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Continuous prime systems satisfying N(x) = c(x− 1) + 1

JAN-CHRISTOPH SCHLAGE-PUCHTA

ABSTRACT. Hilberdink showed that a continuous prime system for which there exists a constant A such that the
function N(x)− Ax is periodic satisfies N(x) = c(x− 1) + 1. He further showed that there exists a constant c0 > 2,
such that there exists a continuous prime system of this form if and only if c ≤ c0. Here, we determine c0 numerically
to be 1.25479 · 1019 ± 2 · 1014. To do so we compute a representation for a twisted exponential function as a sum
over the roots of the Riemann zeta function. We then give explicit bounds for the error obtained when restricting the
occurring sum to a finite number of zeros. .
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1. INTRODUCTION AND RESULTS

Let S be the space of right-continuous functions f : R → R of bounded local variation, for
which f(x) = 0 for x < 1. Let S+ be the subset consisting of non-decreasing functions. For
functions f, g ∈ S define the Mellin-Stieltjes convolution f ∗ g by means of the equation

(f ∗ g)(x) =

x∫
1−

f(x/t)dg(t),

and the convolution exponential exp∗ g as

exp∗ g =

∞∑
n=0

g∗n

n!
,

where g∗n denotes n-fold iterated convolution. For π ∈ S+ define Π(x) =
∑
k≥1

1
kπ(x1/k) and

N = exp∗Π. If the sum defining Π converges for all x, then we call the pair (Π, N) a continuous
prime system with prime counting function π. Note that if π(x) denotes the number of ordinary
primes below x, we obtain N(x) = bxc, and Π(x) is the weighted number of prime powers
below x introduced by Riemann. If more generally π(x) is a step function with integral jumps,
then N(x) is the counting function of an arithmetic semigroup in the sense of Knopfmacher
([5]).

Starting with the work of Beurling, there has been ongoing interest in continuous prime
systems. Hilberdink ([4]) showed that if there is some c, such that N(x) − cx is periodic and
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continuously differentiable, then N(x) = c(x − 1) + 1. This led him to ask, for which c such a
number system exists. Define the holomorphic function f as

f(z) =

∞∑
n=1

µ(n)

n
(ez/n − 1) =

∞∑
k=1

zk

k!ζ(k + 1)
.

He then proved the following.

Theorem 1.1. There exists a continuous prime system satisfying N(x) = c(x − 1) + 1 if and only if
f(x) ≥ f((1−c)x) for all x ≥ 0. Moreover, there exists some c0 > 2 such that there exists such a prime
system if and only if c ≤ c0.

Here, we determine c0 numerically. Clearly, the existence of c0 is equivalent to the statement
that f(x) is positive for some x < 0. Hilberdink proved the existence of such an x using Lan-
dau’s ineffective criterion on the continuation of Dirichlet series with non-negative coefficients,
therefore his proof does not yield any bound on c0.
We prove the following.

Theorem 1.2. The constant c0 from Theorem 1.1 satisfies∣∣c0 − 1.25479 · 1019
∣∣ ≤ 2 · 1014.

2. ASYMPTOTIC ESTIMATES FOR f

In the sequel θ denotes a complex number of modulus ≤ 1, which may be different in all
equations and may depend on all occurring parameters. As in the case of Landau symbols,
equations containing θ may only be read from left to right, e.g. we have θ = 2θ, but not 2θ = θ.
The following is a version of Stirling’s formula with an explicit error term, derived by Boyd
([3]).

Lemma 2.1. For | arg z| ≤ π
2 we have

Γ(z) =
√

2πz
(z
e

)z (
1 + θ

1 +
√

2

2π2|z|

)
.

We can now come to the main result of this section. We denote the non-trivial roots of ζ by ρ,
and the imaginary part of ρ by γ.

Lemma 2.2. Let T ≥ 100 be a real number such that all roots of ζ in the rectangle 0 ≤ σ ≤ 1, |t| ≤ T
are simple with real part 1

2 , and that ζ has no root with imaginary part T . Put

δ = min
−2≤σ≤2

|ζ(σ + iT )|.

