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Abstract: Analytical models are developed to estimate the transient elastic response of cooling two-layer solid cylinders 

with different end and boundary conditions. Such cylinders contain two layers that are in perfect contact. The hot 

assembly loses energy from its surface to either zero ambient by convection or by a prescribed lower surface 

temperature. In any case, as the cooling takes place slowly, the problem is amenable to use of the uncoupled theory of 

elasticity. A generalized plane strain solution is derived and then reduced to the state of plane strain by simply setting 

the axial strain equal to zero. The results of these solutions revealed that the radial and circumferential stresses remain 

unchanged by end conditions when the boundaries are free. However, in case of plane strain, the axial stress becomes 

the dominant stress component and it is much larger than that in free ends. Radially constrained boundaries create very 

large stresses in the assembly but the corresponding stress state is far away from yielding. 

Keywords: Two-layer solid cylinder, Transient heat conduction, Cooling, Thermoelasticity, Generalized plane strain. 

 

İKİ KATMANLI DOLU BİR SİLİNDİRİN ELASTİK DAVRANIŞININ FARKLI UÇ VE 

SINIR KOŞULLARI İÇİN ANALİTİK OLARAK İNCELENMESİ 
 

Özet: İki katmanlı dolu silindirlerin zamana bağlı termoelastik davranışlarının farklı uç ve sınır koşulları için 

belirlenmesi amacıyla analitik modeller geliştirilmiştir. Söz konusu silindirler, aralarında mükemmel temas olan iki 

katmandan oluşmaktadır. Başlangıçta sıcak olan silindir, yüzeyinden konveksiyon yolu ile sıfır derecelik çevresel 

sıcaklığa veya önceden daha düşük olarak belirlenen yüzey sıcaklığına ulaşana kadar enerji kaybetmektedir. Tüm 

durumlarda soğuma yavaş bir biçimde gerçekleştiğinden problemde kuplajsız elastisite teorisinin kullanılması mümkün 

olmuştur. Genelleştirilmiş düzlemsel şekil değiştirme çözümü elde edilmiş ve bu çözüm, eksenel yöndeki birim şekil 

değiştirmeyi sıfıra eşitleyerek düzlemsel şekil değiştirme durumuna ait çözüme indirgenmiştir. Bu çözümlere ait 

sonuçlar, sınır koşullarının serbest olduğu durumlarda radyal ve teğetsel yöndeki gerilmelerin uç koşullarına göre 

değişmediğini göstermiştir.  Ancak düzlemsel şekil değiştirme durumunda, eksenel gerilme baskın gerilme olmakta ve 

uçların serbest olduğu duruma göre oldukça yüksek değerlere ulaşmaktadır. Kompozit silindirin eksenel ve radyal 

yönde yer değiştirmesinin kısıtlanması büyük gerilmelere yol açmasına rağmen ilgili gerilme durumu silindirde akmaya 

yol açmamaktadır. 

Anahtar Kelimeler: İki katmanlı dolu silindir, Zamana bağlı ısı iletimi, Soğuma, Termoelastisite, Genelleştirilmiş 

düzlemsel şekil değiştirme. 

 
 

NOMENCLATURE 

 

ba  ,
  

interface and outer radii of the 

  assembly, respectively [m] 

     coefficient of thermal expansion 

   [ 0101 / TE jj  ]
 

T    thermal diffusivity [m2/s] 

iC
  

integration constants  

E
  

modulus of elasticity [GPa] 

i   strain components [ 011 / Ejj  ] 

 

h
  

convection heat transfer coefficient 

  [W/(m2  0K)] 

k
  

thermal conductivity [W/(m 0K)] 


  

Poisson’s ratio 

zr  , ,   cylindrical coordinates 

0    uniaxial yield stress [MPa] 

i
  

stress components [ 01/ jj  ]
 

vM   von Mises stress 

t   time [ btT /1  ] 

T   temperature [ 0/TTT jj  ] 
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CT   temperature of the casing [0C] 

0T   initial temperature [0C] 

u
  

radial displacement [ )/( 011 buEu  ] 

 

INTRODUCTION 

 

Basic structural elements such as disks, cylinders, tubes, 

spherical shells and plates have been commonly used in 

different branches of industry and in daily life. The 

composite versions of these elements are also used 

especially in mechanical, aerospace, and automotive 

engineering. Due to this reason, a detailed knowledge of 

the stress response of such components under different 

loading and boundary conditions is needed for various 

engineering applications. 

