)
where
2
£, = 22 () + 92 (0] (3
Oty
k
E, =—2 102[I2(n1,) + IZ (A
2 =g 9d ) + 37 )] o
— 2?32 (7ay) + 320 |}
Ey =2 (b2[3 (220 Yo (1) + Iy (V)]
) 40)
—aZ[Jo(m)YowmJl(yznmm]}
s ull LMD “

-a [Yo (720) +YE (72|

Multiplying both sides of Egs. (33) and (34) by the
operator

ki IR, () (42)
Ti

and integrating

L j (ToRym ()r _Zc { erln(r)le(r)dr}
aT1
(43)
k, = [k,
—2 [ FToRym (r)r = Zc{—z [ Ran )Rz (r)dr}
A1y a 1 Aty va
(44)
adding for m=n
kiTo rRln()dr+—J.rR2n(r)dr_C N, (45)
an
or by integrations
where
k,T,
LRGN (47)
An

-kl bJ; (172
I \/Zin{Bl“[Jl(" 2)—ad; (74,)] u8)

+ By [0V, (24,) —aY, (74, ]}

then the solution is completed as

1
CnZN—(|1+|2) (49)
n
Temperature Distribution for Prescribed Surface
Temperature

In this case the two-layer cylinder is mounted between
rigid casing and cools down as it touches to the walls of
the cooler casing. Hence, the conduction equations, Egs.
(1) and (2), are solved with the following boundary
conditions

T,(0,t) = finite
T,(b,t)=T¢ (50)

where T represents the temperature of the casing. This

nonhomogeneous boundary condition is made
homogeneous by the introduction of new dependent
variables

¢l(r’t):T1(r!t)_TC (51)
G, (r, 1) =T, (r,t)-Tc (52)

then the system to be solved becomes

2
%:@ %+rM in0<r<a,t>0 (53)
ot r|or or?

2
9 _ o1 %+rM ina<r<b, t>0 (54)
ot r|or  or?

with the following conditions: boundary

#,(0,t) = finite
$,(b,t)=0 (55)

interface

¢1 (a!t) =¢2 (a!t)
K oy (a,t) —K 0¢, (a,t)
1 =

or 2 or (56)
and initial
¢ (r0)=To —T¢c
$p(r,0)=Ty —T¢ (57)

The solution is realized by separation of variables as in
the first problem. The result is

H(rt) = icne‘*ﬁt Rin (1) (58)
n=1

¢2(r,t)=icne‘ﬁﬁt Ron () (59)
n=1



where the eigenfunctions Ry, (r) and R,,(r) are given by
Egs. (13) - (14), respectively and

o= +12) (60)

the norm N, is the same as above, Eq. (37), and

=80Ty 4, 1
ko (To —Te)

|, =—-2\0_ 'CJ bJ, (71.) —al

N ) {Bun[b3:(720) - 23, (7)) )

+ By [bY; (74,) —aY, (4]}

The eigenvalues A,, for n=12,... of this solution are
the roots of the nonlinear equation

Yo (120) [KI 0 () 31.(BAn) = 3o () I (7)]

(63
~ 301220 ) [KIL(B2 o () = 30 (B2 )Yy (#)] = O

)

Finally, the temperature distributions are determined
from

T(r,t) =g (r,t)+T¢
T, (r,t)=¢,(r,t)+T¢ (64)
Elastic Solutions

Basic equations

As the cylinder cools down slowly, the uncoupled theory

of elasticity can be used. Hence, the equations of the
generalized Hooke’s law

1
& = E[O'r —v(oy +o, )]+ a(T -T,) (65)
1
ga—E[Ua—V(Ur+0z)]+a(T —To) (66)
1
&; :E[O'Z —1/(0'r +0y )]+ a(T —TO) (67)
the strain displacement relations
u du
Eg r &y dr ( )
and the equation of equilibrium
doy (o= _j (69)
dr r

form the basic elastic equations for both regions
(Timoshenko and Goodier, 1970; Rees, 1990). In these

equations &; represents a strain component, E the

modulus of elasticity, o’; a normal stress component, v
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the Poisson’s ratio, the coefficient of thermal
expansion and T, the initial temperature as before. In
case of generalized plane strain ¢, = &, =constant, the
axial stress turns into

a

o, =Egy+v(c, +0,)-Ea(T -T,) (70)

