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Abstract
For a symmetric linear compact resp. symmetric densely defined linear operator with compact inverse, expansion
theorems in series of eigenvectors are known. The aim of the present paper is to generalize the known expansion
theorems to the case of corresponding operators without the symmetry property. For this, we replace the set of
orthonormal eigenvectors in the symmetric case by a set of biorthonormal eigenvectors resp. principal vectors in
the case of simple eigenvalues resp. general eigenvalues. The results for the operators without the symmetry
property are all new. Furthermore, if the operators are symmetric, the generalized results deliver the known
expansions. As an application of the results for nonsymmetric operators with simple eigenvalues, we obtain a
known expansion in a series of eigenfunctions for a non-selfadjoint Boundary Eigenvalue Problem with ordinary
differential operator discussed in a book of Coddington/Levinson. But, we obtain a new result if the eigenvalues
are general, that is, not necessarily simple. In addition, for a differential operator of 2nd order with constant
coefficients, the eigenfunctions and Green’s function are explicitly determined. This result is also new, as far as
the author is aware.
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1. Introduction
The paper is structured as follows.

Section 2 is of preparatory nature and of utmost importance for the subsequent sections; it discusses functions of an operator
in a Banach space.

Section 3 is on the expansion of a linear compact operator and of a pertinent projection operator in a series of eigenvectors
resp. principal vectors in a Hilbert space.

Section 4 treats densely defined linear operators T = L with compact inverse G = T−1 = L−1, derives for it expansions in
series of eigenvectors resp. of principal vectors and shows that G+ = G∗ not only for simple, but also for general eigenvalues,
where G+ = L−1

+ and L+ is the formal adjoint of L.
In Section 5, applications of the results of Section 4 are made to a non-selfadjoint BEVP taken from [2, Chapter 12],

delivering relation [2, Chapter 12, (5.6)]. Here, not only the expansion in a series of eigenfunctions is obtained in the Hilbert
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space H = L2(a,b) if the eigenvalues are simple, but also a corresponding expansion in a series of principal functions if the
eigenvalues are general.

In Section 6, beyond this, for a differential operator L defined by Lu(x) = Lp0,q0u(x) =−u′′(x)+ p0u′(x)+q0u(x), 0≤ x≤ l
with real constants p0 and q0, the eigenvalues µ j and pertinent eigenfunctions χ j(x) as well as the associated eigenvalues µ j = µ j
and eigenfunctions ψ j(x) of the formally adjoint operator L+ defined by L+v(x)= L−p0,q0v(x)=−v′′(x)− p0v′(x)+q0v(x), 0≤
x≤ l with the biorthonormality property are explicitly determined. Furthermore, the Green’s functions G(x,s) = G(x,s; p0,q0)
pertinent to the operator L = Lp0,q0 as well as the associated Green’s function G+(x,s) = GT (x,s) = G(s,x) = G(s,x;−p0,q0)
pertinent to the formally adjoint operator L+ = L−p0,q0 are also explicitly determined confirming the general result G+ = GT

for the linear compact operators G and G+ defined by the corresponding Green’s functions. In Section 7, we compare the
present expansion results in abstract Hilbert spaces with known ones. Finally, Section 8 contains the conclusions.

2. Functions of an Operator in a Banach Space
This section contains the basis for the convergence of the studied expansions and is thus of utmost importance for the whole
paper.

The method of deriving the expansions for symmetric linear compact operators is no longer applicable when the symmetry
property is missing. See, for example the derivation for a symmetric linear compact operator in [14, Theorem 6.4-B, pp.336-337].

A hint what can be done in the nonsymmetric case is found in [2, Chapter 12, 1. Introduction, p.298, first paragraph]. As
stated there, an appropriate approach is furnished by the Cauchy integral method. There, one can read: ”The method ... yields
complete information about the convergence of the expansion for any integrable function.”

We mention that most theorems of the classical Theory of Functions can be carried over to functions of a complex variable
z with values in a complex Banach space.

So, in particular, Cauchy’s integral method can be applied to functions with values in a Banach space, that is, in a complete
normed space, where the completeness property of the space is essential.

In [2], the special case of the Hilbert function space H = L2(a,b) is used, that is, a specific complete function space with
scalar product.

This is not general enough for our purposes, however. What we need is Cauchy’s integral method in a general Banach
space. This is treated in the book [6, Chapter I, §5]. However, there Kato assumes that the underlying normed space be
finite-dimensional. Then, of course, the space is complete. But, the assumption of finite dimension can be replaced by the
completeness of the space since this is the important condition to allow the transition from complex-valued functions of a
complex variable to vector-valued functions of a complex variable, as we have already mentioned above. This is done, for
instance, in Stummel’s paper [13], where Cauchy’s integral method is used to show the existence of the resolvent integral for a
pair of linear bounded operators A,B ∈ B(E,F) where E and F are Banach spaces and where it is proven that the completeness
property is even not necessary if the operator B is compact.

Here, we study only a single operator T ∈ B(E), i.e., the pair (A = T,B = I) with the identity operator I in F = E where,
for the time being, we assume that the space is complete. In a subsequent paper, we shall investigate whether the completeness
property of the space for the series expansion of T can be dropped if T is compact.

For the study of asymptotic expansions for discrete approximations of eigenvalue problems, we refer the reader to [4].
After these preliminary remarks, we turn to functions of an operator in a Banach space as announced in the heading of this

section.
We mention that here we use verbatim and almost verbatim passages from [6, Chapter I, §5].
Let {0} 6= E be a Banach space over the field IF =C . Whereas in [6, Chapter I] it is supposed that dimE < ∞, here we

assume that dimE = ∞. As already mentioned several times, the following results taken from [6] are valid for dimE < ∞ and
dimE = ∞ if the space is complete.

Let p(ζ ) be the polynomial

p(ζ ) = α0 +α1ζ + · · ·αnζ
n, ζ ∈C (2.1)

with α j ∈C , j = 0,1, · · · ,n. Then the polynomial p(T ) ∈ B(E) is defined by

p(T ) = α0 +α1T + · · ·αnT n, ζ ∈C , (2.2)

see [6, Chapter I, §3.3]. Making use of the resolvent

R(ζ ) := (T −ζ )−1, ζ ∈C , (2.3)
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one can now define the function φ(T ) of T for a more general class of functions φ(ζ ).
Before we do this, we mention that linear compact operators need not have eigenvalues. For example, Volterra integral

operators have no eigenvalues. On the other hand, consider a symmetric linear compact operator. Then, such an operator has at
least one eigenvalue, and all eigenvalues are real and simple. It may happen that there exits only a finite number of eigenvalues.
Further, there is at most a countable set of eigenvalues with the only possible accumulation point zero, and there exists a set of
pertinent pairwise orthonormal eigenvectors. Further, it is known that the non-zero elements of the spectrum consist solely
of eigenvalues and that, if there is a countable set of eigenvalues, the assocated sequence tends to zero. For all this, see [14,
Chapter 6].

