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This article aims to solve the mathematical model developed for machine tool vibrations by 

employing Differential Transformation Method (DTM). Multi-step differential transformation 

method is used as it has been shown to have good accuracy in physical applications. 

Nondimensionalization (scaling) technique is used in order to fully understand the physical effects 

of each varying parameter. Transformed function of delayed nonlinear velocity terms are 

explained. MatLab® software is used for DTM solutions. The equation of motion is solved with 

the DDE23 function in MatLab® software as well as with MatLab®/Simulink® software to 

compare the results. The solution of the fundamental DTM which is obtained by using the constant 

transformed function values which differ from other methods after a certain time period. However, 

the results obtained with the transformed functions for different values at each sampling time 

(Multi-Step DTM) give very close results to Simulink® and DDE23. 
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1. INTRODUCTION 

Vibration is a phenomenon that is rarely desired and generally untoward in engineering applications. In 

addition to the obtaining the mathematical model of vibrating systems, the solution of the established model 

also requires an effort. Analytical solutions of mathematical models of engineering problems are generally 

very challenging as models are established to be more realistic. Hence, various semi-analytical and 

numerical methods are employed to obtain the solution. The differential transformation method (DTM), a 

semi-analytical method, is employed in this paper for investigating machine tool vibrations as it is quite 

complicated in nature. Differential Transformation Method, based on Taylor Series, was first used by Zhou 

(1986) for electrical circuit (Hatami et al., 2017). Jang et al. (2000) promoted an adaptive grid size 

mechanism. Abdel & Hassan (2002) suggested DTM to obtain eigenvalues, eigenfunctions and to find out 

a solution the partial differential equations. Ayaz (2004) offered three-dimensional differential 

transformation method and defined the basic theorems. Varying grid size is employed by Kurnaz & Oturanç 

(2005) to boost the accuracy of the DTM solutions. 

Arıkoğlu & Özkol (2005) introduced DTM to solve integro-differential equations. Difference equations are 

carried out by utilizing DTM by Arıkoğlu & Özkol (2006a). Arıkoğlu & Özkol (2006b) presented theorems 

related to DTM for the solution of differential-difference equations (DDEs). Application of DTM on 

integro-differential and integral equations systems was also discussed by Arıkoğlu & Özkol (2008). 

http://dergipark.gov.tr/gujsa
https://orcid.org/0000-0002-2128-3949
https://orcid.org/0000-0001-9040-5041
https://orcid.org/0000-0003-1398-8145
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Momani & Ertürk (2008) designed a modified DTM for the good accuracy of non-linear oscillatory system 

solutions. A different DTM technique worked by El-Shaded (2008) for non-linear oscillatory systems. 

Karakoç & Bereketoğlu (2009) used DTM in the solution of delay differential equations. Kuo & Lo (2009) 

utilized DTM to explore the response of a physical system. Chen & Chen (2009) adopted DTM to the non-

linear physical system solution. Thongmoon & Pusjuso (2010) compared DTM with the Laplace transform 

method for a system of differential equations. 

Mirzaee (2011) applied DTM to the solution of linear and nonlinear DDEs. Süngü & Demir (2012) 

compared DTM with Adomian Decomposition Method for the solution of linear and nonlinear differential 

equations. Villafuerte & Chen-Charpentier (2012) developed the random DTM to solve random differential 

equations. 

Gokdogan et al. (2012) compared numerical results obtained by DTM with analytical solution for the DDE. 

Šmarda et al. (2013) presented theorems related to DTM for the solution of nonlinear differential and 

integro-differential equations with proportional delays. Bozdoğan & Ozturk (2014) apply differential 

transform method to investigate the free vibration analysis of an orthotropic beam model. Tabatabaei & 

Gunerhan (2014) solved Duffing equations by means of DTM. DTM is also used by Bozdogan & Aydin 

(2016) in stability analysis for multistory structure that is modeled as a continuous system. Benhammouda 

& Leal (2016) proposed an analytical solution for the nonlinear delay differential equations by using DTM. 