Solutions in the following sections are carried out by the
use of normalized and dimensionless variables. These are
r=r/b dimensionless radial coordinate, 7=cqt/b

Tj =TJ /TO
normalized

dimensionless  time, dimensionless

Ej:

T :Gj /(701

\4

temperature, €jEiloy strain

component, dimensionless  stress

component, dimensionless radial

displacement, v; Poisson’s ratio, @;=EajTy/oy
dimensionless coefficient of thermal expansion,
E =E,/E, ratio of moduli of elasticity and o, the

uniaxial yield limit of the inner region material.
Solution for the inner region

Combining the equations of the generalized Hooke’s law
with the strain displacement relations and substituting the
axial stress &, into these equations, the radial and

circumferential stresses can be expressed in terms of
displacement and its first order derivative as

1

@+vy) 1-2v)L

e

1-2v,

1

@+vy)-2v)L
&)

1-2v,

Substituting these stresses in the equation of equilibrium
the governing differential equation for the inner region is
obtained as

2_ T [
e (73)
dr’® r 1-n dr
The general solution is
u(r,7)= CJ+%+MM %)
r 1-v P

where C; and C, are the arbitrary integration constants
and



)

(75)

F(r,7)=

68 =Fary Y “ve e

n=1"M

O Ly |

!

Note that when T,=¢ +T., the term F(r,z) also

includes the term F2T./2. We prefer using F(F,7)

instead of explicit result in Eq. (75) for the compactness
of the latter lengthy equations. Meanwhile, it is to be
noted that

@ = !imo[r_rl (F, r)] = [imo{r[¢1 (F,r)+Tc =0

lim

r—0
(76)

Since the stresses and displacement must be finite at the
center (r=0), C, must be zero. Then the equations for

the displacement and the stress components take the
forms

u(r,z)=Cyr + % ~ (77)
5 (7o) = C,+ &, _égﬂfﬁn)_FKiﬂ}
AL+v))A-2vy) T |TA-vy) 1-21
&n (.01
1-2v,
(78)
A P R . {F(i,r) +V1F'(r_',2'):|
@Q+v)A-2vy) T@-vy) r 1-2y,
&L
1-2v,
(79)
5, (F.7) = 2Cv; +5,(L—vy) o, F'(r,7)
B A+v)1-2v;) Fl-wv)A-21) )
& n0-1
1-2v,
in these equations
F'(F,7) =TT,(F,7) (81)
or
F'(F,7) = Flgy(F,7) + T | (82)

Solution for the outer region

Following similar steps as in the inner region, the
solution is obtained as
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B Cs+5pvs B C,
E@+v,)L-2v,) Er’(1+v,)

&[N 01

&,(F.7)

_ay| G(r,r) G'(r7)
EF|F(l-v,) 1-2v, E(1-2v,)
(83)
&,(F.7)= Cs+ &gV, N C,
ST E@+vy)-2v,)  Erf+vy,)
[ 67 | vG(Fr) | &LE0-1
EF|Fl-v,) (1—vy)1-2v,) E(-2v,)
(84)
5,(f.7) = 2C5v, +Eo(L—vy) a,v,G'(T,7)

E(l+v,)1-2v,)

AN
E(l-2v,)

Er(l-v,)1-2v,) (85)

where C; and C, are the arbitrary integration constants
and

G(F,7) = | Ty (& )dg

C, _z _
a1 Z,Tne § {Bl{”l[

i)

Note that the term FZTC/Z accompanies the right hand
side of this equation if T, =¢, + T . The derivatives of
G(r,z) are

D] Sy

AT A3

a1 a1

(86)

G'(f,7)=TT,(F,7) (87)
or
G'(F,7) =4, (F.0) +T¢ ] (88)

Evaluation of integration constants

Plane Strain In case of plane strain &, =0 and the
remaining constants C;, C; and C, are evaluated from

a'(a,r)=u"(a,r)
5/ (@ r1)=5,(ar)
' @7)=0 (89)
in which the superscripts I and 11 refer to inner and outer
regions, respectively. Analytical expressions for the
unknowns are determined by the comprehensive use of

Mathematica. Since these expressions are overlong, it
was not possible to include them here.