Further, according to [5, Theorem 44.1, p.191], one has σ(T )\{0}= σP(T )\{0} where σ(T ) is the spectrum of T and
σP(T ) the point spectrum consisting of the eigenvalues of T .

Taking this into account, for our general linear compact operator T ∈ B(E), we suppose that the spectrum σ(T ) of T has a
countable set of non-zero eigenvalues λ j and that the sequence of eigenvalues tends to zero.

Additionally, we suppose that 0 6∈ σ(T ) so that N(T ) = {0} since without this condition, we cannot obtain relation (2.11)
resp.(2.14) below.

Now, suppose that φ(ζ ) is holomorphic in a domain D of the complex plane containing all the eigenvalues λ j 6= 0 of T , and
let C ⊂ D be a simple closed smooth curve with positive direction enclosing all the eigenvalues λ j in its interior. Then, φ(T ) is
defined by the Dunford-Taylor integral

φ(T ) =− 1
2πi

∫
C

φ(ζ )R(ζ )dζ =− 1
2πi

∫
C

φ(ζ )(T −ζ )−1 dζ . (2.4)

This is an analogue of the Cauchy integral formula in the Theory of Functions, see [7, Part I, §15, p. 61]. More generally, the
curve C may consist of several simple closed rectifiable Jordan curves Ck having positive direction with interiors D′k such that
the union of the D′k contains all the eigenvalues of T . We note that (2.4) does not depend on C as long as C satisfies these
conditions. For the Ck, we can use the circles Ck = {z ∈C | |z−λk|= rk} with sufficiently small radii rk.

It can be verified that for the polynomial

φ(ζ ) = p(ζ ) = α0 +α1ζ + · · ·αnζ
n, ζ ∈C (2.5)

with α j ∈C , j = 0,1, · · · ,n, the Dunford-Taylor integral (2.4) is equal to (2.2).
For the special case

φ(ζ ) = p(ζ ) = ζ , (2.6)

we obtain

T =− 1
2πi

∫
C

T R(ζ )dζ = T
(
− 1

2πi

∫
C

R(ζ )dζ

)
=

(
− 1

2πi

∫
C

R(ζ )dζ

)
T. (2.7)

Now, we set

P :=− 1
2πi

∫
C

R(ζ )dζ . (2.8)

According to [6, Chapter I, §5, Section 3], P is a continuous projection operator onto the algebraic eigenspace X = P(E) = R(P),
where R(P) means the range of P. Thus, from (2.7) and (2.8), one obtains

T = T P = PT = PT P. (2.9)

Now, let the radii rk be chosen such that

C j ∩Ck = /0, j 6= k, j,k = 1,2,3, · · · . (2.10)

Then,

P =− 1
2πi

∫
C

R(ζ )dζ =
∞

∑
j=1

(
− 1

2πi

∫
C j

R(ζ )dζ

)
=

∞

∑
j=1

Pj (2.11)

with

Pj =−
1

2πi

∫
C j

R(ζ )dζ , j = 1,2,3, · · · . (2.12)
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At this point, we needed the assumption 0 6∈ σ(T ) since otherwise any circle C0 about λ0 = 0 would eventually intersect with
the circles Ck for sufficiently large k so that we would not have (2.10) for j,k ∈ (1,2,3, · · ·). Let J be the sequence

J := (1,2,3, · · ·). (2.13)

Then, (2.11) can be written as

P =
∞

∑
j=1

Pj = ∑
j∈J

Pj. (2.14)

Because of (2.10), one has

PjPk = PkPj = Pjδ jk, j,k ∈ J. (2.15)

Herewith,

Pj(E) =: X j (2.16)

is the algebraic eigenspace of T associated with the eigenvalue λ j.
From (2.9), (2.11), and (2.15), we obtain

T = PT = T P = PT P = ∑
j∈J

PjT = ∑
j∈J

T Pj = ∑
j∈J

PjT Pj, (2.17)

and so

R(T ) = T (E) = (PT )(E) = (T P)(E) = (PT P)(E)

= ∑
j∈J

(PjT )(E) = ∑
j∈J

(T Pj)(E) = ∑
j∈J

(PjT Pj)(E).
(2.18)

3. Expansion of a Linear Compact Operator and of a Pertinent Projection Operator in
Hilbert Space

The aim of the present section is to specify the relation (2.17), i.e.,

T = PT = T P = PT P = ∑
j∈J

PjT = ∑
j∈J

T Pj = ∑
j∈J

PjT Pj,

in more detail. This can best be done in a Hilbert space since, for example, the orthogonal projection Pu of a vector u ∈ H onto
a unit vector e ∈ H can be written as

Pu = (u,e)e,

that is, by using a scalar product.
In our case, the projection operators Pj are not orthogonal, however. But, the dimension of R(Pj) = Pj(H) is finite-

dimensional and represents the geometric eigenspace N j := N(T − λ j) if the eigenvalue λ j is simple and the algebraic
eigenspace X j := Xλ j(T ) if λ j is not simple. Now, for finite-dimensional spaces, the author constructed, in earlier work, a
set of biorthonormal eigenvectors resp. principal vectors pertinent to a finite-dimensional mapping (usually represented by
a matrix with respect to a fixed basis of vectors); here, the mapping is given by Tj = T Pj = PjT = PjT Pj. Thus, using these
biorthonormal sets, it is possible to specify the expressions Tju = T Pju = PjTu = PjT Pju for elements u ∈ H in more detail
by using a scalar product. This leads to the desired expansion for Tu. Now, the announced details follow, first for the case of
simple eigenvalues, and then for the case of general, not necessarily simple eigenvalues.
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3.1 The Case of Simple Eigenvalues
In this subsection, in the case of simple eigenvalues, expansions in a series of eigenvectors are treated; it is organized as follows.
First, the conditions for the expansions to hold are stated. Then, the series expansions of Tu as well as of Pu are derived. Finally,
the known expansions for a selfadjoint operator T = A are retrieved from the more general result obtained in this subsection.

