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Abstract – This work is concerned with the boundary-value-transition problem consisting of a two-

interval Sturm-Liouville equation 

𝐿𝑢 ≔ −𝑢′′(𝑥) + 𝑞(𝑥)𝑢(𝑥) = 𝜆𝑢(𝑥) , 𝑥 ∈ [−1,0) ∪ (0,1] 

together with antiperiodic boundary conditions, given by 

𝑢(−1) = −𝑢(1) 

𝑢′(−1) = −𝑢′(1) 

and transition conditions at the interior point 𝑥 = 0, given by 

𝑢(+0) = 𝐾𝑢(−0) 

𝑢′(+0) =
1

𝐾
𝑢′(−0) 

where 𝑞(𝑥) is a continuous function in the intervals [−1,0) and (0,1] with finite limit values 𝑞(±0), 

𝐾 ≠ 0 is the real number, and 𝜆 is the complex eigenvalue parameter. In this study, we shall investigate 

some properties of the eigenvalues and eigenfunctions of the considered problem. 

Keywords–Antiperiodic Sturm-Liouville problem, eigenvalue, eigenfunction, transition condition 

1. Introduction 

A simple model for the movement of electrons in a crystal lattice, consisting of the ions in the crystal lattice 

and crystal with a periodic potential time-independent Schrödinger equation that describes the effects of forces 

from other electrons. The wave function of the electron meets the one-dimensional Schrödinger equation with 

the periodic potential. 𝑇(𝑥). Let 𝑡 be a period that is 𝑇(𝑥 + 𝑡) = 𝑇(𝑥). By changing the variable 

𝑢(𝑥) = 𝜑 (
𝑥

𝑡
),  𝑞(𝑥) =

2𝑚𝑡2

ℏ
𝑇 (

𝑥

𝑡𝑎
), and   𝜆 =

2𝑚𝐸

ℏ2  

we have 

−𝑢′′ + 𝑞(𝑥)𝑢 = 𝜆𝑢 (1.1) 

where 𝑢 is the normalized wavefunction, 𝜆 is energy parameter, 𝑞(𝑥 + 1) = 𝑞(𝑥). The spectrum of (1.1) is 

absolutely continuous and occurs a combination of closed intervals or 'bands' separated by 'gaps'. The presence 

of these bands and gaps has important implications for the conductivity properties of crystals.  
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The study published by Birkhoff [1] investigated the asymptotic behaviour of the solutions of linear 

differential equations depending on the eigenvalue parameter given by 

𝑑𝑛𝑦

𝑑𝑥𝑛
+ 𝜆𝑎𝑛−1(𝑥, 𝜆)

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
+ ⋯ + 𝜆𝑛𝑎0(𝑥, 𝜆)𝑦 = 0 

In this work, asymptotic formulas of solutions of the considered linear differential equations related to the 

eigenvalue parameter have been studied, and it is defined as the concept of regular boundary conditions. In the 

literature, such conditions are called regular boundary conditions in the sense of Birkhoff. He proved the 

theorem associate with the completeness of systems consisting of eigenfunctions and associated functions (i.e., 

root functions) of the differential operator corresponding to the problem. 

In the study of Tamarkin [2], it is found the asymptotic of basic solutions for linear differential equations 

dependent on parameters. He defined the concept of strong regular conditions, and he studied the properties of 

eigenfunctions under these boundary conditions and the expansion in the series of eigenfunctions. In later 

years, the investigation of new concrete problems posed by physics led to the rapid development of Sturm-

Liouville theory. Today, the Sturm-Liouville problems remain one of the most current issues needed by 

spectral theory. 

In the study of Lee [3] showed the periodic analogues of spectral and oscillation theory concerned with the 

standard Sturm-Liouville problem. 

Berghe et al. [4] investigated the eigenvalues of boundary value problems under periodic and quasi-periodic 

boundary conditions and explained that a simple linearly dependent multistep method could reduce the error 

of approximate eigenvalues. 