 

The existence of temperature gradients in the elements 

constitutes an important and unavoidable class of loads 

as it may occur for many reasons. Consequently, 

theoretical and experimental investigations of thermally 

induced stresses and deformations in the above 

mentioned assemblies have extensively been studied by 

researchers. Being one of the classical problems of 

thermal sciences, the transient heat conduction in 

homogenous solid and hollow circular cylinders, slabs 

and solid and hollow spheres have been investigated by 

many researchers in the past. Solutions of some of these 

classical problems with different methods can be found 

in books Carslaw and Jaeger (1959), Boley and Weiner 

(1960), Noda et al. (2003), Hetnarski and Eslami (2009), 

and Hahn and Özışık (2012). 

 

The transient temperature response of composite solids 

has been handled using different methods. The common 

analytical techniques used are Green functions, 

orthogonal expansions and the Laplace transformation 

(Hahn and Özışık, 2012). Applications of these 

techniques and the use of other approaches can be found 

in the studies of Monte (2002), Sun and Wichman (2004), 

and Lu et al. (2006a). Other related investigations with 

different geometries and boundary conditions can be 

found in Lu et al. (2006b), Lu and Viljanen (2006), and 

Singh et al. (2008).  

 

The thermomechanical response due to heat conduction 

in homogenous solid and hollow elements such as 

cylinders and spheres were studied by several researchers 

in the past. These are by Ishikawa (1978), by Tanigava et 

al. (1984), by Thomas et al. (1985), and by Kandil et al. 

(1995). A collection of solutions to the thermoelastic 

response of cylinders, plates and spheres in transient heat 

conduction can be found in Noda et al. (2003) .  

 

Recently, Eraslan and Apatay (2015) investigated the 

thermoelastic stresses in cylindrical rods subjected to 

periodic boundary conditions by Duhamel’s theorem. In 

the following investigation by the same authors (Eraslan 

and Apatay, 2016), they extended their analytical model 

to include partially plastic deformation and sudden 

unloading of the solid cylinder by the use of classical 

theories of plasticity. The application of a similar 

procedure to the solution of loading and unloading 

problem of periodic heat generating cylinder can be 

found in Eraslan and Apatay (2017). On the other hand, 

transient response of an infinitely long annular cylinder 

composed of two different materials was studied by Yu-

Ching and Cha’o-Kuang (1986), Jane and Lee (1999), 

Lee et al. (2001), Wang et al. (2004), Lee (2006), and 

Mashat et al. (2010). 

 

The transient thermoelastic two-layer solid cylinder 

problem has been treated in an earlier work by Pardo et 

al. (1987). Following the approaches of Özışık (1980) for 

the transient heat transfer part and Boley and Weiner 

(1960) for the thermoelastic part two different problems 

have been solved. A composite circular disk with 

insulated ends (plane stress problem) and an infinitely 

long cylinder with fixed ends (plane strain problem). In 

this work, we extend their study to include the state of 

generalized plane strain, radially constrained boundaries 

and the use of physical properties of real engineering 

materials. In the following sections we describe the 

problems handled, present our analytical models, their 

detailed solutions and numerical results as the assemblies 

cool down slowly with different modes of heat transfer. 