(i) The Conditions (C1) - (C4)
We assume the following conditions:

(C1) {0} 6= H is a Hilbert space over the field IF =C with scalar product

(C2) 0 6= T ∈ B(H) is compact (or completely continuous) having countably many simple non-zero eigenvalues λ1,λ2,λ3, · · ·
with limk→∞ λk = 0 pertinent to the eigenvectors χ1,χ2,χ3, · · · . Further, 0 6∈ σ(T ).

(C3) The eigenvectors of the adjoint T ∗ of T with the eigenvalues λ 1,λ 2,λ 3, · · · are ψ1,ψ2,ψ3, · · ·

(C4) λi 6= λ j, i 6= j, i, j = 1,2,3 · · ·

(ii) Series Expansions of Tu as well as of Pu
One has the following theorem.
Theorem 3.1 (Biorthonormality relations for λ j 6= λk, j 6= k)
Let the conditions (C1) - (C4) be fulfilled. Then, with appropriate normalization, the eigenvectors χ1,χ2,χ3, · · · and

ψ1,ψ2,ψ3, · · · are orthonormal, that is,

(χ j,ψk) = δ jk, j,k ∈ J. (3.1)

Proof: Define the operators

P(n) :=
n

∑
j=1

Pj (3.2)

as well as

T (n) := T P(n) =
n

∑
j=1

T Pj. (3.3)

Here, R(T (n)) = (T (n))(H) is finite-dimensional with dimension n. From [8, Theorem1], one has

(χ j,ψk) = δ jk, j,k = 1, · · · ,n. (3.4)

and

T (n)
χ j = λ jχ j, j = 1, · · · ,n. (3.5)

Now, letting n→ ∞, relation (3.4) entails (3.1) since T = limn→∞ T (n) according to Section 2. �
Furthermore, we obtain the following theorem.
Theorem 3.2 (Expansions of Tu as well as of Pu in a series of eigenvectors)
Let the conditions (C1) - (C4) be fulfilled. Then,

Tu = ∑
j∈J

λ j(u,ψ j)χ j, u ∈ H (3.6)

as well as

Pu = ∑
j∈J

(u,ψ j)χ j, u ∈ H. (3.7)

Proof: Let u ∈ H. Then, due to (3.1),

P(n)u =
n

∑
j=1

(u,ψ j)χ j (3.8)
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and thus

T (n)u = T P(n) =
n

∑
j=1

λ j(u,ψ j)χ j. (3.9)

Now, from Section 2, the limit

Pu = lim
n→∞

P(n)u =
∞

∑
j=1

(u,ψ j)χ j = ∑
j∈J

(u,ψ j)χ j (3.10)

exists entailing also the existence of the limit

Tu = lim
n→∞

T (n)u = lim
n→∞

T P(n)u =
∞

∑
j=1

λ j(u,ψ j)χ j = ∑
j∈J

λ j(u,ψ j)χ j. (3.11)

�
Remark: From (3.6) we conclude that

[χ1,χ2,χ3, · · · ] = T (H) = R(T ). (3.12)

Further,

P : H 7→ [χ1,χ2,χ3, · · · ]. (3.13)

�
Theorem 3.3
Let the conditions (C1) - (C4) be fulfilled. Then, we obtain

u = Pu = ∑
j∈J

(u,ψ j)χ j, u ∈ H (3.14)

and the projection operator

P0 = I−P : H 7→ N(T ) = {0} ⇐⇒ P0 = 0. (3.15)

Proof: Evidently,

u = Pu+(I−P)u, u ∈ H. (3.16)

Further,

T (P0u) = T (I−P)u = Tu−T Pu = 0 (3.17)

where the last equal sign follows from (2.17). So, P0u ∈ N(T ) = {0}, i.e., P0u = 0, u ∈ H or P0 = 0. �
If condition (C4) is not fulfilled, one can remedy this by using a biorthonormalization pre-process, as the next lemma shows.
Lemma 3.4
Let the conditions (C1) - (C3) be fulfilled, and let, for instance, λ j1 ,λ j2 , · · · ,λ jp be eigenvalues of T with linearly independent

eigenvectors χ j1 ,χ j2 , · · · ,χ jp; further, let ψ j1 ,ψ j2 , · · · ,ψ jp be linearly independent eigenvectors pertinent to λ j1 ,λ j2 , · · · ,λ jp

of T ∗. Then, these eigenvectors can be biorthonormalized such that

(χ jk ,ψ jl ) = δkl , k, l = 1,2, · · · , p. (3.18)

Proof: See [9, Theorem 3]. �
After appropriate application of the biorthonormalization pre-process, condition (C4) is satisfied.
(iii) Special Case of a Selfadjoint Compact Operator T = A
If T = A is selfadjoint and compact and if there is a countable set of non-zero eigenvalues λ j, j ∈ J, then it is known that

the relation

lim
j→∞

λ j = 0 (3.19)
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is fulfilled. Further, the eigenvalues are real, and the pertinent eigenvectors ϕ j can be chosen real so that one has

ϕ j = χ j = ψ j, j ∈ J (3.20)

meaning that the biorthonormality relations (3.1) turn into the orthonormality relations

(ϕ j,ϕk) = δ j,k, j,k ∈ J. (3.21)

Thus, if 0 6∈ σ(A), the relations (3.6) and (3.14) turn into the known results

Au = ∑
j∈J

λ j(u,ϕ j)ϕ j, u ∈ H (3.22)

and

u = Pu = ∑
j∈J

(u,ϕ j)ϕ j, u ∈ H. (3.23)

3.2 The Case of General Eigenvalues
In this subsection, we do not assume that the eigenvalues of T be simple. Then, we obtain expansions in a series of principal
vectors.

This subsection is organized in a similar way as the preceding one.
So, first the conditions for the expansions to hold are stated. Then, the series expansions of Tu as well as of Pu are derived.