Rebenda & Šmarda (2017) presented semi-analytical DTM approach for the solution of functional 

differential equations with multiple delays. Hatemi et al. (2017) explained DTM on some physical 

problems. 

In this current study, the solution of a mathematical model in cutting tool vibrations is investigated. DTM 

is applied to the mathematical model presented for the first time. The mathematical model is comprised of 

delayed, nonlinear differential equations. In this paper, a system of transformed equations is expressed in 

matrix form. The difficulty caused by the transformed nonlinear terms is overcomed by using transformed 

functions which are found at previous cycle and sampling time. The results obtained by DTM which is a 

semi analytical method are in good agreement with the numerical methods, Simulink and DDE23 MatLab® 

function. 

2. DIFFERENTIAL TRANSFORMATION METHOD 

In this method, which is based on Taylor Series, the transformed function, ( )F k  and inverse transform, 

( )f t  is defined as follows. 

1 ( )
( )

!
o

k

k

t t

d f t
F k

k dt
=

 
=  

 
          0

0

( ) ( )( )k

k

f t F k t t


=

= −                 (1) 

The basic DTM theorems used in this article is below (Zhou, 1986; Arıkoğlu & Özkol, 2006). 

( )
( )
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3. SOLUTION TECHNIQUE 

Multi-step differential transformation method is used in physical applications due to its high accuracy 

(Hatami et al., 2017). In this study, instead of using a single 
ot  value and the associated transformed 

function to obtain the function value at a specific time, t , different 
ot values and different transformed 

functions are used in each step by keeping the step interval, 
0 ot t T− = , constant. 

1 ( )
( )

!o

o

k

t k

t t

d f t
F k

k dt
=

 
=  

 
          

0

( ) ( )
o o o

k

t T t o

k

f t F k T


+

=

=                (5) 

4. PROBLEM FORMULATION 

In cutting tool vibrations, the equation of motion defining the single degree of freedom and self-excited 

vibration, including flank wear caused by vibrations, is shown as follows: 

( ) ( ) ( ) ( ) ( )( ) ( )
2

2

1 22 n
n n dy t y t y t b K y t y t T K VB t

k


   + + = − − − +                                         (6) 

The relationship between the flank wear and the cutting velocity was expressed first by Taylor (1907) 

(Altintas, 2012). There is a connection between the relative velocity of the two materials and the wear rate 

(Maekawa et al., 1989; Chowdhury et al., 2011; Zanger & Schulze, 2013). The mathematical model 

proposed for the flank wear length which includes the lost material length, ( )mG t , depending on the 

vibration velocity, whose basic approach is based on the above studies is given in Eq 7. 

( ) ( )
( )

( ) ( )1 1

2 2

qm

d d d

G t z z
VB t dt VB t VB t py t

z z
+ = + = +                                                               (7) 

Eq. 7 is described with the idea that it will be easier to use previous values. 

( ) ( ) ( )1

2

q

d d

z
VB t VB t dt py t dt

z
= − + −                  (8) 

The terms in Eqs. 6 and 8 ( )y t , cutting tool displacement in vibration motion, ( )y t , first derivative of 

displacement (velocity), ( )y t , second derivative of displacement (acceleration), ( )y t T− , displacement 

in the previous cycle of the workpiece, ( )dVB t , flank wear length caused by vibration, 
2K , hardness of 

work material, 
1K , specific cutting constant, b , deep of cut, k , cutting tool stiffness, 

n , natural frequency, 

 , dimensionless damping ratio and the other terms are some process parameters. Initial conditions are 

( )0 0y = , ( )0y V= , ( )0 0dVB = . The term ( )2 dbK VB t  in Eq. 6 is the force on the flank face. It is assumed 

as ( ) ( )3 db HB VB t  in this mathematical model based on the investigation by Astakhov (2004). HB  is the 

Brinell hardness of the workpiece material. This force will only exist when the vibration velocity is positive 

due to physical acceptance. Similarly, the term related to velocity in Eq. 8 prevail when the vibration 

velocity is positive, otherwise it will be ( ) ( )d dVB t VB t dt= − . 