 

THERMOELASTIC MODEL AND ITS 

SOLUTION 

 

Temperature Distribution for Convective Boundary 

Condition 

 

The coordinate system and the dimensions of the two-

layer solid cylinder are depicted in Fig. 1. An infinitely 

long cylinder contains an inner region ar 0  and an 

outer region bra   that are in perfect contact as 

shown in Fig. 1. Initially both cylinders are at 

temperature 00 T . For times 0t  the cylinder loses 

energy from its surface by convection to the zero ambient 

temperature. The temperature distribution in the inner 

and outer regions are governed by unsteady heat 

conduction equations as (Hahn and Özışık, 2012) 
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where ),(1 trT  and ),(2 trT  are the temperature distributions 

in the inner ( ar 0 ) and outer ( bra  ) regions, 

respectively, and 1T  is the thermal diffusivity of the inner 

while 2T  is that of the outer region. 

 

The boundary conditions are 

 

),0(1 tT  finite         
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0),(
),(

2
2
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
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k      (3) 

 

The interface conditions are  

 

),(),( 21 taTtaT         
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Finally, the initial conditions are 

 

01 )0,( TrT  ,  ar 0       

02 )0,( TrT  ,  bra        (5) 

 
Figure 1. The cylindrical coordinate system and the dimensions 

of the long cylinder. 

 

The solution is realized by separation of variables as 

 

)()(),( 111 rRttrT   and )()(),( 222 rRttrT      (6)   

 

Substituting into Eqs. (1) and (2) one obtains 
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in which n , ,...2,1n  are the eigenvalues of the 

system. These equations are separated as 
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and 

 

0
1

1
1

2

2

1
2

1 











 n

T

nnn R
dr

Rd
r

dr

dR

r 


 

 

0
1

2
2

2

2

2
2

2 











 n

T

nnn R
dr

Rd
r

dr

dR

r 


   (9) 

 

followed by the solutions 
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where )(0 rJ  and )(0 rY  represent zero order Bessel 

functions of the first and second kind, respectively. As 

)(0 rY is not finite at 0r ; 02 nA , and the solutions in 

the radial dimension take the forms 

 
















1

011 )(

T

n
nn

r
JArR




    (13) 






























2

02

2

012 )(

T

n
n

T

n
nn

r
YB

r
JBrR








  (14) 

 

since )(1 rR n  is an eigenfuction for any nonzero nA1 , we 

select 11 nA  for convenience. The interface and 

boundary conditions become 
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Application of these conditions leads to 
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Letting  

 

1T

a


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2T

a


  ,  

1
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2

1

T
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k
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
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2
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these equations become 

 

      002010  nnnnn YBJBJ      (20) 

      012111  nnnnn YBJBKJ    (21) 
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or in matrix notation 
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where the coefficient matrix is 
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From the first two of these equations 
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nB1  and nB1 are determined as 
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where 
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Eigenvalues are calculated from 
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where A is the coefficient matrix given by Eq. (24). The 

result is 
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The general solutions are then 
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It should be noted that since the time dependent functions 

n1  and n2  are independent of material properties of the 

layers, there is no discontinuity at the interface. Due to 

this reason in the above two equations instead of nC1  and 

nC2 , a single constant nC  is used. Application of the 

initial conditions leads to the equations   
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The orthogonality property is (Hahn and Özışık, 2012) 
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where the norm nN  is 
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The expression given in Eq. (35) is derived by using the 

two equations given in Eq. (9). Both of these equations 

are written for two different eigenvalues first. Then, the 

first set of these equations are multiplied by )(2 rR n , and 

the second set by )(1 rR n . The results are subtracted and 

integrated over the volume. The volume integrals are 

changed to surface integrals and the resulting expressions 

are summed up taking into consideration of the boundary 

conditions. 
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By performing integrations in Eq. (36) the norm nN  

takes the form 
2
24213

2
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Multiplying both sides of Eqs. (33) and (34) by the 

operator 
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and integrating 
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adding for nm   
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or by integrations 
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then the solution is completed as 
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Temperature Distribution for Prescribed Surface 

Temperature 
 

In this case the two-layer cylinder is mounted between 

rigid casing and cools down as it touches to the walls of 

the cooler casing. Hence, the conduction equations, Eqs. 