(i) The Conditions (C1′) - (C4′)
In the general case when the eigenvalues need not be simple, we assume the following conditions:

(C1′) {0} 6= H is a Hilbert space over the field IF =C with scalar product (·, ·)

(C2′) 0 6= T ∈ B(H) is compact (or completely continuous) having countably many non-zero eigenvalues λ1,λ2,λ3, · · · with
limk→∞ λk = 0 and the pertinent algebraic eigenspaces Pj(H) = Xλ j(T ) spanned by the principal vectors

χ
( j)
1 ,χ

( j)
2 , · · · ,χ( j)

m j for j ∈ J, where χ
( j)
i is of stage i. Further, 0 6∈ σ(T ).

(C3′) ψ
( j)
1 ,ψ

( j)
2 , · · · ,ψ( j)

m j are the principal vectors corresponding to the eigenvalues λ j, j∈ J, spanning the algebraic eigenspaces
P∗j (H) = X

λ j
(T ∗) for j ∈ J

(C4′) λ j 6= λk, j 6= k, j,k ∈ J

(ii) Series Expansions of Tu as well as of Pu
As a preparation of the expansions in series of principal vectors, we begin with the detailed biorthonormalization process.

According to (C2′) and (C3′), we have

T χ
(i)
k = λi χ

(i)
k +χ

(i)
k−1, k = 1,2, · · · ,mi (3.24)

and

T ∗ψ( j)
l = λ j ψ

( j)
l +ψ

( j)
l−1, l = 1,2, · · · ,m j. (3.25)

Then, the fact can be used that the principal vectors of stage k are determined only up to a linear combination of principal
vectors of stages less than k which was applied in [8] to the chain ψ

( j)
1 ,ψ

( j)
2 , · · · ,ψ( j)

m j leading to

(χ
(i)
k ,ψ

(i)
l ) = 0, l 6= mi− k+1, k = 1, · · · ,mi (3.26)

and

(χ
(i)
k ,ψ

(i)
mi−k+1) 6= 0, l = mi− k+1, k = 1, · · · ,mi. (3.27)

So, with

υ
(i)
k = ψ

(i)
mi−k+1, (3.28)
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one has

(χ
(i)
k ,υ

(i)
k ) 6= 0, k = 1, · · · ,mi. (3.29)

Further, according to [8],

(χ
(i)
k ,υ

( j)
l ) = 0, i 6= j (3.30)

k = 1, · · · ,mi, l = 1, · · · ,m j.

Now, replace υ
(i)
k in (3,29) by

υ̃
(i)
k := ψ̃mi−k+1 := β

(i)
mi−k+1 ψmi−k+1 = β

(i)
mi−k+1 υ

(i)
k (3.31)

and determine the factor β
(i)
mi−k+1 such that

(χ
(i)
k , υ̃

(i)
k ) = 1. (3.32)

Then,

β
(i)
mi−k+1 = 1/(χ(i)

k ,υ
( j)
k ) = 1/(χ(i)

k ,ψmi−k+1), k = 1, · · · ,mi (3.33)

or

β
(i)
l = 1/(χ(i)

mi−l+1,υ
( j)
mi−l+1) = 1/(χ(i)

mi−l+1,ψl), l = 1, · · · ,mi. (3.34)

From (3.31), we obtain

ψ
(i)
l =

1

β
(i)
l

ψ̃
(i)
l , l = 1, · · · ,mi. (3.35)

Inserting this in (3.25) implies

T ∗(
1

β
(i)
l

ψ̃
( j)
l ) = λ j (

1

β
(i)
l

ψ̃
( j)
l )+(

1

β
(i)
l−1

ψ̃
( j)
l−1), l = 1,2, · · · ,m j

or

T ∗ψ̃( j)
l = λ j ψ̃

( j)
l + γ

( j)
l−1 ψ̃

( j)
l−1, l = 1,2, · · · ,m j (3.36)

with β
( j)
0 := 1 and ψ̃

( j)
0 := 0 as well as

γ
( j)
l−1 := β

(i)
l /β

(i)
l−1, l = 1,2, · · · ,mi. (3.37)

This means that in the canonical Jordan form of T restricted to the subspace spanned by the principal vectors ψ̃
( j)
1 , ψ̃

( j)
2 , · · · , ψ̃( j)

m j ,

the ones are to be replaced by the γ
( j)
l−1, l = 2, · · · ,mi.

Due to the above, one has the following lemma.
Lemma 3.5 (Biorthonormality relations for principal vectors)
Let the conditions (C1′) - (C4′) be fulfilled. Then, with the above notations,

(χ
(i)
k , υ̃

( j)
l ) = δklδi j, (3.38)

k = 1, · · · ,mi, l = 1, · · · ,m j, i, j ∈ J with

υ̃
( j)
l = ψ̃

( j)
m j−l+1 = β

( j)
m j−l+1 ψ

( j)
m j−l+1 = β

( j)
m j−l+1 υ

( j)
l , (3.39)
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l = 1, · · · ,m j, j ∈ J as well as

β
( j)
m j−l+1 = 1/(χ( j)

l ,υ
( j)
l ) = 1/(χ( j)

l ,ψm j−l+1), (3.40)

l = 1, · · · ,m j, j ∈ J. �
At this point, we mention that

(u,v) = (eϕ u,eϕ v), u, v ∈C n, 0≤ ϕ < 2π

which also applies to the pairs of vectors u = χ
(i)
k ,v = υ̃

( j)
l in (3.38).

Remark: We note that the matrix

((χ
(i)
k , ψ̃

(i)
l ))k,l=1,··· ,mi (3.41)

has the form
1

1
...

1

 (3.42)

which is called cross-diagonal in [12, p.3] and anti-diagonal by other authors. As opposed to this, the matrix ((χ(i)
k , υ̃

(i)
l ))k,l=1,··· ,mi ,

is equal to the identity matrix and thus diagonal. �
With Lemma 3.5, we can derive the next theorem that is an analogue to Theorem 3.2.
Theorem 3.6
Let the conditions (C1′) - (C4′) be fulfilled. Then,

Tu = ∑
j∈J

m j

∑
k=1

(u, υ̃( j)
k )[λ jχ

( j)
k +χ

( j)
k−1], u ∈ H (3.43)

as well as

Pu = ∑
j∈J

m j

∑
k=1

(u, υ̃( j)
k )χ

( j)
k , u ∈ H. (3.44)

Proof: Define

P(n)u =
n

∑
j=1

Pj =
n

∑
j=1

Pλ j(T ). (3.45)

Since P(n)(H) is finite-dimensional, Lemma 3.4 entails

P(n)u =
n

∑
j=1

m j

∑
k=1

(u, υ̃( j)
k )χ

( j)
k , u ∈ H. (3.46)

This leads to

T (n)u : = T P(n)u =
n

∑
j=1

m j

∑
k=1

(u, υ̃( j)
k )T χ

( j)
k

=
n

∑
j=1

m j

∑
k=1

(u, υ̃( j)
k )[λ jχ

( j)
k +χ

( j)
k−1], u ∈ H.