Liu [5] prove existence for the solutions of the periodic Sturm-Liouville problem consisting of the 𝑛-th 

order functional differential equation with impulses effects, given by 

{
𝑥𝑛(𝑠) = 𝑓 (𝑠, 𝑥(𝑠), 𝑥(𝛼1(𝑠)) … , 𝑥(𝛼𝑚(𝑠))) , 𝑠 ∈ [0, 𝑆]

∆𝑥𝑖(𝑠𝑘) = 𝐼𝑖,𝑘(𝑥(𝑠𝑘), … 𝑥𝑛−1(𝑠𝑘)), 𝑘 = 1,2, … , 𝑟
 

and the periodic boundary conditions, given by 

𝑥𝑖(0) = 𝑥𝑖(𝑆), 𝑖 = 0,1, … , 𝑛 − 1 

This method is based on Mawhin's theory and some technical inequalities. 

In the study of Wang [6], by using a fixed-point theorem for operators on a cone, some results of first-order 

periodic Sturm-Liouville problem of impulsive dynamic equations with time scales are established. Examples 

are provided to show the results in this paper. 

The article by Malathi et al. [7] discusses the shooting algorithm and the Floquet theory. In the shooting 

algorithm for an eigenvalue of a Sturm-Liouville problem, the equation is solved as an initial value problem 

on the interval [𝑎, 𝑏]. Floquet theory is used to show a non-trivial solution of boundary value problems, and 

the application of shooting techniques approximates the eigenvalues. The numerical results of Sturm-Liouville 

eigenvalue problems with periodic boundary conditions are given. 

In the studies [8-12], boundary value transmission problems are discussed for the two-linked regular Sturm-

Liouville equations. 

This study investigates some properties of eigenvalues and characteristic function of the antiperiodic Sturm-

Liouville value transition problem together with boundary-transition conditions on [−1,0) ∪ (0,1]. 

2. Eigenvalues and Corresponding Eigenfunctions of The Problem 

In this study, in the Hilbert space 𝐿2(−1,0) ⊕ 𝐿2(0,1) we shall examine some spectral properties of a 

boundary-value-transition problem consisting of a two-interval Sturm-Liouville equation 

𝐿𝑢 ≔ −𝑢′′(𝑥) + 𝑞(𝑥)𝑢(𝑥) = 𝜆𝑢(𝑥), 𝑥 ∈ [−1,0) ∪ (0,1] (2.1) 

together with antiperiodic boundary conditions, given by 
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𝑢(−1) = −𝑢(1), 𝑢′(−1) = −𝑢′(1) (2.2) 

and transition conditions at the interior point 𝑥 = 0, given by 

𝑢(+0) = 𝐾𝑢(−0),     𝑢′(+0) =
1

𝐾
𝑢′(−0) (2.3) 

where𝑞(𝑥) is a continuous function in the intervals [−1,0) and (0,1] with finite limit values 𝑞(±0), 𝐾 ≠ 0 is 

the real number, and 𝜆 is the complex eigenvalue parameter. 

Theorem 2.1. All eigenvalues of the boundary-value-transition problem (2.1) − (2.3) are real. 

PROOF. Let (𝜆, 𝑢) be an eigenvalue-eigenfunction pair, �̅� be the complex conjugate of 𝑢, �̅� be the complex 

conjugate of 𝜆. Since 𝐾 is a real number and 𝑞(𝑥) is a real-valued function, we get 

−�̅�′′(𝑥) + 𝑞(𝑥)�̅�(𝑥) = �̅��̅�(𝑥) (2.4) 

�̅�(−1) = −�̅�(1) , �̅�′(−1) = −�̅�′(1) 

�̅�(+0) = 𝐾�̅�(−0), �̅�′(+0) =
1

𝐾
�̅�′(−0) 