(1) and (2), are solved with the following boundary 

conditions 

 

),0(1 tT  finite        

CTtbT ),(2      (50) 

 

where CT  represents the temperature of the casing. This 

nonhomogeneous boundary condition is made 

homogeneous by the introduction of new dependent 

variables 
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then the system to be solved becomes 
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with the following conditions: boundary 
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and initial 
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The solution is realized by separation of variables as in 

the first problem. The result is 
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where the eigenfunctions )(1 rR n and )(2 rR n are given by 

Eqs. (13) - (14), respectively and 
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the norm nN  is the same as above, Eq. (37), and 
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The eigenvalues n , for ,...2,1n  of this solution are 

the roots of the nonlinear equation 
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Finally, the temperature distributions are determined 

from 
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Elastic Solutions 

 

Basic equations 

 

As the cylinder cools down slowly, the uncoupled theory 

of elasticity can be used. Hence, the equations of the 

generalized Hooke’s law 
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the strain displacement relations 
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and the equation of equilibrium 
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form the basic elastic equations for both regions 

(Timoshenko and Goodier, 1970; Rees, 1990). In these 

equations j  represents a strain component, E  the 

modulus of elasticity, j  a normal stress component,   

the Poisson’s ratio,   the coefficient of thermal 

expansion and 0T  the initial temperature as before. In 

case of generalized plane strain  0 z constant, the 

axial stress turns into 

 

   00 TTEE rz      (70) 

 

Solutions in the following sections are carried out by the 

use of normalized and dimensionless variables. These are 

brr /  dimensionless radial coordinate,  btT /1   

dimensionless time, 0/TTT jj   dimensionless 

temperature, 011 / Ejj   normalized strain 

component, 01/ jj   dimensionless stress 

component, )/( 011 buEu   dimensionless radial 

displacement, j  Poisson’s ratio, 0101 / TE jj   

dimensionless coefficient of thermal expansion, 

21 / EEE   ratio of moduli of elasticity and 01  the 

uniaxial yield limit of the inner region material. 

 

Solution for the inner region 

 

Combining the equations of the generalized Hooke’s law 

with the strain displacement relations and substituting the 

axial stress z  into these equations, the radial and 

circumferential stresses can be expressed in terms of 

displacement and its first order derivative as 
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Substituting these stresses in the equation of equilibrium 

the governing differential equation for the inner region is 

obtained as 
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The general solution is 
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where 1C  and 2C  are the arbitrary integration constants 

and 
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Note that when CTT  11  , the term ),( rF  also 

includes the term 2/2
CTr . We prefer using ),( rF  

instead of explicit result in Eq. (75) for the compactness 

of the latter lengthy equations. Meanwhile, it is to be 

noted that 
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Since the stresses and displacement must be finite at the 

center ( 0r ), 2C  must be zero. Then the equations for 

the displacement and the stress components take the 

forms 
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in these equations 
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or 
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Solution for the outer region 

 

Following similar steps as in the inner region, the 

solution is obtained as 
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where 3C  and 4C  are the arbitrary integration constants 

and 



















































































































2

1

2

12

1 2

1

2

112

2

2

),(),(

T

n

T

n
n

n T

n

T

n
n

n

n
T

r

a

a
Ya

r
YrB

a
Ja

r
JrBe

C

dTrG

n
























       (86) 

 

Note that the term 2/2
CTr  accompanies the right hand 

side of this equation if CTT  22  . The derivatives of 

),( rG are 
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or 
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Evaluation of integration constants 

 

Plane Strain In case of plane strain 00   and the 

remaining constants 1C , 3C  and 4C  are evaluated from 
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in which the superscripts I and II refer to inner and outer 

regions, respectively. Analytical expressions for the 

unknowns are determined by the comprehensive use of 

Mathematica. Since these expressions are overlong, it 

was not possible to include them here. 