Then we have for real x > e2 the estimate

f(−x) =
1

x2ζ ′(−1)
+

1√
x

∑
|γ|<T

Γ(1− ρ)

ζ ′(ρ)
xiγ(2.1)

+ θ
15.18

x5/2
+ θ(0.85 log x+ 0.88δ−1)T 2e−πT/2

Proof. From the Mellin transform

1

2πi

− 1
2 +i∞∫

− 1
2−i∞

Γ(s)x−sds = e−x − 1,
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we deduce

f(−x) =
1

2πi

3
2 +i∞∫

3
2−i∞

Γ(1− s)
ζ(s)

xs−1ds.

We shift the path of integration to the path going from 1 + 1
log x − i∞ to 1 + 1

log x − iT , then
to − 3

2 − iT , to − 3
2 + iT , further to 1 + 1

log x + iT , and finally to 1 + 1
log x + i∞. Doing so we

encounter one singularity at s = −1 with residuum 1
x2ζ′(−1) , and one singularity with residuum

Γ(1−ρ)
ζ′(ρ) x

1/2+iγ for each non-trivial root ρ in the rectangle 0 ≤ σ ≤ 1, |t| < T . Note that the pole
of ζ at 1 and the pole of Γ at 0 cancel each other. The integral over the new path will be bounded
from above. We have∣∣∣∣∣∣∣

− 3
2 +iT∫

− 3
2−iT

Γ(1− s)
ζ(s)

xs−1ds

∣∣∣∣∣∣∣ ≤
1

x5/2

− 3
2 +i∞∫

− 3
2−i∞

∣∣∣∣Γ(1− s)
ζ(s)

∣∣∣∣ ds,
and since Γ decreases rapidly along every line parallel to the imaginary axis, the last integral
can easily be evaluated numerically to be ≤ 95.32. On the line < s = 1 + 1

log x , we have

1

|ζ(s)|
< ζ(1 +

1

log x
) < 1 +

∫ ∞
1

dt

t1+1/ log x
= 1 + log x,

thus ∣∣∣∣∣∣∣
1+ 1

log x +i∞∫
1+ 1

log x +iT

Γ(1− s)
ζ(s)

xs−1ds

∣∣∣∣∣∣∣ ≤ e(1 + log x)

1+ 1
log x +i∞∫

1+ 1
log x +iT

|Γ(1− s)| ds,

and from Lemma 2.1, we obtain that for x ≥ e2 the right hand side is bounded above by

e(1 + log x)

∫ ∞
T

(t+ 1)e−πt/2 dt = e(1 + log x)(
2

π
T +

4 + 2π

π2
)e−πT/2.

Finally, we have∣∣∣∣∣∣∣
1+ 1

log x +iT∫
− 3

2 +iT

Γ(1− s)
ζ(s)

xs−1ds

∣∣∣∣∣∣∣ ≤ δ−1(T + 1)e−πT/2

1+ 1
log x∫

− 3
2

xσ−1dσ ≤ e(T + 1)e−πT/2δ−1.

We conclude that the modulus of the integral over the new path is bounded above by
95.32

x5/2
+ (1 + log x)(3.462T + 5.665

)
e−πT/2 + 2e(T + 1)δ−1eπT/2

≤95.32

x5/2
+ (5.491δ−1 + 5.279 log x)Te−πT/2,

where we used the bounds 1 + log x ≤ 3
2 log x and T ≥ 100. Taking the factor 1

2π into account
our claim follows. �

Note that even if we assume RH and the simplicity of all roots, we cannot get an explicit for-
mula depending only on x and T , since it might be that ζ ′(ρ) could be very close to 0. However,
as in the explicit formula for

∑
n≤x µ(n), we do get an explicit formula valid for all suitable val-

ues of T . We refer the reader to [6, section 14.27] for details.