Now, multiplying the equation (2.1) by �̅� and the equation (2.4) by 𝑢 we have 

−𝑢′′�̅� + 𝑞(𝑥)𝑢�̅� = 𝜆𝑢�̅� 

and 

−𝑢�̅�′′ + 𝑞(𝑥)𝑢�̅� = �̅�𝑢�̅� 

respectively. Subtracting these two equalities gives 

𝑢�̅�′′ − 𝑢′′�̅� = (𝜆 − �̅�)𝑢�̅� 

Taking in view the identity 𝑢�̅�′′ − 𝑢′′�̅� = (𝑢�̅�′ − 𝑢′�̅�)′ we have 

(𝑢�̅�′ − 𝑢′�̅�)′ = (𝜆 − �̅�)𝑢�̅� 

Now integrating over [−1, 0) we obtain 

∫ (𝑢�̅�′ − 𝑢′�̅�)′

−0

−1

𝑑𝑥 = ∫ (𝜆 − �̅�)𝑢�̅�𝑑𝑥

−0

−1

 

Hence, 

𝑢(−0)�̅�′(−0) − 𝑢′(−0)�̅�(−0) − 𝑢(−1)�̅�′(−1) + 𝑢′(−1)�̅�(−1) = ∫ (𝜆 − �̅�)𝑢�̅�𝑑𝑥

−0

−1

 

Similarly, we can show that 

𝑢(1)�̅�′(1) − 𝑢′(1)�̅�(1) − 𝑢(+0)�̅�′(+0) + 𝑢′(+0)�̅�(+0) = ∫(𝜆 − �̅�)𝑢�̅�𝑑𝑥

1

+0

 

Since 𝑢(𝑥) satisfies the transition conditions (2.3), we have 

 𝑢(+0) = 𝐾𝑢(−0) 

𝑢′(+0) =
1

𝐾
𝑢′(−0) 

Similarly, we get 
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�̅�(+0) = 𝐾�̅�(−0) 

�̅�′(+0) =
1

𝐾
�̅�′(−0) 

and 

𝑢(1)�̅�′(1) − 𝑢′(1)�̅�(1) − 𝐾𝑢(−0)
1

𝐾
�̅�′(−0) +

1

𝐾
𝑢′(−0)𝐾�̅�(−0) = ∫(𝜆 − �̅�)𝑢�̅�𝑑𝑥

1

+0

 

Thus, we get that 

0 = (𝜆 − �̅�) [ ∫ 𝑢�̅�𝑑𝑥

−0

−1

+ ∫ 𝑢�̅�𝑑𝑥

1

+0

] = (𝜆 − �̅�)‖𝑢‖𝐻
2  

Since the eigenfunction 𝑢 is nonzero, the last equality gives 𝜆 = �̅�. Consequently, 𝜆 is real, which completes 

the proof. 

Theorem 2.2. Let (𝜆𝑚, 𝑢𝑚) and (𝜆𝑛, 𝑢𝑛) be two eigenpairs of the boundary-value-transition problem (2.1) −

(2.3). If 𝜆𝑚 ≠ 𝜆𝑛 then the eigenfunctions 𝑢𝑚 and 𝑢𝑛 are orthogonal in the Hilbert space 𝐻 ≔ 𝐿2(−1,0) ⊕

𝐿2(0,1). That is, 

∫ 𝑢𝑚(𝑥)𝑢𝑛(𝑥)𝑑𝑥

−0

−1

+ ∫ 𝑢𝑚(𝑥)𝑢𝑛(𝑥)𝑑𝑥

1

+0

= 0 

PROOF. Since 𝑢𝑚 and 𝑢𝑛 are eigenfunctions corresponding to the eigenvalues 𝜆𝑚 and 𝜆𝑛, respectively, we get 

the following equalities, 

−𝑢𝑚
′′ + 𝑞(𝑥)𝑢𝑚 = 𝜆𝑚𝑢𝑚 

−𝑢𝑛
′′ + 𝑞(𝑥)𝑢𝑛 = 𝜆𝑛𝑢𝑛 

Multiplying the first equality by 𝑢𝑛 and the second equality by 𝑢𝑚 and taking the difference yields 