 



 

300 

 

Generalized Plane Strain In this case 0  constant, 

and the unknowns are 1C , 3C , 4C  and 0 . The three 

equations in the group by Eq. (89) are still valid and the 

additional equation is 
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Again, lengthy analytical expressions for the unknowns 

are determined by Mathematica. 

 

Radially Constrained If the surface of the cylinder is 

mounted between rigid walls then the problem is a plane 

strain problem as well, i.e. 0z  and the conditions are 
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The three unknowns 1C , 3C  and 4C  are then evaluated 

analytically by the use of these equations. It should be 

noted that for the radially constrained case the cylinder is 

also assumed to be axially constrained so that the plane 

strain condition relative to r -  plane exists. 

 

PRESENTATION OF RESULTS 

 

In the calculations, physical properties of two different 

engineering materials namely Aluminum (AL) and Brass 

(BR) are used. Numerical values of the properties of 

these materials are listed in Table 1. Dimensionless 

variables used in the calculations and in the presentation 

of the results are calculated by the use of the data given 

in Table 1. 

 
Table 1. Physical properties of the materials used.

 
 

Plane Strain Calculations 

 

In these calculations CT 0
0 60 , 100h  W/(m2 0K) and 

6.0a are used. Cooling of AL-BR and BR-AL cylinders 

from early times to steady state is plotted in Figs. 2(a) and 

2(b), respectively. As seen in these figures the interface and 

boundary conditions are perfectly satisfied. While AL-BR 

cylinder reaches steady state at 7.20 , BR-AL does at 

9.5 . There are two reasons for this difference. First one 

is that since the dimensionless time is determined from 

btT /1  , the magnitude of 1T  affects calculation of 

 , secondly the thermal conductivity of aluminum is twice 

as much as that of brass. Hence, if aluminum is in the outer 

layer cooling takes place more rapidly. 

           
                      (a)                      (b) 
Figure 2. Distributions of temperature for the (a) AL-BR (Aluminum-Brass), and (b) BR-AL (Brass-Aluminum) two-layer cylinders 

at various time instants for 6.0a  and CT 0
0 60 . 
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                    (a)             (b) 

 

Figure 3. Comparison of the variation of radial stress distributions for the (a) AL-BR (Aluminum-Brass), and (b) BR-AL (Brass-

Aluminum) two-layer cylinders for plane strain and generalized plane strain cases at various time instants for 6.0a  and 

CT 0
0 60 . The solid lines belong to plane strain case and dots to generalized plane strain. 

                        
                                                                (a)                                                                                     (b)   

 
Figure 4. Comparison of the variation of tangential stress distributions for the (a) AL-BR (Aluminum-Brass), and (b) BR-AL (Brass-

Aluminum) two-layer cylinders for plane strain and generalized plane strain cases at various time instants for 6.0a  and 

CT 0
0 60 . The solid lines belong to plane strain case and dots to generalized plane strain. 

 

The distributions of stress and displacement 

corresponding to temperature profiles in Figs. 2(a) and 

2(b) are presented in Figs. 3 - 6. The details of these 

calculations are provided in Tables 2-5. 
 

 

 

 

 

Table 2. Unknowns calculated for AL-BR (Aluminum-Brass) 

generalized plane strain 

two-layer cylinder for 6.0a . 
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Table 3. Unknowns calculated for BR-AL (Brass-Aluminum) 

generalized plane strain 

two-layer cylinder for 6.0a . 

 
 

Table 4. Unknowns calculated for the AL-BR (Aluminum-

Brass) plane strain two-layer 

cylinder for 6.0a . 