(3.47)

From this, it follows, based on Section 2,

P = lim
n→∞

P(n) (3.48)
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as well as

T = lim
n→∞

T (n) (3.49)

in the Banach space B(H). From (3.45) - (3.49), the relations (3.43) and (3.44) follow. �
Using (3.44), we obtain the next theorem.
Theorem 3.7
Let the conditions (C1′) - (C4′) be fulfilled. Then,

u = Pu = ∑
j∈J

m j

∑
k=1

(u, υ̃( j)
k )χ

( j)
k , u ∈ H. (3.50)

Proof: The proof is done in the same way as for Theorem 3.3 �
Remark: As in the case of simple eigenvalues of T , under the conditions (C1′) - (C4′) the relation N(T ) = {0} is equivalent

to the property that λ0 = 0 is not an eigenvalue of T which, in turn, is equivalent to λ 0 = 0 is not an eigenvalue of T ∗ or that
N(T ∗) = {0}. �

Remark: If condition (C4′) is not fulfilled, this again can be remedied by a biorthonormalization pre-process described in [9,
Theorem 4]. �

4. Series Expansions for a Densely Defined Linear Operator with Compact Inverse
The results on linear compact operators in Section 3 can be carried over to densely defined linear operators with compact
inverse. The obtained expansions have important applications to BEVPs for ordinary and partial differential equations, where in
Section 5, we restrict ourselves to BEVPs for ODEs. Again, it is natural to first handle the case of simple eigenvalues and then
the case of general eigenvalues.

4.1 The Case of Simple Eigenvalues
In this subsection, in the case of simple eigenvalues, expansions in series of eigenvectors are treated.

It is structured as follows. We begin with the conditions on the densely defined linear operator L, its formally adjoint
operator L+ and their pertinent compact inverses G and G+. Then, it is shown that G+ = G∗ where G∗ is the adjoint operator of
G. Next, the expansions for Gu and Pu in series of eigenvectors are derived.

(i) The Conditions (C1d) - (C5d)
We assume the following conditions:

(C1d) {0} 6= H is a Hilbert space over the field IF =C with scalar product (·, ·)

(C2d) {0} 6= HD and HR are pre-Hilbert spaces with

HD ⊂ HR ⊂ H, HD = HR = H

and where

L : D(L) := HD 7→ HR

is a linear operator with the countably many simple non-zero eigenvalues
µ1,µ2,µ3, · · · and the property lim j→∞ µ j = ∞ as well as pertinent eigenvectors χ1,χ2,χ3, · · · ∈ HD. Further, L possesses
a compact inverse

G := L−1 ∈ B(H)

(C3d) {0} 6= HD,+ and HR are pre-Hilbert spaces with

HD,+ ⊂ HR ⊂ H, HD,+ = HR = H

and where

L+ : D(L+) := HD,+ 7→ HR

is a linear operator with the countably many simple non-zero eigenvalues
µ1,+,µ2,+,µ3,+, · · · and the property lim j→∞ µ j,+ = ∞ as well as pertinent eigenvectors ψ1,ψ2,ψ3, · · · ∈ HD,+. Further,
L+ possesses a compact inverse

G+ := L−1
+ ∈ B(H)
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(C4d) (Lu,v) = (u,L+v), u ∈ HD, v ∈ HD,+

(C5d) µ j 6= µk, j 6= k, j,k ∈ J

We mention that due to the above conditions, 0 6∈ σ(G).
(ii) Series Expansions of Gu and Pu
The first theorem reads as follows.
Theorem 4.1
Let the conditions (C1d) - (C5d) be fulfilled. Then,

µ j,+ = µ j, j ∈ J (4.1)

and

G+ = G∗ (4.2)

where G∗ ∈ B(H) is the adjoint operator of G defined by

(Gu,v) = (u,G∗u), u, v ∈ H. (4.3)

Further, the operator G has the eigenvalues λ j = 1/µ j as well as the eigenvectors χ j, and G+ = G∗ has the eigenvalues
λ j,+ = λ j = 1/µ j,+ = 1/µ j as well as the eigenvectors ψ j for j ∈ J. In addition, lim j→∞ λ j = 0.

Proof: Let ũ, ṽ ∈ HR and

u := L−1ũ = Gũ

as well as

v := L−1
+ ṽ = G+ṽ.

Then,

u ∈ HD, v ∈ HD,+.

Substituting this in (C4d) gives

(ũ,G+ṽ) = (Gũ, ṽ), ũ, ṽ ∈ HR

or, with new denotations,

(u,G+v) = (Gu,v), u, v ∈ HR,

i.e.,

(Gu,v) = (u,G+v), u, v ∈ HR,

and thus, because of HR = H, also

(Gu,v) = (u,G+v), u, v ∈ H.

On the other hand,

(Gu,v) = (u,G∗v), u, v ∈ H

and consequently

G+ = G∗.

The rest of the proof is obtained in a simple way. �
From Theorem 4.1 and the results of Subsection 3.1, we obtain the following corollary.
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Corollary 4.2
Let the conditions (C1d) - (C5d) be fulfilled. Then,

Gu = ∑
j∈J

λ j(u,ψ j)χ j, u ∈ H, (4.4)

u = Pu = ∑
j∈J

(u,ψ j)χ j, u ∈ H. (4.5)

Proof: Because of

Gχ j = λ jχ j

and

G∗ψ j = G+ψ j = λ j,+ψ j = λ jψ j,

j ∈ J, from Section 3.1 we obtain the relations (4.4) and (4.5). �

4.2 The Case of General Eigenvalues
In this subsection, we do not assume that the eigenvalues of L be simple. Then, we obtain expansions in a series of principal
vectors.

This subsection is organized in a similar way as the preceding one.
So, first the conditions on the densely defined linear operator L, its formally adjoint operator L+ and their compact inverses

G and G+ are stated. Next, the expansions of Gu and Pu in series of principal vectors are derived.

