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Abstract

In the second half of the 19th century, Siacci investigated the motion of a particle in space
under the influence of any forces (Atti R Accad Sci. Torino 14(1879)). In this study, Siacci
obtained a resolution of the acceleration vector which is very useful when the angular
momentum is conserved. On the other hand, Bishop introduced the Bishop frame which
is well defined for every curves and so very convenient for mathematical researches in the
third quarter of the 20th century (Am Math Monthly 82(1975)). In this study, we discuss
the Siacci’s resolution of the acceleration vector according to Bishop frame of the trajectory
of the moving particle. Also, we provide an illustrative example for the obtained results.

1. Introduction

In kinematics, the change in velocity of a moving particle in 3-dimensional Euclidean space with respect to the time parameter gives the
acceleration. Since the force acting on a particle is concerned with its acceleration through the equation F = ma, the acceleration vector has
an important place in kinematics and Newtonian physics.
The acceleration vector is usually written as the sum of its tangent and normal components. This writing style is useful in many applications.
But we can not say this in movements where angular momentum is conserved. In this case, it is more useful to write the acceleration vector
as the sum of its tangent and radial components. The success of obtaining the acceleration vector along tangent and radial components
belongs to the Italian mathematician Francesco Siacci. The acceleration vector is stated in the aforementioned form by Siacci in the study [1].
In this study performed by Siacci, the motion of the particle is restricted to the plane. Also, Siacci performed a similar study for a moving
particle in space [2].
Siacci’s theorem has been studied widely by many authors. Whittaker was the first person to deal with this issue after Siacci. Whittaker
proved the Siacci’s theorem in the plane geometrically in his work carried out in 1937 [3]. Grossman succeeded in providing a more modern
proof than Whittaker’s in 1996 [4]. Afterwards, Casey discussed the Siacci’s theorem in space which is based on the Serret-Frenet formulas
to simplify the mathematical expressions in the theorem [5]. One of the most recent studies has been carried out by Kucukarslan et al [6].
The authors expressed and proved the Siacci’s theorem for the curves lying on the Finsler manifold in this study. Then, Ozen studied on the
Siacci’s theorem for Bishop and Type-2 Bishop frames in his master’s thesis [7] under the supervision of M. Tosun (The present article is
derived from this master’s thesis). Also Ozen et al. [8] researched the Siacci’s theorem in view of the Darboux frame for the motion of a
particle along the regular surface curve. Afterwards, Ozen et al [9] discussed the Siacci’s theorem in the space endowed with the modified
orthogonal frame. Finally, Ozen expressed and proved the Siacci’s theorem for Frenet curves in 3-dimensional Minkowski space [10].
In the theory of curves, Serret-Frenet frame is a moving frame which is very useful and has an important place. To ride along a curve and
illustrate the typical properties of this curve, e.g. the curvatures is possible thanks to this frame. But this frame has a disadvantage. For the
curves which have vanishing second derivatives, it is not well defined. Hence an alternative frame, that is more convenient for mathematical
investigations, was required. The discovery of Bishop frame finished this requirement in 1975 [11].
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This frame is well defined for every curves. As a result of this, it has been studied by a lot of researchers to deal various concepts. Today, the
studies on the Bishop frame have expanded to areas such as Biology and Computer graphics. Bishop’s framework is used in predicting the
structural information of DNA in biology and controlling virtual cameras in the field of Computer Graphics. The readers are referred to the
studies [12–18] which are related to Bishop frame.
This article is organized as follows. In Section 2, we have given a short knowledge on the fundamental concepts to ensure understanding
the ensuing sections. In Section 3, for a moving particle in space, we give Siacci’s theorem in terms of Bishop elements of the trajectory.
Moreover, an illustrative example is given for the aforementioned theorem.

2. Preliminaries

Let us consider the 3−dimensional Euclidean space E3 with the standard scalar product:

〈Q,R〉= q1r1 +q2r2 +q3r3, (2.1)

where Q = (q1 , q2 , q3) , R = (r1 , r2 , r3) are arbitrary vectors in this space. The norm of the vector Q is given by ‖Q‖ =
√
〈Q , Q〉. If a

curve σ = σ (s) : I ⊂ R → E3 satisfies the equality
∥∥∥ dσ

ds

∥∥∥= 1 for all s ∈ I, this curve is said to be a unit speed curve and s is said to be
arc-length parameter of this unit speed curve.
The moving Serret-Frenet frame of σ (s) is showed with {T(s) , N(s) , B(s)}. In this frame, the vector T(s) is called the unit tangent vector,
the vector N(s) is called the unit principal normal vector. Also, the vector B(s) is called the unit binormal vector and it is obtained by
vectorial product of T(s) and N(s). Another thing that can be of importance is that this frame satisfies the following formulas:

dT
ds

= κN

dN
ds

=−κT+ τB

dB
ds

=−τN,

(2.2)

where κ =
∥∥∥ dT

ds

∥∥∥ and τ =−
〈

dB
ds , N(s)

〉
represent the curvature function and the torsion function, respectively [19].