 
 

The comparison of radial stress distributions in plane 

strain and in generalized plane strain calculations as time 

increases are plotted in Figs. 3(a) and 3(b). In these 

figures dots belong to the results of generalized plane 

strain calculations and solid lines to plane strain 

calculations. With low magnitudes, the results of these 

calculations are identical. The same situation is observed 

for tangential stress as well. The results of plane strain 

(solid lines) and generalized plane strain (dots) are 

presented in Figs. 4(a) and 4(b). The difference between 

axial stress distributions is obvious and can be visualized 

in Figs. 5(a) and 5(b). In these figures solid lines belong 

to the results of plane strain calculations and dashed lines 

to generalized plane strain. It is observed that sharp 

gradients dominate generalized plane strain calculations. 

The distributions of radial displacement for both 

calculations are plotted in Figs. 6(a) and 6(b). In these 

figures solid lines show the distributions for the plane 

strain case in which 0z . 

 
Table 5. Unknowns calculated for the BR-AL (Brass-

Aluminum) plane strain two-layer 

cylinder for 6.0a . 

 
 

              
                                                              (a)                                                                                      (b) 

 

Figure 5. Comparison of the variation of axial stress distributions for the (a) AL-BR (Aluminum-Brass), and (b) BR-AL (Brass-

Aluminum) two-layer cylinders for plane strain and generalized plane strain cases at various time instants for 6.0a  and 

CT 0
0 60 . The solid lines belong to plane strain case and dashed lines to generalized plane strain. The stress values for the 

generalized plane strain case is multiplied by 10. 
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                                                    (a)                                                                                                          (b) 

      

Figure 6. Comparison of the distributions of radial displacement for the (a) AL-BR (Aluminum-Brass), and (b) BR-AL (Brass-Aluminum) 

two-layer cylinders for plane strain and generalized plane strain cases at various time instants for 6.0a and CT 0
0 60 . The solid lines 

belong to plane strain case and dashed lines to generalized plane strain.  

 

 
Figure 7. Variation of axial strain ( 10100 / E  ) with time 

for AL-BR (Aluminum-Brass) and BR-AL (Brass-Aluminum) 

two-layer cylinders for generalized plane strain case ( 6.0a  

and CT 0
0 60 ).  

 

As seen in Figs. 6(a) and 6(b) when 0z  the 

contraction in volume is realized by contraction in the 

radial dimension only. However, in generalized plane 

strain case the cylinder contracts in both axial and radial 

dimensions. This situation is also illustrated in Fig. 7, on 

which the decrease in the axial dimension with time is 

plotted. 

 

To check if the cylinder is deforming plastically with the 

calculated stresses, von Mises yield criterion is used. The 

von Mises stress, vM , is determined at any radial 

location using slightly different expressions for the inner 

and outer regions. For the inner region it is determined 

from 

 

      222

2

1
zzrrvM     (92) 

 

while for the outer layer 

 

      222
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01

2

1
zzrrvM 




  













   (93) 

 

where 02  stands for the uniaxial yield stress of the 

material in this layer. Note that the cylinder becomes 

plastic at locations where 1vM . The variations of 

vM  in the AL-BR and BR-AL cylinders at various time 

instants for both end conditions are calculated and plotted 

in Figs. 8(a), 8(b), 9(a) and 9(b). As seen in these figures, 

for both end conditions the stress states are elastic. In 

addition, larger magnitudes of von Mises stress are 

calculated in plane stress case for both cylinders. 

 

Next, the results of the calculations for radially 

constrained plane strain two-layer cylinders are 

presented. Here the values CT 0
0 60 , CTC

012 and 
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5.0a  are used. Temperature distribution vs. time 

history of AL-BR cylinder is plotted in Fig. 10(a). As 

seen in this figure, 2.0/)( 0  TTrT C  throughout in the 

cylinder when the steady state condition is reached at 

93.4 . To determine the corresponding stresses in the 

cylinder integration constants are determined and 

tabulated in Table 6. 

 

            
                                                                 (a)                                                                                 (b) 

 

Figure 8. Distributions of von Mises stress for the AL-BR (Aluminum-Brass) two-layer cylinders for (a) plane strain, and (b) 

generalized plane strain cases at various time instants for 6.0a  and CT 0
0 60 . 