(i) The Conditions (C1′d) - (C5′d)
We assume the following conditions:

(C1′d) {0} 6= H is a Hilbert space over the field IF =C with scalar product (·, ·)

(C2′d) {0} 6= HD and HR are pre-Hilbert spaces with

HD ⊂ HR ⊂ H, HD = HR = H

and where

L : D(L) := HD 7→ HR

is a linear operator with the countably many general non-zero eigenvalues
µ1,µ2,µ3, · · · and the property lim j→∞ µ j = ∞ as well as pertinent principal vectors χ

( j)
1 ,χ

( j)
2 , · · ·χ( j)

m j ∈ HD j ∈ J, where

χ
( j)
i is of stage i. Further, L possesses a compact inverse

G := L−1 ∈ B(H)

(C3′d) {0} 6= HD,+ and HR are pre-Hilbert spaces with

HD,+ ⊂ HR ⊂ H, HD,+ = HR = H

and where

L+ : D(L+) := HD,+ 7→ HR

is a linear operator with the countably many general non-zero eigenvalues
µ1,+,µ2,+,µ3,+, · · · and the property lim j→∞ µ j,+ =∞ as well as pertinent principal vectors ψ

( j)
1 ,ψ

( j)
2 , · · ·ψ( j)

m j ∈HD,+ j ∈
J. Further, L+ possesses a compact inverse

G+ := L−1
+ ∈ B(H)
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(C4′d) (Lu,v) = (u,L+v), u ∈ HD, v ∈ HD,+

(C5′d) µ j 6= µk, j 6= k, j,k ∈ J

Again, we mention that due to the above conditions, 0 6∈ σ(G).

(ii) Series Expansions of Gu and Pu
The next theorem reads as follows.
Theorem 4.3
Let the conditions (C1′d) - (C5′d) instead of (C1d) - (C5d) be fulfilled. Then, the relations (4.1) - (4.3) as well as lim j→∞ λ j = 0

of Theorem 4.1 hold.
Proof: The proof of Theorem 4.3 is the same as for Theorem 4.1 since it does not depend on the condition that the

eigenvalues be simple. �
From Theorem 4.3 and the results of Subsection 3.2, we obtain the following corollary.
Corollary 4.4
Let the conditions (C1′d) - (C5′d) be fulfilled. Then,

Gu = ∑
j∈J

m j

∑
k=1

(u, υ̃( j)
k )[λ jχ

( j)
k +χ

( j)
k−1], u ∈ H, (4.6)

u = Pu = ∑
j∈J

m j

∑
k=1

(u, υ̃( j)
k )χ

( j)
k , u ∈ H. (4.7)

�

5. Application to a General Non-Selfadjoint BEVP with Ordinary Differential Operator of
nth Order

In this section, we apply the results of Section 4 to a general non-selfadjoint BEVP for an ordinary differential operator L of nth
order. In doing so, we not only obtain the expansion (1.7) for simple eigenvalues, but also, in addition, those for Pu and Gu in
series of eigenfunctions, and further those for general eigenvalues in series of principal functions, which is much more than
what is obtained in [2] before.

We mention that this section contains a series of verbatim and almost verbatim passages from [2, Chapter 11].
Now, the details follow.
Let a≤ x≤ b be a closed bounded interval, and let L be the linear differential operator of nth order with n≥ 1 defined by

(Lu)(x) := an(x)u(n)(x)+an−1(x)u(n−1)(x)+ · · ·+a1(x)u′(x)+a0(x)u(x) (5.1)

where ak are complex-valued functions of class Ck[a,b] and an(x) 6= 0 on [a,b]. Given any set of 2mn complex constants
αi j, βi j, i = 1,2, · · · ,m, j = 0,1, · · · ,n−1 , define the m boundary operators or boundary forms R1, · · · ,Rm for the functions u
on [a,b], for which u( j), j = 1,2, · · · ,n exist at a and b by

Riu :=
n−1

∑
j=0
{αi ju( j)(a)+βi ju( j)(b)}= 0, i = 1,2, · · · ,m (5.2)

⇐⇒

Ru = 0. (5.3)

We suppose that R has rank m. Corresponding to any homogeneous boundary value problem (for short: BVP) is a well-defined
”adjoint” problem (which should better be called formally adjoint problem) with the Lagrange ”adjoint operator” given by

(L+v)(x) = (−1)n(an(x)v)(n)(x)+(−1)n−1(an−1(x)v)(n−1)(x)+ · · ·
+(−1)(a1(x)v)′(x)+a0(x)v(x)

(5.4)

and a set of adjoint boundary conditions

R+v = 0 (5.5)
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complementary in a sense to those for the problem pertinent L.
We mention that some authors denote the formally adjoint operator by L∗, see for instance [10]. But, we do not follow

this usage since this paper is functional-analysis-oriented and since L∗ could be misinterpreted as the adjoint of a densely
defined linear operator L, see [1, No.44]. Instead, as in [2], we use a plus sign to denote the formally adjoint operator, here as a
subscript instead of a superscript there.

We note that an adjoint boundary condition is not unique, see [2, Theorem 2.1].
Now, we define the pre-Hilbert spaces

HD := D(L) := {u ∈Cn[a,b] |Ru = 0} (5.6)

and

HD,+ := D(L+) := {v ∈Cn[a,b] |R+v = 0}. (5.7)

Then,

(Lu,v) = (u,L+v), u ∈ HD, v ∈ HD,+. (5.8)

We mention that

C∞
0 [a,b]⊂ HD ⊂ HR :=C2[a,b]⊂ L2(a,b) =: H (5.9)

where C2[a,b] is the function space C[a,b] endowed with the norm

‖u‖2 =

(∫ b

a
|u(x)|2dx

) 1
2

, (5.10)

and where the integral is taken in the sense of Riemann which is equal to the Lebesgue integral for u ∈C2[a,b]. The space
L2(a,b) is the space of measurable functions such that the above integral (taken in the sense of Lebesgue) is finite.

Corresponding to (5.9), one has

C∞
0 [a,b]⊂ HD,+ ⊂ HR =C2[a,b]⊂ L2(a,b) = H. (5.11)

It is known that

C∞
0 [a,b] = L2(a,b).