Lemma 2.3. We have f(−x) < 0 for 0 < x < 2.5 · 106, and f(−x) < 9.2 · 10−13 for all x > 0.
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Proof. We claim that in the range 7 < x < 2.5·106 the first negative summand in (2.1) dominates
the other terms. We put T = 100. A straightforward computation yields δ ≥ 1.19, together with
ζ ′(−1) = −0.165421 . . . we obtain

f(−x) ≤ −6.045

x2
+

15.18

x5/2
+

1√
x

∑
|γ|≤100

∣∣∣∣Γ(1− ρ)

ζ ′(ρ)

∣∣∣∣+ (0.85 log x+ 0.74) · 6.05 · 10−65

≤ −6.045

x2
+

15.18

x5/2
+

1.44 · 10−9

√
x

+ (5.15 log x+ 4.48) · 10−65.

From this, we conclude f(−x) < 0 for 7 < x < 2.5 · 106 as well as f(−x) < 9.2 · 10−13 for
2.5 · 106 < x < e1050

. If x is very big we use estimates for the summatory function of the
Möbius function. We have

∞∑
n=1

µ(n)

n
(e−x/n − 1) ≤

∞∑
n=1

m(n)
∣∣∣e−x/n − e−x/(n+1)

∣∣∣ ,
where m(x) =

∣∣∣∑n≤x
µ(n)
n

∣∣∣. Bordellés ([2]) has shown that m(x) ≤ 546
log2 x

for x > 1, hence for

x > e24 we get

|f(−x)| ≤ e−x +

∞∑
n=2

546

log2 n
e−x/n

∣∣∣e−x/(n(n+1)) − 1
∣∣∣

≤ e−x +

∞∑
n=2

546

log2 n
e−x/n min

(
2x

n(n+ 1)
, 1

)
≤ xe−x

1/3

+
1092

log2 x2/3

∑
n≥x2/3

1

n2

≤ e24−e8 +
4.27

x2/3
,

which is sufficiently small for x > 1019. In the range 1
2 ≤ x ≤ 7, we can compute f with high

precision using its Taylor series. We have

|f ′′(−x)| =

∣∣∣∣∣
∞∑
n=1

µ(n)e−x/n

n3

∣∣∣∣∣ ≤
∞∑
n=1

e−x/n

n3
≤ e−x +

∫ ∞
0

e−x/t

t3
dt = e−x +

1

x2
.

Thus for a given x0, we compute f(x0) and f ′(x0), estimate f ′′(x0), and obtain an interval for
which f is negative. Finally in the range 0 < x ≤ 1

2 , we have

f ′(−x) =

∞∑
k=1

(−x)k−1

(k − 1)!ζ(k + 1)
≥ 1

ζ(2)
− x

ζ(3)
> 0

together with f(0) = 0, we conclude that f(−x) < 0 in 0 < x ≤ 1
2 as well. Hence the lemma is

proven for all x > 0. �

3. COMPUTATION OF c0

The problem of computing c0 is equivalent to finding the infimum of all c, such that there
exists some y > 0 with f(−y) ≥ f( y

c−1 ). Since f(x) is increasing for x ≥ 0, the right hand side
is decreasing with c, hence our problem is equivalent to minimizing x

y subject to the relations
x, y > 0, f(x) = f(−y).
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By Lemma 2.3, we have f(−y) < 9.2 · 10−13. As f(x) ≥ x
ζ(2) for x ≥ 0, the equation f(−y) =

f(x) implies x < 2 · 10−12. Together with f(−y) < 0 for y < 2.5 · 106, we obtain x
y < 5 · 1018 for

all x, y > 0 satisfying f(x) = f(−y). This crude lower bound is surprisingly close to the actual
value for c.

For two positive real numbers y1, y2, we say that y1 is better than y2, if f(−y1) > 0, and
either f(−y2) ≤ 0 or for the real numbers x1, x2 > 0 defined by the equation f(−yi) = f(xi)
we have x1

y1
< x2

y2
. Clearly if y1 is better than y2, then y2 cannot solve our optimization problem.

We first show that in this way the range of y can be restricted to a bounded interval.

Lemma 3.4. Suppose that x1 > 0 satisfies f(−x1) > 0. Then x1 is better than all x2 satisfying
x2 >

9.2·10−13

f(−x1) x1.