 

          
                                                                (a)                                                                                  (b) 

   

Figure 9. Distributions of von Mises stress for the BR-AL (Brass-Aluminum) two-layer cylinders for (a) plane strain, and (b) 

generalized plane strain cases at various time instants for 6.0a , CT 0
0 60 . 
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       (a)                                                                         (b) 

                
         (c)                                                                         (d) 

 
        (e) 

Figure 10. Distributions of (a) temperature, (b) radial stress, (c) tangential stress, (d) axial stress, and (e) von Mises stress for the 

AL-BR (Aluminum-Brass) axially and radially constrained two-layer cylinders (plane strain case) at various time instants for 

5.0a , CT 0
0 60 , CTC

012 .  
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                                                                     (a)                                                                   (b) 

         
      (c)                                                                  (d) 

 
       (e) 

 
Figure 11.  Distributions of (a) temperature, (b) radial stress, (c) tangential stress, (d) axial stress, and (e) von Mises stress for the 

BR-AL (Brass-Aluminum) axially and radially constrained two-layer cylinders (plane strain case) at various time instants for 

5.0a , CT 0
0 60 , CTC

012 .  
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Table 6. Unknowns calculated for AL-BR (Aluminum-Brass) 

radially constrained plane strain cylinder for 5.0a . 

 
 

Distributions of radial, tangential and axial stresses are 

plotted in Figs. 10(b), (c) and (d). The constraint in the 

radial direction gives rise to large magnitudes of the 

stresses. To check if the cylinder is deforming plastically 

with these large magnitudes of the stresses, the variations 

of vM  in the cylinder as time passes are calculated and 

plotted in Fig. 10(e). As seen in this figure, although the 

stresses have large magnitudes, the corresponding stress 

state is far away from plasticization.  

 

Similar calculations are performed for Brass-Aluminum 

(BR-AL) radially constrained plane strain cylinder. The 

temperature profiles from early times to steady state are 

plotted in Fig. 11(a). BR-AL cylinder comes to steady 

state at τ = 1.22. Integration constants for this cylinder 

are calculated and tabulated in Table 7. 

 
Table 7. Unknowns calculated for BR-AL (Brass-Aluminum) 

radially constrained plane strain cylinder for 5.0a . 

 
 

Figs. 11(b) - 11(e) display the distributions of radial, 

tangential, axial and von Mises stresses, respectively. As 

seen in Fig. 11(e), again, the stress state is purely elastic. 

 

CONCLUDING REMARKS 
 

Using physical properties of Aluminum and Brass, plane 

strain, generalized plane strain, radially constrained 

plane strain thermoelastic analyses of the cooling of a 

two-layer cylinder are performed using the uncoupled 

theory of elasticity. The cylinder consists of two layers 

that are in perfect contact. In plane strain and generalized 

plane strain calculations it is supposed that the hot 

assembly loses energy from its surface to the zero 

ambient by convection. In these calculations, it is 

observed that while radial and circumferential stresses 

are very small in magnitude and are identical, the axial 

stress is the largest one among the principle stresses. 

Axial stress profiles in plane strain and in generalized 

plane strain differ to some extend with sharper gradients 

in the state of generalized plane strain. On the other hand, 

for both end conditions it is observed that the stress states 

from early times to steady state are elastic when the von 

Mises citerion is considered. 

 

In the solutions with radially constrained boundary 

condition, the cylinder is assumed to be mounted 

between rigid walls. Cooling of the cylinder takes place 

as it touches cooler surface of the rigid casing. In this case 

the decrease in length is not possible and the problem 

becomes a plane strain one at the same time. Radially 

constrained boundaries give rise to stresses with large 

magnitudes but it is shown by the use of von Mises yield 

condition that the resulting stress state is far away form 

plasticization. 
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