If R is a boundary form of rank m, the problem

πm : Lu = 0, u ∈ HD = D(L) (5.12)

is called a homogeneous BVP of rank m.
The problem

π2n−m,+ : L+v = 0, v ∈ HD,+ = D(L+) (5.13)

is called the adjoint BVP.
One has the following:
πn and πn,+ have the same number of independent solutions. see [2, p.293, last line].
The BEVP pertinent to πn is given by

πn,µ : Lu = µu, u ∈ HD = D(L) (5.14)

and that associated with πn,+ by

πn,µ,+ : L+v = µv, v ∈ HD,+ = D(L+). (5.15)

Now, let G(x,s) be the Green’s function pertinent to the BVP πn and G+(x,s) the Green’s function associated with πn,+.
Then, the pertinent compact operators G = L−1 and G+ = L−1

+ are given by

(Gu)(x) =
∫ b

a
G(x,s)u(s)ds, u ∈ L2(a,b) (5.16)
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and

(G+v)(x) =
∫ b

a
G+(x,s)v(s)ds, v ∈ L2(a,b) (5.17)

where

G+(x,s) = G(s,x), x,s ∈ [a,b], (5.18)

see [2, (4.15)] implying for the pertinent operators G in (5.15) and G+ in (5.17) the relations

G+ = G∗. (5.19)

If the conditions (C1d) - (C5d) for L in (5.1) and for L+ in (5.4) are fulfilled, then (5.19) follows also from the abstract results
of Section 4, and beyond this, one obtains also the expansions in series of eigenvectors (4.4) and (4.5) in Corollary 4.2 with
convergence in the norm ‖ · ‖2, whereas in [2, Chapter 12,(5.6)] only the relation (4.5), i.e.,

u =
∞

∑
j=1

(u,ψ j)χ j, u ∈ H = L2(a,b)

is given.
Beyond this, if the conditions (C1′d) - (C5′d) are fulfilled, then the expansions in series of principal vectors (4.6) and (4.7)

are valid in the norm ‖ · ‖2. This case when the eigenvalues are general is not treated in [2] and means a considerable progress
in the theory of non-selfadjoint BEVPs.

6. The Case of a Non-Selfadjoint BEVP of 2nd Order
In this section, we further specialize the BEVP discussed in Section 5 by restricting the order of L to n = 2 and by employing
very simple boundary values. The considered problem is often used as an example in books on Mathematical Physics and is
treated there in a special weighted norm. But when it comes to specific examples, the term with the first derivative usually is
omitted so that one obtains a selfadjoint problem. Here, we keep this term, and so we get a non-selfadjoint problem of 2nd
order.

This section is split up in two subsections.
In Subsection 6.1, the BEVP of 2nd order with real continuous coefficients is established. It goes without saying that the

series expansions obtained in Section 5 are valid if the corresponding conditions are fulfilled.
In Subsection 6.2, we further specialize the BEVP of 2nd order to the case when the coefficients are constant. Then, it is

possible to explicitly determine the eigenvalues, biorthonormal eigenfunctions, and the Green’s functions defining the inverse
operators G of L and G+ of L+.

6.1 The BEVP of 2nd Order with Real Continuous Coefficients
As a special case of the general differential operator of nth order in Section 5, in this subsection we consider the differential
operator of 2nd order

Lu(x) := a2(x)u′′(x)+a1(x)u′(x)+a0(x)u(x), 0≤ x≤ l (6.1)

with real functions ai ∈Ci[0, l], i = 0,1,2 and the boundary conditions

Ru = 0 ⇐⇒ u(0) = u(l) = 0, (6.2)

cf. e.g., [11, §75, p.362] where a2(x) =−1, a1(x) = p(x), a0(x) = q(x), l = 1.
We mention that we have chosen here the interval [0, l] since, in applications to mechanical problems, l means a length.
The formally adjoint operator L+ reads

L+v(x) := (a2(x)v)′′(x)− (a1(x)v)′(x)+a0(x)v(x), 0≤ x≤ l. (6.3)

As adjoint boundary condition, we choose

R+v = 0 ⇐⇒ v(0) = v(l) = 0 (6.4)
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so that R+v = Ru = 0 holds. Here, we have

HD = {u ∈C2[0, l] |u(0) = u(l) = 0}= HD,+ (6.5)

and

HR =C2[0, l] (6.6)

as well as

H = L2(0, l). (6.7)

Herewith,

(Lu,v) = (u,L+v), u ∈ HD, v ∈ HD,+ (6.8)

so that condition (C4d) is fulfilled.
We further suppose that the differential operator L in (6.1) has a countable set of simple non-zero eigenvalues µ1, µ2, µ3, · · ·

with lim j→∞ µ j = ∞. Then, the conditions (C1d) - (C5d) are fulfilled, and one has the expansions in series of eigenfunctions
(4.4) and (4.5).

6.2 The Special Case of Constant Coefficients
In this subsection, we treat the BEVP of Subsection 6.1 when a2(x) =−1, a1(x) = p(x) = p0, a0(x) = q(x) = q0 are constant
in the interval [0, l], that is, when Lu =−u′′+ p0 u′+q0 u and thus L+v =−v′′− p0 v′+q0 v .

In this special case, it is possible to explicitly determine the eigenvalues µ j of L resp. µ j of L+ and the pertinent
eigenfunctions χ j resp. ψ j, as the case may be. Further, the Green’s functions G(x,s; p0,q0) and G+(x,s; p0,q0) defining the
inverse compact operators G and G+ = GT are explicitly determined. As far as the author is aware, these results have not been
obtained, before.

For the sake of brevity, the details of the derivation of these quantities are left to the reader. However, we give some hints
for obtaining these results.

(i) The Differential Operators L and L+ and Pertinent BEVPs
As already announced, in this subsection, we choose constant coefficients in the differential operator L. More precisely, we

set

a2(x) =−1, a1(x) = p(x) = p0, a0(x) = q(x) = q0 (6.9)

with real constants p0 and q0 so that

(Lu)(x) =−u′′(x)+ p0u′(x)+q0u(x), 0≤ x≤ l (6.10)

and

(L+v)(x) =−v′′(x)− p0v′(x)+q0v(x), 0≤ x≤ l (6.11)

with the same boundary conditions (6.2) and (6.4) as in Subsection 6.1.
We restrict the constant q0 to q0 > 0.
The pertinent BEVPs read

π2,µ : Lu = µu, u ∈ HD = D(L) (6.12)

and that associated with π2,+ by

π2,µ,+ : L+v = µv, v ∈ HD,+ = D(L+). (6.13)