For the convenience and the understanding of the Eqs. 6 and 8, some dimensionless parameters are used as 

below. 

/ dou y VB=  
nt =   

nT =  /d dow VB VB=   
o n oT =  

Taking first and second derivative of y : 
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do n

dy dy d du
VB

dt d dt d




 
= =   

2 2
2

2 2do n

d y d u
VB

dt d



=  

The above derivatives and dimensionless parameters are substituted in Eq. 6. 

( )( )
22

2 2 2

12
2

3

n
do n do n do n do

d u du HB
VB VB VB u b VB K u u w

d d k


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 

 
+ + = − − − + 

 
             (9) 

Eq. 10 is obtained by dividing Eq. 9 by the coefficient of the second dimensionless derivative. 

( )( )
2

12
2

3

d u du b HB
u K u u w

d d k
  

 

 
+ + = − − − + 

 
             (10) 

Dimensionless parameters are also substituted in Eq. 8. 

( )1

2

( )
( ) ( )

q
q o

do do o do n

duz
VB w VB w p VB

z d

 
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

− 
= − +  

 
             (11) 

Eq. 12 is found by dividing Eq. 11 by 
doVB . 

( ) ( )
11

2

( )
( ) ( )

q
q q o

o do n

duz
w w p VB

z d

 
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

− − 
= − +  

 
              (12) 

The following abbreviations are used to make the Eq. 10 and 12 look simpler. 

1 2a =   1
2

K
a b

k
=  

3
3

HB
a b

k
=   11

4

2

q q

n do

z
a p VB

z
 −=  

After these operations, Eq. 13 and 14 and dimensionless initial conditions appear as follows. 

( )1 2 2 3( ) ( ) (1 ) ( ) ( ) 0u a u a u a u a w      + + + − − + =              (13) 

4( ) ( ) ( )q

o ow w a u    = − + −                 (14) 

( )0 0u =  ( )0 1
do n

V
u

VB 
 = =   ( )0 0w =                   (15) 

5. APPLICATION OF DIFFERENTIAL TRANSFORMATION METHOD 

In this section, DTM is applied to solve the presented equation of motion. Eq. 13 and 14 will be solved in 

three cases where q  is equal to 1, 2 and 3. 

Case 1 

In this case, Eq. 13 and 14 is handled for 1q = . 

( )1 2 2 3( ) ( ) (1 ) ( ) ( ) 0u a u a u a u a w      + + + − − + =                    (13) 

4( ) ( ) ( )o ow w a u    = − + −                       (16) 
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Eq. 13 is transformed by means of the above fundamental transformations as follow. These transformed 

functions are renewed at each step. 

1 2 2 3

( 2)! ( 2) ( 1)! ( 1)
(1 ) ( ) ( ) ( ) 0

! ! o

k U k k U k
a a U k a U k a W k

k k
 −

+ + + +
+ + + − + =            (17) 

The 
o −  value in the lower right index of the term ( )

o
U k  −  in this transformed Eq. 17 represents the 

previous transformed function as  . The final equation is organized as follows. 

1 2 2 3( 2)( 1) ( 2) ( 1) ( 1) (1 ) ( ) ( ) ( ) 0
o

k k U k a k U k a U k a U k a W k −+ + + + + + + + − + =          (18) 

By adapting the above fundamental transformations to Eq. 16: 

( ) ( )1 1

1 1

2
11 1

1 4 1

1

( ) ( ) ( 1) ( )
1

N N
h k h k

o o

h k h k

h h
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= = +

   
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+  
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is obtained. This equation is also expressed as: 

( ) ( )1 1

1 1

2
11 1

1 4 1

1 1

0 ( ) ( 1) ( )
1

N N
h k h k

o o

h k h k

h h
W h a k U h

kk
 

+
− − −

= + = +
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The equation system obtained by changing k from 0 to N to find the transformed functions, ( )U k , in the 

Eq. 18 is shown as follows. 