Generalized Plane Strain In this case &, = constant,
and the unknowns are C,;, C;, C, and &,. The three

equations in the group by Eq. (89) are still valid and the
additional equation is

(90)

O ey, O]

1
&) (F,7)FdF + j & (F,7)FdF =0
a
Again, lengthy analytical expressions for the unknowns
are determined by Mathematica.
Radially Constrained If the surface of the cylinder is

mounted between rigid walls then the problem is a plane
strain problem as well, i.e. £, =0 and the conditions are

u'(@r)=u"@r)

/(@ 1)=5,(ar)
u"(L7)=0 (91)
The three unknowns C;, C; and C, are then evaluated

analytically by the use of these equations. It should be
noted that for the radially constrained case the cylinder is
also assumed to be axially constrained so that the plane
strain condition relative to r - plane exists.

PRESENTATION OF RESULTS

In the calculations, physical properties of two different
engineering materials namely Aluminum (AL) and Brass
(BR) are used. Numerical values of the properties of
these materials are listed in Table 1. Dimensionless
variables used in the calculations and in the presentation
of the results are calculated by the use of the data given
in Table 1.

Table 1. Physical properties of the materials used.

Physical Property Symbol Unit Aluminum (AL) | Brass (BR)
Thermal diffusivity ar m*/s 9.5 x 107" 3.4 % 1073
Thermal conductivity k W/(m.”K) 230 110
Modulus of elasticity E GPa 70 105
Poisson’s ratio v - 0.35 0.35
Coett. of thermal expansion ! 1/°C 23.0 x 107¢ 20.9 x 107¢
Uniaxial yield stress foh MPa 100 410

Plane Strain Calculations

In these calculations T, =60°C, h=100 W/(m? °K) and

a = 0.6 are used. Cooling of AL-BR and BR-AL cylinders
from early times to steady state is plotted in Figs. 2(a) and
2(b), respectively. As seen in these figures the interface and
boundary conditions are perfectly satisfied. While AL-BR

05 F

)
E
@
g AL | BR
£ 04 f :
0.3 T\
F I
02 -
r a=0.61
01 [ :
[ 7=20.7 |
0.0 F T
[ |
I R P A R L1
0.0 0.2 0.4 0.6 0.8 1.0
radial coordinate
(@)

cylinder reaches steady state at z =20.7, BR-AL does at
7 =5.9. There are two reasons for this difference. First one
is that since the dimensionless time is determined from
7 =amt/b, the magnitude of «y, affects calculation of
r , secondly the thermal conductivity of aluminum is twice

as much as that of brass. Hence, if aluminum is in the outer
layer cooling takes place more rapidly.

11 |
[ 7=0.025 |
1.0 F I
B BR | AL
08 [ i
0.7 i '
. : T::OAS :
o 06 |
3 [
2 r
5 05 [ R
g r =061
r |
2 04 [ |
r = I
0.3 \07{_\
02 I
r I
01 | I
r 7=2.0 !
. =59 !
0.1 F — '

0.0 0.2 0.4 0.6 0.8 1.0
radial coordinate

(b)

Figure 2. Distributions of temperature for the (a) AL-BR (Aluminum-Brass), and (b) BR-AL (Brass-Aluminum) two-layer cylinders

at various time instants for @ =0.6 and T, =60°C .
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@

radial stress

0.00
-0.01
|
-0.02 I
|
|
|
|
-0.03 :
I |
i E:D.(S:
[ |
-0.04 :
0.0 0.2 0.4 0.6 0.8 1.0
radial coordinate
(b)
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Table 2. Unknowns calculated for AL-BR (Aluminum-Brass)
generalized plane strain
two-layer cylinder for a =0.6.

The distributions of stress and displacement
corresponding to temperature profiles in Figs. 2(a) and
2(b) are presented in Figs. 3 - 6. The details of these

calculations are provided in Tables 2-5. T S Cs C. &
0.025 | —0.100365 x 10" | —=0.910570 0.327618 —0.152034 % 107!
0.03 | —0.100375 % 10" | —0.910380 0.327500 —0.181297 x 107!
0.25 | —=0.100293 x 10" | —0.904712 0.301985 —0.131116
2.0 —0.977868 —(.887678 0.874624 % 107! —0.630018
20.7 —0.963887 —0.878593 | —0.307041 % 107! —0.901851
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Table 3. Unknowns calculated for BR-AL (Brass-Aluminum)

generalized plane strain
two-layer cylinder for a = 0.6

T C, Cy C, €
0.025 | —0.332142 | —0.366973 0.131371 —0.166232 = 10!
0.03 0.331933 0.366926 0.130863 0,197670 x 1071
0.25 0.327211 0.363207 | 0.943917 = 107! 0.128406
0.3 —0.326519 | —0.362455 | 0.871070 x 107! —0.147228