We know that the unit tangent vector T(s) of a given curve is determined uniquely. The Bishop frame of this given curve comprises the
unique tangent vector T(s) and two normal vectors N1 (s) and N2 (s), that are obtained by applying the circular rotation to the vectors N(s)
and B(s) in the instantaneous normal plane T(s)⊥ such that N1

′ (s) and N2
′ (s) are collinear with T(s) [11]. Consequently, we have the

Bishop frame {T, N1, N2} which satisfies the derivative formulas:

dT
ds

= k1N1 + k2N2

dN1
ds

=−k1T

dN2
ds

=−k2T,

(2.3)

where k1 and k2 indicate the Bishop curvatures. As a result of the aforementioned circular rotation, there is a relation between the
Serret-Frenet frame and Bishop frame as follows:

T = T
N1 = cosϕ N− sinϕ B
N2 = sinϕ N+ cosϕB,

(2.4)

where ϕ represents the aforementioned rotation angle. On the other hand, the equalities

ϕ (s) = arctan
k2 (s)
k1 (s)

κ(s) =
√

k1
2(s) + k2

2(s)

k1(s) =
√

k1
2(s) + k2

2(s)cosϕ (s)

k2(s) =
√

k1
2(s) + k2

2(s)sinϕ (s)

τ (s) =
dϕ

ds

(2.5)

hold [16, 20].
In E3, let us assume that a particle P moves along a curve γ endowed with the Bishop frame. At time t, let us show the position vector of P
relative to the origin O with x. Denote by s the arc-length parameter of γ which is a function of the time t. Then the equality

T =
dx
ds
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is immediately obtained. This equality yields the velocity of P as follows [5]:

v =
dx
dt

=
dx
ds

ds
dt

=
ds
dt

T.

Similarly above, the acceleration

a =
dv
dt

=
d
dt

(
ds
dt

T
)

=
d
dt

(
ds
dt

)
T+

ds
dt

d T
dt

=
d2s
dt2 T+

ds
dt

d T
ds

ds
dt

=
d2s
dt2 T+

(
ds
dt

)2
k1N1 +

(
ds
dt

)2
k2N2

is found. With the help of (2.5), a can be written as in the following form:

a =
d2s
dt2 T+

√
k1

2 + k2
2
(

ds
dt

)2
(cosϕ N1 + sinϕ N2) . (2.6)

Then we conclude that the acceleration vector lies in the instantaneous plane Sp {T,cosϕ N1 + sinϕ N2}. The instantaneous vector
−sinϕ N1 + cosϕ N2 is the normal vector of this instantaneous plane and the system {T, cosϕ N1 + sinϕ N2,−sinϕ N1 + cosϕ N2} is a
right-handed orthonormal system [7].

3. Alternative Resolution of Acceleration Vector According to Bishop Frame

In this section, we express Siacci’s theorem according to Bishop Frame and give an example for the application of this theorem (see [7] for
more details). We continue to take into account of the aforementioned particle P.
Suppose that the position vector of the particle P is resolved as

x = aT−b(cosϕ N1 + sinϕ N2)+ c (−sinϕ N1 + cosϕ N2) , (3.1)

where

a = 〈x, T〉
b = 〈x,−cosϕ N1− sinϕ N2〉
c = 〈x,−sinϕ N1 + cosϕ N2〉 .

(3.2)

Denote by r the vector

r = aT−b(cosϕ N1 + sinϕ N2) , (3.3)

lying in the instantaneous plane Sp{T, cosϕ N1 + sinϕ N2}. Where r symbolizes the length of r

r2 = 〈r, r〉= a2 +b2 (3.4)

can be written easily (see Figure 3.1).
On the other hand, the angular momentum vector of P about the origin O is obtained as

HO = mc
ds
dt

(cosϕ N1 + sinϕ N2)+mb
ds
dt

(−sinϕ N1 + cosϕ N2) (3.5)

by vector product of x and m ds
dt T.