1

2 1

2 1

2 1

2 1

(2)(1) 0 0 0 0 0 0 0 (2)
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    
    
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    
    
    
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The equation system obtained by changing k from 0 to N-1 to find the transformed functions in the Eq. 20 

is also shown as follows. 
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 

         (22) 

The equations in these last two matrices form are given in Eqs. 23 and 24. 

1 2 3
A U A A W 0+ + =                  (23) 

4 5 6
A W A U A 0+ + =                  (24) 

After mathematical operations the transformed equations are found as below: 

1 1 1

1 3 4 5 2 3 4 6
U (A A (A A )) ( A A (A A ))

− − −= − − +                (25) 

1

4 5 6
W A (A U A )

−= − +                   (26) 

It should be noted here that there are no transformed function values U(0) , U(1) , W(0)  in the U and W

vectors. Because these values indicate the initial values in each step. 

Case 2 

In this case, Eqs. 13 and 14 is handled for 2q = . It is needed to make some mathematical operations to 

determine the transformed function of ( )q

ou   −  in Eq. 14. Let the function is 
2( ) ( )of u  = −  to be 

applied DTM. The mathematical operations to be done step by step to find the transformed function are as 

follows. 
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1
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1 1( ) ( )
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U k U h

k


−

=

 
= − 

 
  transformed function of ( )ou  −  

• ( )2 1( ) 1 ( 1)U k k U k= + +  transformed function of ( )ou   −   

• 
2( )U l  is found as ( ) 1

1

11

2 1

1

( ) ( 1) ( )
1

N
h l

o

h l

h
U l l U h

l


− −

= +

 
= + − 

+ 
  by using 

1( )U l  

• 
2 ( )U k l−  is ( ) 2

2

12

2 2

1

( ) ( 1) ( )
1

N
h k l

o

h k l

h
U k l k l U h

k l


− + −

= − +

 
− = − + − 

− + 
  

The transformed function of ( )f   is 
2 2

0

( ) ( ) ( )
k

l

F k U l U k l
=

= −  due to the theorem in Eq. 3. After these 

operations 

( ) 1 2

1 2

21 2

1 2

0 1 1

( ) ( 1)( 1) ( ) ( )
1 1

k N N
h h k

o

l h l h k l

h h
F k l k l U h U h

l k l


+ − −

= = + = − +

  
= + − + −  

+ − +  
              (27)  

is obtained. If DTM is applied to Eq. 14, the following transformed equation is found. 

( )

( )

1

1

1 2

1 2

1

1

1

21 2

4 1 2

0 1 1

0 ( )

( 1)( 1) ( ) ( )
1 1

N
h k

o

h k

k N N
h h k

o

l h l h k l

h
W h

k

h h
a l k l U h U h

l k l





−

= +

+ − −

= = + = − +

 
= − + 

 
  

+ − + −  
+ − +  



  
           (28) 

Since q  is equal to 2, this last equation is quite different from Eq. 20. It is quite difficult to obtain equation 

system in 1q =  solution for 2q = . Instead, the transformed function at the previous sampling time is used 

for 
2( ) ( )of u  = − . 

The transformed function of ( ) ( ) ( )o of u u     = − −  

0

( ) ( 1)( 1) ( 1) ( 1)
o o

k

l

F k l k l U l U k l   − −

=

= + − + + − +               (29) 

Thus, Eq. 14 is transformed as follows.  

( ) 1

1

1

1 4

1 0

0 ( ) ( 1)( 1) ( 1) ( 1)
o o

N k
h k

o

h k l

h
W h a l k l U l U k l

k
   

−

− −

= + =

 
= − + + − + + − + 

 
             (30) 

Since functions 
o

U −  are found in the previous step, there are no nonlinear terms in Eq. 30. Thus, a system 

of linear equations for Eq. 30 can be obtained as Eq. 31. 
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( ) ( ) ( )

( ) ( )

( )

1 2

1 1

4

1

1 2

0 0 0
(1) (0) 0

2
0 (2) (1) 0

1 1

0 0
( 1) ( 2)

0 0 0
( ) ( 1)

0 0 0 0
1

N

o o o

N

o o

o

N

W F
N

W F

a

W N F N

W N F N
N

N

  

 



−

      
− − −      

      
            − −               + = 
     − −       −    

  
−  −  

0

0

 
 
 
 
 
 
 
 

           (31) 

Eq. 20 in the first solution is replaced by Eq. 30. Eq. 31 is below as more compact form. 