𝑢𝑚𝑢𝑛
′′ − 𝑢𝑚

′′𝑢𝑛 = (𝜆𝑚 − 𝜆𝑛)𝑢𝑚𝑢𝑛 

Applying the well-known Lagrange's formulae commonly known as Green's identity we get 

𝑢𝑚(−0)𝑢𝑛
′(−0) − 𝑢𝑚

′(−0)𝑢𝑛(−0) − 𝑢𝑚(−1)𝑢𝑛
′(−1) + 𝑢𝑚

′(−1)𝑢𝑛 = ∫ (𝜆𝑚 − 𝜆𝑛)𝑢𝑚𝑢𝑛𝑑𝑥

−0

−1

(2.5) 

By the boundary conditions (2.2) we have 

𝑢𝑚(−1) = −𝑢𝑚(1),  𝑢𝑚
′(−1) = −𝑢𝑚

′(1) 

and 

𝑢𝑛(−1) = −𝑢𝑛(1),  𝑢𝑛
′(−1) = −𝑢𝑛

′(1) 

Substituting these into the equation (2.5), we get 

𝑢𝑚(−0)𝑢𝑛
′(−0) − 𝑢𝑚

′(−0)𝑢𝑛(−0) − 𝑢𝑚(1)𝑢𝑛
′(1) + 𝑢𝑚

′(1)𝑢𝑛(1) = ∫ (𝜆𝑚 − 𝜆𝑛)𝑢𝑚𝑢𝑛𝑑𝑥

−0

−1

 

Similarly, we can show that 
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𝑢𝑚(1)𝑢𝑛
′(1) − 𝑢𝑚

′(1)𝑢𝑛(1) − 𝑢𝑚(+0)𝑢𝑛
′(+0) + 𝑢𝑚

′(+0)𝑢𝑛(+0) = ∫(𝜆𝑚 − 𝜆𝑛)𝑢𝑚𝑢𝑛𝑑𝑥

1

+0

(2.6) 

Since 𝑢𝑚 and 𝑢𝑛 satisfy the transition conditions (2.3), we get 

𝑢𝑚(+0) = 𝐾𝑢𝑚(−0), 𝑢𝑚
′(+0) =

1

𝐾
𝑢𝑚

′(−0) 

and 

𝑢𝑛(+0) = 𝐾𝑢𝑛(−0),  𝑢𝑛
′(+0) =

1

𝐾
𝑢𝑛

′(−0) 

Substituting these into the equation (2.6), we obtain 

𝑢𝑚(1)𝑢𝑛
′(1) − 𝑢𝑚

′(1)𝑢𝑛(1) − 𝐾𝑢𝑚(−0)
1

𝐾
𝑢𝑛

′(−0) +
1

𝐾
𝑢𝑚

′(−0)𝐾𝑢𝑛(−0) = ∫(𝜆𝑚 − 𝜆𝑛)𝑢𝑚𝑢𝑛𝑑𝑥

1

+0

 

from which it follows that 

0 = (𝜆𝑚 − 𝜆𝑛) [ ∫ 𝑢𝑚𝑢𝑛𝑑𝑥

−0

−1

+ ∫ 𝑢𝑚𝑢𝑛𝑑𝑥

1

+0

] 

Since 𝜆𝑚 ≠ 𝜆𝑛, we get that 

∫ 𝑢𝑚𝑢𝑛𝑑𝑥

−0

−1

+ ∫ 𝑢𝑚𝑢𝑛𝑑𝑥

1

+0

= 0, 

That is 〈𝑢𝑚 , 𝑢𝑛〉 = 0, which completes the proof. 

2.1.  Construction of the Hilbert Space and Differential Operator for Given Boundary-

Value-Transition Problem 

Let us define the inner product of 𝜑(𝑥), 𝜔(𝑥) ∈ 𝐻 by the equality 

〈 𝜑, 𝜔 〉 = ∫ 𝜑(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅𝑑𝑥

−0

−1

+ ∫ 𝜑(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅𝑑𝑥

1

+0

 

where 

𝐻 = {𝜑(𝑥) | 𝜑(𝑥) ∈ 𝐿2(−1,0) ⊕ 𝐿2(0,1)} 

We can show that the inner-product axioms are obviously satisfied. 