Proof. Suppose that x2 > x1, and that x1 is not better than x2. Let y1, y2 be given by the
equations f(−xi) = f(yi). We then have y2 > y1, and since f is convex in x ≥ 0, we conclude
that f(y2)

y2
> f(y1)

y1
, thus f(−x2)

x2
> f(−x1)

x1
. Our claim now follows from Lemma 2.3. �

We now apply Lemma 2.2 with T = 100 and neglect all roots except 1
2 +iγ1, where γ1 = 14.13 . . .

to find

f(−x) =
1

x2ζ ′(−1)
+

2√
x
<
xiγ1Γ( 1

2 − iγ1)

ζ ′(ρ1)

+ θ

(
4 · 10−14

x1/2
+

15.18

x5/2
+ (5.15 log x+ 4.48) · 10−65

)
=

1

x2ζ ′(−1)
+

10−14

√
x
<
(
xiγ1(−14102 + 143259i+ 5θ)

)
+ θ

(
15.18

x5/2
+ (5.15 log x+ 4.48) · 10−65

)
=

1

x2ζ ′(−1)
+

10−14

√
x
<
(
xiγ1(−14102 + 143259i+ 21θ)

)
,

provided that 2.5 · 106 ≤ x ≤ 1050. Putting s = log(−x), we obtain

(3.2) f(−es) =
e−2s

ζ ′(−1)
+ (143951 + 22θ) · 10−14e−s/2 cos(γ1s+ 1.66892).

In particular we obtain f(−e15) > 2.3 · 10−13, thus, using Lemma 3.4, e15 is better than all
x satisfying x > 4 · e15. In particular we only have to consider values of x, for which the
approximation (3.2) is valid. Considering the power series for f we find that for x ∈ [0, 1020]
with f(−x) > 0 the unique value y with f(y) = f(−x) satisfies y < ζ(2)f(−x), as well as

f(y) <
y

ζ(2)
+ ey − 1− y < y

ζ(2)
+ y2,

thus

y > ζ(2)f(−x)− (ζ(2)f(−x))2 >

(
1− 3 · 10−9

√
x

)
ζ(2)f(−x),

and therefore y =

(
1 +

3 · 10−9θ√
x

)
ζ(2)f(−x). We conclude that in the relevant range the func-

tion to be minimized is (
1 +

4 · 10−9θ√
x

)
x

f(−x)
,
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subject to the condition f(−x) > 0. Since this condition in particular implies that the first,
negative, summand in (3.2) is of smaller absolute value than the second, we obtain that we
have to minimize the inverse of

e−3s

ζ ′(−1)
+ (143951 + 24θ) · 10−14e−3s/2 cos(γ1s+ 1.66892)

subject to the condition that this expression is positive, that is, we have to find the largest local
maximum of this function. The first positive local maximum of this function occurs at s = 14.99
with a value of 7.01 · 10−20, the second at 15.44 with a value of 7.97 · 10−20, the third at 15.88
with a value 5.26 · 10−20. All further local maxima are much smaller. The precision is sufficient
to guarantee that the maximum is attained in the interval [15.43, 15.45] and has a value in the
interval [7.9 · 10−20, 8 · 10−20].
We can now refine our computation by using the latter bound to improve the error in (2.1). We
put T = 100 in Lemma 2.2 and get

f(−x) =
1

x2ζ ′(−1)
+

2√
x

29∑
j=1

Γ( 1
2 − iγj)

ζ ′( 1
2 + iγj)

<xiγj + 1.69 · 10−16θ

=
1

x2ζ ′(−1)
+

2√
x

∣∣∣∣ Γ( 1
2 − iγj)

ζ ′( 1
2 + iγj)

∣∣∣∣ cos

(
γ1 log x+ arg

Γ( 1
2 − iγj)

ζ ′( 1
2 + iγj)

)
+ 1.75 · 10−16θ

for e15.43 < x < e15.45. From this, we find that the maximum of f(−x)
x is attained in log x =

15.4382+θ0.0001 and has a value (796947+θ)·10−25, and the value of c0 is (1.25479+0.00002θ)·
1019. The proof of Theorem 1.2 is complete.
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