4
A W F 0+ =                  (32) 

If W  in Eq. 32 is substituted in Eq. 23 equations below are found. 

( )( )
1 1 1

1 2 1 3 4
U A A A A A F

− − −= − +                 (33) 


 1

4
W A F

−= −                    (34) 

Case 3 

In this case, Eq. 13 and 14 is handled for 3q = . In this solution, the approach in solution 2q =  is repeated. 

Let the function is 
3( ) ( )of u  = −  to be applied DTM. Mathematical operations are included in the 

appendix and the transformed function is as follows. 

( )

1 2 3

1 2 3

0 0 1 1 1

31 2 3

1 2 3

( ) ( 1)( 1)( 1)

( ) ( ) ( )
1 1 1

k l N N N

l m h m h l m h k l

h h h k

o

F k m l m k l

h h h
U h U h U h

m l m k l


= = = + = − + = − +

+ + − −

= + − + − +

   
 −   

+ − + − +   

   
            (35) 

Because of the same problem encountered in the second solution, the transformed functions at the previous 

sampling time (
o ) are utilized. Mathematical transaction is the following order. 

( ) ( ) ( ) ( )o o of u u u        = − − −  is transformed to 

0 0

( ) ( 1)( 1)( 1) ( 1) ( 1) ( 1)
o o o

k l

l m

F k m l m k l U m U l m U k l     − − −

= =

= + − + − + + − + − +           (36) 

Expression of Eq. 14 for 3q =  is below. 

( ) 1

1

1

1

1

4

0 0

0 ( )

( 1)( 1)( 1) ( 1) ( 1) ( 1)
o o o

N
h k

o

h k
k l

l m

h
W h

k

a m l m k l U m U l m U k l     


−

= +

− − −

= =

 
= − + 

 

+ − + − + + − + − +




           (37) 

The linear equation system of Eq. 37 is the same way as the previous solution as follows. 




4
A W F 0+ =                  (38) 
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6. RESULTS AND DISCUSSION 

Eqs. 13 and 14 are solved with the DDE23 function in MatLab® software and with MatLab®/Simulink 

software. The solutions of Eqs. 13 and 14 obtained with the Differential Transformation Method (Eqs. 25, 

26, 33, 34 and 38) are also solved using MatLab® software. The parameter values used in the solutions are 

1 0.05a = , 
2 0.6a = , 

3 0.001a = , 
4 0.001a = , 5N = , 6.4 =  and 6 = . 

The results obtained with four different methods, DTM, Multi-Step DTM, Simulink and DDE23, for 3q =  

and 6 =  values are compared in Fig.1. The solution of the fundamental DTM which found by using the 

constant transformed functions values differs from other methods after a certain time. But the accuracy can 

be increased by selecting the higher N value. However, the result obtained with the transformed functions 

that take different values at each sampling time (Multi-Step DTM), gives very similar output to Simulink® 

and DDE23 solutions. 

 

Figure 1. Comparision of Solutions for 3q =  and 6 =  

A simulation for 1q =  and 6.4 =  values is executed by using Multi-Step DTM, Simulink® and DDE23 is 

shown in Fig. 2. As seen the system is damped depending on the selected parameters and carries on cutting 

without vibration. In this graph, the result obtained with Runge-Kutta based Simulink® is very close to the 

result obtained with Multi-Step DTM. DDE23 also gives close result to these two methods. Multi-Step 

DTM has higher values than that of the others when the direction of the motion changes. 

u  versus   is demonstrated in Fig. 3. 2q =  and 6.4 =  values are taken in this solution. A similar 

interpretation in Fig. 2 can be made for Fig. 3. There can also be observed a damped oscillation. The 

difference from Fig. 2 is that damping occurs slowly. The reason for this is the q  value in the nonlinear 

damping effect. Magnitude of derivative of u  changes between 0 and 1. Consequently, taking the power of 

the damping term values with a larger q  gives smaller values. This causes less damping effect. 