Lemma 2.1.1. The inner product space (𝐻 , 〈 ∙ ,∙ 〉) is a Hilbert space. 

PROOF. It is sufficient to show that every Cauchy sequence in the space 𝐻 is convergent to some limit point in 

𝐻. Let (𝜑𝑛)𝑛∈ℕ be a Cauchy sequence in 𝐻. Then for any 𝜀 > 0, there is 𝑛0(𝜀) ∈ ℕ such that ‖𝜑𝑛 − 𝜑𝑚‖ <

𝜀2 whenever 𝑛, 𝑚 ≥ 𝑛0(𝜀). Since 

‖𝜑𝑛 − 𝜑𝑚‖𝐻
2 = 〈𝜑𝑛 − 𝜑𝑚 , 𝜑𝑛 − 𝜑𝑚〉𝐻 

                                                                              = ‖𝜑𝑛 − 𝜑𝑚‖𝐿2(−1,0)
2 + ‖𝜑𝑛 − 𝜑𝑚‖𝐿2(0,1)

2 < 𝜀2 

we have 

‖𝜑𝑛 − 𝜑𝑚‖𝐿2(−1,0)
2 < 𝜀2,   ‖𝜑𝑛 − 𝜑𝑚‖𝐿2(0,1)

2 < 𝜀2 
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Consequently, the sequence (𝜑𝑛)𝑛∈ℕ is a Cauchy sequence in both Hilbert spaces 𝐿2(−1,0) and 𝐿2(0,1). Since 

the spaces 𝐿2(−1,0) and 𝐿2(0,1) are complete, any Cauchy sequence taken from these spaces are convergent 

sequences. So, there are 𝜑𝑙 ∈ 𝐿2(−1,0) and 𝜑𝑟 ∈ 𝐿2(0,1) such that 

‖𝜑𝑛 − 𝜑𝑙‖𝐿2(−1,0)
2  ⟶ 0 (𝑛 → ∞) , ‖𝜑𝑛 − 𝜑𝑟‖𝐿2(0,1)

2  ⟶ 0 (𝑛 → ∞) 

Consequently 

‖𝜑𝑛 − �̃�‖𝐻
2 = ‖𝜑𝑛 − 𝜑𝑙‖𝐿2(−1,0)

2 + ‖𝜑𝑛 − 𝜑𝑟‖𝐿2(0,1)
2 ⟶ 0 (𝑛 → ∞) 

where �̃� ≔ { 𝜑𝑙 ,   𝑥 ∈ [−1,0)

𝜑𝑟,   𝑥 ∈ (0,1]
∈ 𝐻. Therefore, the completeness of the inner-product space 𝐻 is proved. 

Now we will define a linear operator 𝐴 ∶ 𝐻 → 𝐻 associated with the boundary value transition problem (2.1) −

(2.3) as follows: 

Let the domain 𝐷(𝐴) be define as follows: 

𝐷(𝐴) = { 𝜑 ∈ 𝐻 |The functions 𝜑1(𝑥), 𝜑2(𝑥),  𝜑1
′ (𝑥) and  𝜑2

′ (𝑥) are absolute continuous in the 

intervals [−1,0] and [0,1], there are finite limit values 𝜑(±0) and 𝜑′(±0), and −𝜑1
′′ +

𝑞(𝑥)𝜑1 ∈ 𝐿1(−1,0), − 𝜑2
′′ + 𝑞(𝑥)𝜑2 ∈ 𝐿2(0,1),  𝜑1(−1) = −𝜑2(1), 𝜑1

′(−1) =

−𝜑2
′(1), 𝜑1(0) = 𝐾𝜑2(0),  𝜑1

′(0) =
1

𝐾
𝜑2

′(0) } 

(2.7) 

and the operator 𝐴: 𝐷(𝐴) → 𝐻 be defined by 

𝐴𝜑 ≔ −𝜑′′ + 𝑞(𝑥)𝜑 (2.8) 

where 

𝜑1(𝑥) = {
𝜑(𝑥) , 𝑥 ∈ [−1, 0)