Now we try to resolve the acceleration vector in (2.6) along the radial direction BP and tangential direction in the instantaneous plane
Sp{T, cosϕ N1 + sinϕ N2}. To do so, let us state the vector cosϕ N1 + sinϕ N2 in terms of r and T. Due to (3.3), that can be possible when
b 6= 0. If we assume that the component of angular momentum along the vector −sinϕ N1 + cosϕ N2 never vanishes, we can ensure that b
never equals to zero. Considering this assumption, we can write the following equalities

cosϕ N1 + sinϕ N2 =
1
b
(−r+aT) (3.6)

and

er =
1
r

r. (3.7)
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Here er indicates the unit vector in direction of r. By means of (3.7), we get

cosϕ N1 + sinϕ N2 =
1
b
(−r er +aT) . (3.8)

Considering (3.8) in (2.6), we obtain the fundamental form of the acceleration vector as in the following:

a =

[
d2s
dt2 +

a
b

√
k1

2 + k2
2
(

ds
dt

)2
]

T+

[
− r

b

√
k1

2 + k2
2
(

ds
dt

)2
]

er = St T+Sr er. (3.9)
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Figure 3.1: An illustration for explaining the motion of the moving particle P and the components of its acceleration vector.

Now we want to obtain the acceleration components St and Sr of the particle P in various forms. Because of that, we need some preparation.
Let us differentiate the right and left side of (3.1) with respect to s. Then we obtain

T =

(
da
ds

+ k1csinϕ + k1bcosϕ− k2ccosϕ + k2bsinϕ

)
T

+

(
k1a− dc

ds
sinϕ− dϕ

ds
ccosϕ− db

ds
cosϕ +

dϕ

ds
bsinϕ

)
N1

+

(
k2a+

dc
ds

cosϕ− dϕ

ds
csinϕ− db

ds
sinϕ− dϕ

ds
bcosϕ

)
N2.

(3.10)

Because the vectors T, N1 and N2 compose an orthonormal system,

1 =
da
ds

+ k1csinϕ + k1bcosϕ− k2ccosϕ + k2bsinϕ

0 = k1a− dc
ds

sinϕ− dϕ

ds
ccosϕ− db

ds
cosϕ +

dϕ

ds
bsinϕ

0 = k2a+
dc
ds

cosϕ− dϕ

ds
csinϕ− db

ds
sinϕ− dϕ

ds
bcosϕ

(3.11)

can be written. By keeping the equalities k1 =
√

k1
2 + k2

2 cosϕ and k2 =
√

k1
2 + k2

2 sinϕ in mind, we get

da
ds

= 1−b
√

k1
2 + k2

2

db
ds

= a
√

k1
2 + k2

2 − c
dϕ

ds
dc
ds

= b
dϕ

ds
.

(3.12)

If we differentiate (3.4) and use (3.12), it is not difficult to see the followings:

r
dr
ds

= a− cb
dϕ

ds

r
dr
ds

= a− c
dc
ds

.

(3.13)
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Let us use the notation

h = b
ds
dt

. (3.14)

Then, we obtain Sr as in the following form:

Sr =−
r h2
√

k1
2 + k2

2

b3 . (3.15)

If (3.12) and (3.14) are taken into consideration, St can be written as

St =
1

2b2

(
d
ds

(
h2
)
+

h2

b2
d
ds

(
c2
))

. (3.16)

Similar to above, we can easily get

St =
1
2

d
ds

((
ds
dt

)2
)
+

√
k1

2 + k2
2
(

ds
dt

)2( 1
2b

d
ds

(
r2
)
+

dϕ

ds
c
)

(3.17)

by using the first equality in (3.13).
Finally, it is very easy to see the following:

St =
1
2

d
ds

((
ds
dt

)2
)
+

1
2b

(
ds
dt

)2√
k1

2 + k2
2 d

ds
(〈x, x〉) (3.18)

from the second equality in (3.13), since 〈x ,x〉= a2 +b2 + c2 = r2 + c2.
Consequently, if we consider the above derivation, we can state the following theorem and corollary for a particle moving along a space
curve endowed with the Bishop frame.