The results of the simulation for 3q =  and 6.4 =  is plotted in Fig. 4. The basic difference of Fig. 4 from 

Figs. 2 and 3 is that the system is damped slowly which reason as mentioned above. The higher q  value 

makes the magnitude of u  small. Therefore, the amplitude of u  is higher than Figs. 2 and 3. 
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Figure 2. Time Histories for 1q =  and 6.4 =  

 

Figure 3. Time Histories for 2q =  and 6.4 =  

 

Figure 4. Time Histories for 3q =  and 6.4 =  

0 20 40 60 80 100 120 140 160 180 200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8



u

 

 

Multi-Step DTM Simulink dde23

0 20 40 60 80 100 120 140 160 180 200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8



u

 

 

Multi-Step DTM Simulink dde23

0 20 40 60 80 100 120 140 160 180 200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8



u

 

 

Multi-Step DTM Simulink dde23

 

 

 



119 

 

İbrahim DEMİR, Mustafa Mehmet Fatih KARAHAN, Nizami AKTÜRK 

GU J Sci, Part A, 8(1): 109-122 (2021) 
 

 

The results for the value, 6 = , the dimesionless time delay, and three different q  values are depicted in 

Fig. 5. Increasing of amplitude for all q  values occurs because of the changing of dimensionless time delay. 

As seen in Fig. 5. (c), incremet of amplitude is slower for larger q  values. When taking the power of 

damping terms whose magnitude exceeds 1 with larger q  values, larger damping values come out. This 

proves that the damping effect is higher. In this way, the amplitude rising is slower. In this solution, Multi-

Step DTM and Simulink® methods give closer results than DDE23. 

 

 

Figure 5. Time Histories for 6 = . a) 1q = , b) 2q = , c) 3q =  

7. CONCLUSIONS 

In this paper, differential transformation method is used for solving the mathematical model that can be 

considered in cutting tool vibrations. The results are compared with that of Simulink® and DDE23. This 

study shows that the fundamental DTM is not giving valid results always. The study also proves that Multi-

Step DTM gives competitive results with other methods. It is also a suitable method for the analysis of 

physical systems. This article offers a method to overcome the difficulty caused by nonlinear delay terms, 

by using the values of nonlinear delay terms that found before the delay time. 
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APPENDIX 

Transformed function of ( )ou  −  

( ) 1

1

1

1 1( ) ( )
N

h k

o

h k

h
U k U h

k


−

=

 
= − 

 
                       (A1) 

Transformed function of ( )ou   −  

( )2 1( ) 1 ( 1)U k k U k= + +                          (A2) 

Transformed function of 2( ) ( )oh u  = −  

2 2

0

( ) ( ) ( )
k

l

H k U l U k l
=

= −                      (A3) 

3( ) ( )of u  = − is expressed as ( ) ( ) ( )of h u   = − . 

Transformed function of ( ) ( ) ( )of h u   = −  

2

0

( ) ( ) ( )
k

l

F k H l U k l
=

= −                       (A4) 

( )H k  in A3 is written in A4. 

2 2 2

0 0

( ) ( ) ( ) ( )
k l

l m

F k U m U l m U k l
= =

= − −                (A5) 

Using A1 and A2 equations, 
2( )U k  in A2 is arranged as follows to be used in A5. 

( ) 1

1

11

2 1

1
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N
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= + − 

+ 
                (A6) 

( ) 2
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2 2
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h k l

o

h k l

h
U k l k l U h

k l


− + −

= − +

 
− = − + − 

− + 
                          (A7) 

Transformed function of 
3( ) ( )of u  = −  is found as below. 

( )

1 2 3

1 2 3

0 0 1 1 1

31 2 3

1 2 3

( ) ( 1)( 1)( 1)
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U h U h U h

m l m k l
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   
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            (A8) 