𝜑(−0) , 𝑥 = 0
  and  𝜑2(𝑥) = {

𝜑(𝑥) , 𝑥 ∈ (0, 1]

𝜑(+0) , 𝑥 = 0
 

The eigenvalues and the eigenfunctions of the boundary value transition problem are defined as the eigenvalues 

and eigenfunctions of the operator 𝐴, respectively. 

The following lemma is easy to prove. 

Lemma 2.1.2. The operator 𝐴 is the linear operator. 

Theorem 2.1.2. The linear operator 𝐴 defined by (2.7) − (2.8) is symmetric in the Hilbert space 

 𝐻 = 𝐿2(−1,0) ⊕ 𝐿2(0,1). 

PROOF. Let 𝜑, 𝜔 ∈ 𝐷(𝐴) ⊂ 𝐻. By the definition of 𝐴 we have 

〈 𝐴𝜑, 𝜔 〉𝐻 = − ∫ 𝜑′′(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅

−0

−1

𝑑𝑥 + ∫ 𝑞(𝑥)𝜑(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅

−0

−1

𝑑𝑥 − ∫ 𝜑′′(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅

1

+0

𝑑𝑥 + ∫ 𝑞(𝑥)𝜑(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅

1

+0

𝑑𝑥 (2.9) 

Integrating by parts twice, we obtain 

∫ 𝜑′′(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅

−0

−1

𝑑𝑥 = 𝜑′(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅ |
−0

−1
−  𝜑(𝑥)𝜔′(𝑥)̅̅ ̅̅ ̅̅ ̅̅ |

−0

−1
+ ∫ 𝜑(𝑥)

−0

−1

𝜔′′(𝑥)̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑥, 

and therefore, 

∫ (−𝜑′′(𝑥) + 𝑞(𝑥)𝜑(𝑥))𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅

−0

−1

𝑑𝑥 = ∫ 𝜑(𝑥)(−𝜔′′(𝑥) + 𝑞(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

−0

−1

𝑑𝑥 + 𝑊(𝜑, �̅�; −0) − W(φ,ω̅;-1) (2.10) 
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By similar technique as above, one can show that 

∫(−𝜑′′(𝑥) + 𝑞(𝑥)𝜑(𝑥))𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅

1

+0

𝑑𝑥 = ∫ 𝜑(𝑥)(−𝜔′′(𝑥) + 𝑞(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

1

+0

𝑑𝑥 + 𝑊(𝜑, �̅�; 1) − 𝑊(𝜑, �̅�; +0) (2.11) 

Substituting (2.10) and (2.11) into (2.9), we obtain 

〈 𝐴𝜑, 𝜔 〉𝐻 = ∫ 𝜑(𝑥)(−𝜔′′(𝑥) + 𝑞(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

−0

−1

𝑑𝑥 + ∫ 𝜑(𝑥)(−𝜔′′(𝑥) + 𝑞(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

1

+0

𝑑𝑥

+ 𝑊(𝜑, �̅�; −0) − 𝑊(𝜑, �̅�; −1) + 𝑊(𝜑, �̅�; 1) − 𝑊(𝜑, �̅�; +0) 

(2.12) 

Hence, (2.12) takes the form 

〈 𝐴𝜑, 𝜔 〉𝐻 − 〈 𝜑, 𝐴𝜔 〉𝐻 =  𝑊(𝜑, �̅�; −0) − 𝑊(𝜑, �̅�; −1) + 𝑊(𝜑, �̅�; 1) − 𝑊(𝜑, �̅�; +0) 