Theorem 3.1 (Siacci’s Theorem According to Bishop Frame). ( [7]) In E3, let P be a particle moving on a curve γ endowed with Bishop
frame. Suppose that the component of the angular momentum of P along the unit vector −sinϕ N1 +cosϕ N2 never equals to zero. Then, the
acceleration vector a of the particle P can be expressed as in (3.9). The component St , given in (3.9), lies along the tangent line of γ . The
component Sr, given in (3.9), lies along the line which passes through P and the foot of the perpendicular that is from O to the instantaneous
plane Sp{T, cosϕ N1 + sinϕ N2}.

Corollary 3.2. ( [7]) St can be given as in (3.16), (3.17) and (3.18) except for the fundamental form, while Sr can be given as in (3.15)
except for the fundamental form.

Remark 3.3. ( [7]) In Euclidean 3-space E3, let the trajectory γ be restricted to the fixed plane Sp{T, cosϕ N1 + sinϕ N2} containing
or not containing O. Then, it is obvious that the unit vector −sinϕ N1 + cosϕ N2, that is the unit normal vector of this fixed plane, is
constant along γ . This means that its derivative d

ds (−sinϕ N1 + cosϕ N2) equals to zero for all s values of the parameter. If this derivative
is calculated, one can easily conclude that dϕ

ds = 0. So, for this case, (3.16) and (3.17) reduce to

St =
1

2b2
d
ds

(
h2
)

(3.19)

and

St =
1
2

d
ds

((
ds
dt

)2
)
+

1
2b

√
k1

2 + k2
2
(

ds
dt

)2 d
ds

(
r2
)
, (3.20)

respectively.

Example 3.4. Assume that the helix curve δ (t) =
(

8cos
t

17
, 8sin

t
17

, 15
t

17

)
is the trajectory of the moving particle P. Then we can easily

write

x =
(

8cos
s

17
, 8sin

s
17

, 15
s

17

)
. (3.21)

Firstly, let us note that

〈x, x〉=
〈(

8cos
s

17
, 8sin

s
17

, 15
s

17

)
,
(

8cos
s

17
, 8sin

s
17

, 15
s

17

)〉
= 64+

225
289

s2.

By differentiating (3.21) twice with respect to time t, we get

a =

(
− 8

289

(
ds
dt

)2
cos

s
17
− 8

17
d2s
dt2 sin

s
17

, − 8
289

(
ds
dt

)2
sin

s
17

+
8

17
d2s
dt2 cos

s
17

,
15
17

d2s
dt2

)
.

Since δ is a unit speed curve, it is obvious that

ds
dt

= 1

d2s
dt2 = 0.
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Figure 3.2: An illustration for the helix curve given in Example 3.4

On the other hand, the following equalities hold:

T(s) =
(
− 8

17
sin

s
17

,
8

17
cos

s
17

,
15
17

)
N(s) =

(
−cos

s
17

,−sin
s

17
, 0
)

B(s) =
(

15
17

sin
s

17
, −15

17
cos

s
17

,
8

17

)
.

(3.22)

From here, we obtain√
k1

2 + k2
2 =

∥∥∥∥dT
ds

∥∥∥∥= ∥∥∥∥(− 8
289

cos
s

17
,− 8

289
sin

s
17

, 0
)∥∥∥∥= 8

289
.

By means of (2.4) and (3.22), the second and third Bishop bases are given by

N1 =

(
−cosϕ cos

s
17
− 15

17
sinϕ sin

s
17

, −cosϕ sin
s

17
+

15
17

sinϕ cos
s

17
, − 8

17
sinϕ

)
(3.23)

and

N2 =

(
−sinϕ cos

s
17

+
15
17

cosϕ sin
s

17
, −sinϕ sin

s
17
− 15

17
cosϕ cos

s
17

,
8

17
cosϕ

)
. (3.24)

Then we can write

a = 〈x, T〉= 225
289

s

b = 〈x,−cosϕ N1− sinϕ N2〉= 8.

So, we get

h = 8

r =

√
50625
83521

s2 +64.

Substituting the obtained values of b, r, h,
√

k1
2 + k2

2, ds
dt and 〈x, x〉 into (3.15) and (3.18) gives us the followings:

St =
225

83521
s (3.25)

and

Sr =−
1

289

√
50625
83521

s2 +64. (3.26)

Finally, we must note that one can easily find the same solutions by means of the other options that are given in (3.9), (3.16) and (3.17).
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[6] Z. Küçükarslan, M. Y. Yılmaz, M. Bektaş, Siacci’s theorem for curves in Finsler manifold F3, Turkish J. Sci. Technol., 7 (2012), 181-185.
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