1.0 0.321412 0.356844 | 0.327206 = 107! 0.287133
5.9 —0.319532 | —0.354777 | 0.126901 x 10! —(0.338643

Table 4. Unknowns calculated for the AL-BR (Aluminum-

Brass) plane strain two-layer
cylinder for 2 =0.6.

T C, Cy C,
0.025 | —0.582071 % 1072 | —0.456173 % 10* 0.327618
0.03 0.693840 x 102 | —0.456190 x 10* 0.327500
0.25 | —0.916629 x 107" | —0.428145 x 10" 0.301985

2.0 —0.856437 —0.228657 x 10" | —0.874624 x 107}
20.7 [ —0.127953 x 10* | —0.119426 x 10* | —0.307041 = 10~*

The comparison of radial stress distributions in plane
strain and in generalized plane strain calculations as time
increases are plotted in Figs. 3(a) and 3(b). In these
figures dots belong to the results of generalized plane
strain calculations and solid lines to plane strain
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calculations. With low magnitudes, the results of these
calculations are identical. The same situation is observed
for tangential stress as well. The results of plane strain
(solid lines) and generalized plane strain (dots) are
presented in Figs. 4(a) and 4(b). The difference between
axial stress distributions is obvious and can be visualized
in Figs. 5(a) and 5(b). In these figures solid lines belong
to the results of plane strain calculations and dashed lines
to generalized plane strain. It is observed that sharp
gradients dominate generalized plane strain calculations.
The distributions of radial displacement for both
calculations are plotted in Figs. 6(a) and 6(b). In these
figures solid lines show the distributions for the plane
strain case in which ¢, =0.

Table 5. Unknowns calculated for the BR-AL (Brass-
Aluminum) plane strain two-layer

cylinder for a =0.6.

T C1 C3 C4
0.025 | —0.448840 x 102 | —0.179154 = 10! 0.131371
0.03 | —0.545516 % 1072 | —0.177732 x 10 0.130863
0.25 —0.126000 —0.131818 ¢ 10! | 0943917 x 10~
0.3 0.153701 0.124240 = 10 | 0.871070 % 10~*
1.0 —0.361493 —0.680260 0.327206 % 10!
5.9 —0.438051 —0.473325 0.126901 x 107!
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Figure 5. Comparison of the variation of axial stress distributions for the (a) AL-BR (Aluminum-Brass), and (b) BR-AL (Brass-
Aluminum) two-layer cylinders for plane strain and generalized plane strain cases at various time instants for a =0.6 and

To = 60°C . The solid lines belong to plane strain case and dashed lines to generalized plane strain. The stress values for the
generalized plane strain case is multiplied by 10.
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Figure 7. Variation of axial strain ( &y = £9og,/ E;) with time
for AL-BR (Aluminum-Brass) and BR-AL (Brass-Aluminum)
two-layer cylinders for generalized plane strain case (a = 0.6

and T, = 60°C).

As seen in Figs. 6(a) and 6(b) when &, =0 the
contraction in volume is realized by contraction in the
radial dimension only. However, in generalized plane
strain case the cylinder contracts in both axial and radial
dimensions. This situation is also illustrated in Fig. 7, on
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=0.6and Ty =60°C . The solid lines

which the decrease in the axial dimension with time is
plotted.

To check if the cylinder is deforming plastically with the
calculated stresses, von Mises yield criterion is used. The
von Mises stress, o,y , IS determined at any radial
location using slightly different expressions for the inner
and outer regions. For the inner region it is determined
from

_ 1
Oowm = E

while for the outer layer
Su \/l
op )V 2
where o, stands for the uniaxial yield stress of the
material in this layer. Note that the cylinder becomes
plastic at locations where &,y =1. The variations of

o, inthe AL-BR and BR-AL cylinders at various time

instants for both end conditions are calculated and plotted
in Figs. 8(a), 8(b), 9(a) and 9(b). As seen in these figures,
for both end conditions the stress states are elastic. In
addition, larger magnitudes of von Mises stress are
calculated in plane stress case for both cylinders.