Since 𝜑, 𝜔 ∈ 𝐷(𝐴), this yield 

𝜑(−0)𝜔′(−0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝜑′(−0)𝜔(−0)̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝜑(−1)𝜔′(−1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝜑′(−1)𝜔(−1)̅̅ ̅̅ ̅̅ ̅̅ ̅ +  𝜑(1)𝜔′(1)̅̅ ̅̅ ̅̅ ̅̅ − 𝜑′(1)𝜔(1)̅̅ ̅̅ ̅̅ ̅

− 𝜑(+0)𝜔′(+0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝜑′(+0)𝜔(+0)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0 

Then the equality 

〈 𝐴𝜑, 𝜔 〉𝐻 = 〈 𝜑, 𝐴𝜔 〉𝐻 

is valid for all 𝜑, 𝜔 ∈ 𝐷(𝐴). This completes the proof of Theorem. 

2.2.  Some Auxiliary Initial Value Problems and Solutions 

In this section, we will use solutions of some auxiliary initial value problems, given only on the sub-intervals 

[−1, 0] and [0, 1], which are closely related to the boundary value transition problem (2.1) − (2.3). The initial 

value problem 

−𝑢′′(𝑥) + 𝑞(𝑥)𝑢(𝑥) = 𝜆𝑢(𝑥) , 𝑥 ∈ [−1,0] 

𝑢(−1) = 1 

𝑢′(−1) = 0 

has a unique solution 𝑢 = 𝜙1(𝑥, 𝜆) for each 𝜆 ∈ ℂ for the theory of ordinary differential equations and this 

solution is analytical in the whole complex plane concerning the variable 𝜆 for each 𝑥 ∈ [−1, 0]. (See, [13]) 

Let 𝜙2(𝑥, 𝜆) be the solution of the initial-value problem given by 

−𝑢′′(𝑥) + 𝑞(𝑥)𝑢(𝑥) = 𝜆𝑢(𝑥) , 𝑥 ∈ [0,1] 

𝑢(1) = 1 

𝑢′(1) = 0 

This solution is an entire function of  𝜆 ∈ ℂ for each fixed 𝑥 ∈ [0, 1]. (See, [13]) 

Similarly, for each 𝜆 ∈ ℂ, the initial-value problem 

−𝑢′′(𝑥) + 𝑞(𝑥)𝑢(𝑥) = 𝜆𝑢(𝑥) , 𝑥 ∈ [0,1] 

𝑢(1) = 0 

𝑢′(1) = 1 

has a unique solution 𝑢 = 𝜒2(𝑥, 𝜆) and the initial-value problem 

−𝑢′′(𝑥) + 𝑞(𝑥)𝑢(𝑥) = 𝜆𝑢(𝑥) , 𝑥 ∈ [0,1] 
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𝑢(−1) = 0 

𝑢′(−1) = 1 

has a unique solution 𝑢 = 𝜒1(𝑥, 𝜆). These solutions are also analytical in the whole complex plane concerning 

the variable 𝜆 for each fixed 𝑥, that is,  𝜒1(𝑥, 𝜆) and 𝜒2(𝑥, 𝜆) are entire functions of 𝜆 ∈ ℂ for each fixed 𝑥(see, 

[13]). 

2.3.  The Characteristic Function 

Theorem 2.3.1. The eigenvalues of the boundary-value-transition problem  (2.1) − (2.3) are coincide with 

the zeros of the characteristic function 

Δ(𝜆) = [𝜙
2
(+0, 𝜆) − 𝐾𝜙

1
(−0, 𝜆)] [𝜒

2
′ (+0, 𝜆) −

1

𝐾
𝜒

1
′ (−0, 𝜆)] − [𝜒

2
(+0, 𝜆) − 𝐾𝜒

1
(−0, 𝜆)] [𝜙

2

′ (+0, 𝜆) −
1

𝐾
𝜙

1

′ (−0, 𝜆)] (2.13) 

PROOF. Since for each 𝜆 ∈ ℂ the Wronskian 𝑊(𝜙1, 𝜒1; 𝑥) is independent on 𝑥 ∈ [−1,0] and 𝑊(𝜙1, 𝜒1; −1) =