(ii) The Eigenvalues and Eigenfunctions
The eigenvalues of L and L+ are given by

µ = µ = µ j = µ j =
j2π2

l2 +D, j ∈ J (6.14)
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with the quantity

D = D(p0,q0) = (
p0

2
)2 +q0 > 0 (6.15)

so that

lim
j→∞

λ j = lim
j→∞

1
µ j

= 0 (6.16)

is fulfilled.
The biorthonormal eigenfunctions are found to be

χ j(x) =

√
2
l

exp(
p0

2
x)sin j π

x
l
, 0≤ x≤ l, j ∈ J (6.17)

and

ψk(x) =

√
2
l

exp(− p0

2
x)sink π

x
l
, 0≤ x≤ l, k ∈ J (6.18)

so that we have

(χ j,ψk) =
∫ l

0
χ j(x)ψk(x)dx =

2
l

∫ l

0
sin( j π

x
l
)sin(k π

x
l
)dx = δ jk, j,k ∈ J. (6.19)

Hint: To derive these results, use the ansatz u(x) = ceκx in order to solve the BEVP

Lp0,q0u = µu, u(0) = u(l) = 0. (6.20)

The eigenfunctions ψ j(x) are obtained from χ j(x) by just replacing p0 by −p0. �
(iii) The Green’s Function of Lp0,q0u = 0, u(0) = u(l) = 0
A set of fundamental solutions of the BVP Lp0,q0u = 0, u(0) = u(l) = 0, i.e., when µ = 0, is given by

u1(x) = exp
( p0

2
x
)

sinh
√

Dx, 0≤ x≤ l, (6.21)

u2(x) = exp
( p0

2
x
)

cosh
√

Dx, 0≤ x≤ l, (6.22)

with

D = D(p0,q0) = (
p0

2
)2 +q0 (6.23)

which is also obtained with the ansatz u(x) = ceκx by setting c = 1 and taking into account µ = 0 where here D is a discriminant.
Based on these fundamental solutions, we have calculated the Green’s functions by the method described in [10, pp.311].
Thus, one gets

G(x,s) =


G1(x,s) =

sinh
√

Dx sinh
√

D(l− s)√
Dsinh

√
Dl

exp
( p0

2
(x− s)

)
, 0≤ x≤ s≤ l,

G2(x,s) =
sinh
√

D(l− x) sinh
√

Ds√
Dsinh

√
Dl

exp
( p0

2
(x− s)

)
0≤ s≤ x≤ l.

(6.24)

For G+(x,s), we obtain

G+(x,s) =


G+,1(x,s) =

sinh
√

D(l− x) sinh
√

Ds√
Dsinh

√
Dl

exp
( p0

2
(s− x)

)
, 0≤ x≤ s≤ l,

G+,2(x,s) =
sinh
√

Dx sinh
√

D(l− s)√
Dsinh

√
Dl

exp
( p0

2
(s− x)

)
0≤ s≤ x≤ l.

(6.25)
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so that, because of D = D(p0,q0),

G(x,s) = G(x,s; p0,q0) (6.26)

and

G+(x,s) = GT (x,s) = G(s,x) = G(s,x;−p0,q0) (6.27)

in accordance with the fact that, for the pertinent operators, one has G+ = GT .

7. Comparison of Present Expansion Results
with Known Ones in an Abstract Hilbert Space

The oldest expansion result for compact operators in an abstract Hilbert space being of formal similarity to our results the
author found is that in [1, Section 64, pp.172-174]. There, under certain conditions, the expansions of the form

h = h0 + ∑
j∈J

(h,e j)e j, h ∈ H (7.1)

with an element h0 ∈ H0 := N(T ) as well as

T h = ∑
j∈J

µ j(h,e j)g j, h ∈ H (7.2)

can be found. Here, the vectors e j are the pairwise orthonormal eigenvectors of A := T ∗T . The associated eigenvalues λ j can
be written in the form

λ j = (Ae j,e j) = (T ∗Te j,e j) = (Te j,Te j)> 0. (7.3)

Therefore, one has λ j = µ2
j , where µ1 ≥ µ2 ≥ ·· ·> 0.

The vectors g j are defined by

Te j = µ jg j (7.4)

leading to

(g j,gk) = δ jk. (7.5)

Applying T to (7.1) and using (7.4), we obtain (7.2).
As opposed to this, our result is an expansion in series of eigenvalues and eigenvectors/principal vectors of the compact

operator T itself whereas in [1] one has an expansion in series of eigenvalues µ j = µ j(T ∗T ) and eigenvectors e j = e j(T ∗T ) of
T ∗T and the vectors g j defined in (7.4) that are left singular vectors in the denotation of [3, p.2].

The most recent publication on expansions of a compact operator in an abstract Hilbert space the author has found is [3].
There, it is used that the singular values and singular vectors of T are related to the nonzero eigenvalues and corresponding
eigenvectors of T ∗T and T T ∗. More precisely, one has

T φk = σkψk, (7.6)

T ∗T φk = σ
2
k φk, (7.7)

T T ∗ψk = σ
2
k ψk. (7.8)

The quantities σk are called singular values, the vectors φk are called right singular vectors and ψk left singular vectors in [3,
p.2]. Herewith, it is proven that the expansion

T =
∞

∑
k=1

σkψk⊗φk (7.9)

is valid in B(H). The difference to the present paper is that, in [3], the expansion is not in eigenvalues and eigenvectors/principal
vectors of the compact operator T itself.
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8. Conclusions
In this paper it is shown that expansions in series of eigenvectors valid for symmetric linear compact operators and symmetric
densely defined linear operators with compact inverse can be carried over to corresponding nonsymmetric operators where,
in the case of general eigenvalues, the expansions are in series of principal vectors. These results are all new and mean a
considerable progress in the Spectral Analysis of Nonsymmetric Linear Compact Operators in a Hilbert Space. The expansions
discussed in Section 7 are not in series of eigenvectors resp. principal vectors and thus are different from ours. Further, in
Natural Sciences and Engineering, expansions in series of eigenvectors and principal vectors are of particular importance.
Our results are applicable to general non-selfadjoint BEVPs pertinent to an ordinary differential operator of nth order and
deliver even there new results when the eigenvalues are general, that is, not necessarily simple. In a special example of a
differential operator of 2nd order with constant coefficients, the eigenvalues, eigenfunctions and the Green’s functions are
explicitly determined which also seems to be new, as far as the author is aware.
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