[(Er _50)2 +(Er _Ez )2 +(O-n9 —0;

¥] (92

G [(5r -5,0 +(5, -5, +(5, -5, )2] (93)

Next, the results of the calculations for radially
constrained plane strain two-layer cylinders are

presented. Here the values T, =60°C, T, =12°C and



a=05 are used. Temperature distribution vs. time 7 =4.93. To determine the corresponding stresses in the
history of AL-BR cylinder is plotted in Fig. 10(a). As cylinder integration constants are determined and
seen in this figure, T (F) =T /T, =0.2 throughout inthe ~ tabulated in Table 6.
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Figure 8. Distributions of von Mises stress for the AL-BR (Aluminum-Brass) two-layer cylinders for (a) plane strain, and (b)
generalized plane strain cases at various time instants for a = 0.6 and Ty = 60°C .
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Table 6. Unknowns calculated for AL-BR (Aluminum-Brass)
radially constrained plane strain cylinder for 2 =0.5.

T C, Cs C,
0.03 —0.801893 —0.761918 | 0.240756
0.1 —0.644804 —0.648036 | 0.242042
0.25 0.438352 0.510367 | 0.207737
0.9 | —0.979417 x 107 [ —0.292115 | 0.124936
4,93 [ —0.202731 % 1071 | —0.242434 | 0.105699

Distributions of radial, tangential and axial stresses are
plotted in Figs. 10(b), (c) and (d). The constraint in the
radial direction gives rise to large magnitudes of the
stresses. To check if the cylinder is deforming plastically
with these large magnitudes of the stresses, the variations
of o, in the cylinder as time passes are calculated and

plotted in Fig. 10(e). As seen in this figure, although the
stresses have large magnitudes, the corresponding stress
state is far away from plasticization.

Similar calculations are performed for Brass-Aluminum
(BR-AL) radially constrained plane strain cylinder. The
temperature profiles from early times to steady state are
plotted in Fig. 11(a). BR-AL cylinder comes to steady
state at T = 1.22. Integration constants for this cylinder
are calculated and tabulated in Table 7.

Table 7. Unknowns calculated for BR-AL (Brass-Aluminum)
radially constrained plane strain cylinder for @ =0.5.

T C, C; C,
0.03 | —0.211227 —0.193295 0.693263 % 107!
0.05 | —0.189389 —0.158316 0.557702 % 107!
0.1 | —0.161368 —0.110541 0.313801 % 107!
0.25 | —0.134912 | —0.636878 x 10~ | 0.413571 x 1072
1.22 | —0.128746 | —0.527198 x 107! | —0.233146 x 1072

Figs. 11(b) - 11(e) display the distributions of radial,
tangential, axial and von Mises stresses, respectively. As
seen in Fig. 11(e), again, the stress state is purely elastic.

CONCLUDING REMARKS

Using physical properties of Aluminum and Brass, plane
strain, generalized plane strain, radially constrained
plane strain thermoelastic analyses of the cooling of a
two-layer cylinder are performed using the uncoupled
theory of elasticity. The cylinder consists of two layers
that are in perfect contact. In plane strain and generalized
plane strain calculations it is supposed that the hot
assembly loses energy from its surface to the zero
ambient by convection. In these calculations, it is
observed that while radial and circumferential stresses
are very small in magnitude and are identical, the axial
stress is the largest one among the principle stresses.
Axial stress profiles in plane strain and in generalized
plane strain differ to some extend with sharper gradients
in the state of generalized plane strain. On the other hand,
for both end conditions it is observed that the stress states
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from early times to steady state are elastic when the von
Mises citerion is considered.

In the solutions with radially constrained boundary
condition, the cylinder is assumed to be mounted
between rigid walls. Cooling of the cylinder takes place
as it touches cooler surface of the rigid casing. In this case
the decrease in length is not possible and the problem
becomes a plane strain one at the same time. Radially
constrained boundaries give rise to stresses with large
magnitudes but it is shown by the use of von Mises yield
condition that the resulting stress state is far away form
plasticization.
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