1 ≠ 0, the functions 𝜙1(𝑥, 𝜆),  𝜒1(𝑥, 𝜆) are linearly independent solutions of the equation (2.1) in the interval 

[−1,0]. Therefore, the general solution of the equation (2.1) on the left interval [−1,0] can be expressed in 

the form  

𝑦 = 𝑐1𝜙1(𝑥, 𝜆) + 𝑐2𝜒1(𝑥, 𝜆) 

Similarly, the general solution of the same differential equation on the right interval [0,1] can be expressed in 

the form 

𝑦 = 𝑐3𝜙2(𝑥, 𝜆) + 𝑐4𝜒2(𝑥, 𝜆) 

Thus, the general solution of the differential equation (2.1) on the interval [−1,0) ∪ (0,1] can be written in 

the form 

𝑦 = {
𝑐1𝜙1(𝑥, 𝜆) + 𝑐2𝜒1(𝑥, 𝜆) , 𝑥 ∈ [−1, 0)

𝑐3𝜙2(𝑥, 𝜆) + 𝑐4𝜒2(𝑥, 𝜆), 𝑥 ∈ (0, 1]
 

Applying the antiperiodic boundary conditions (2.2) we obtain 

                            𝑐1𝜙1(−1, 𝜆) + 𝑐2𝜒1(−1, 𝜆) = 𝑐3𝜙2(1, 𝜆) + 𝑐4𝜒2(1, 𝜆) 

𝑐1𝜙1
′ (−1, 𝜆) + 𝑐2𝜒1

′ (−1, 𝜆) = 𝑐3𝜙2
′ (1, 𝜆) + 𝑐4𝜒2

′ (1, 𝜆)(2.3.2) (2.14) 

By the definition of the solutions 𝜙1, 𝜒1, 𝜙2 and 𝜒2 we get 

𝜙1(−1, 𝜆) = 1,  𝜙1
′ (−1, 𝜆) = 0,  𝜙2(1, 𝜆) = 1,  𝜙2

′ (1, 𝜆) = 0 

𝜒1(−1, 𝜆) = 0,  𝜒1
′ (−1, 𝜆) = 1,   𝜒2(1, 𝜆) = 0, 𝜒2

′ (1, 𝜆) = 1 

Substituting these equalities into (2.14), we obtain that 𝑐1 = 𝑐3 = 𝐴 and 𝑐2 = 𝑐4 = 𝐵. Then, the general 

solution can be written in the form 

𝑦 = 𝐴𝜙(𝑥, 𝜆) + 𝐵𝜒(𝑥, 𝜆) 

Substituting this into transition conditions (2.3), we obtain the following linear system of equations concerning 

the variables 𝐴 and 𝐵, given by 

(𝜙2(+0, 𝜆) − 𝐾𝜙1(−0, 𝜆))𝐴 + (𝜒2(+0, 𝜆) − 𝐾𝜒1(−0, 𝜆))𝐵 = 0 

(𝜙2
′ (+0, 𝜆) −

1

𝐾
𝜙1

′ (−0, 𝜆)) 𝐴 + (𝜒2
′ (+0, 𝜆) −

1

𝐾
𝜒1

′ (−0, 𝜆)) 𝐵 = 0 

This homogeneous system of linear equations has a nontrivial solution (𝐴, 𝐵) ≠ (0,0) if the determinant of 

this system is equal to zero, i.e. 

|
𝜙2(+0, 𝜆) − 𝐾𝜙1(−0, 𝜆) 𝜒2(+0, 𝜆) − 𝐾𝜒1(−0, 𝜆)

𝜙2
′ (+0, 𝜆) −

1

𝐾
𝜙1

′ (−0, 𝜆) 𝜒2
′ (+0, 𝜆) −

1

𝐾
𝜒1

′ (−0, 𝜆)
| = 0 
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Hence, Δ(𝜆) = 0. This completes the proof. 

Theorem 2.3.2. If 𝐾2 ≠ 1, then for the characteristic function Δ(𝜆) the following asymptotic formulas hold 

Δ(𝜆) = (1 − 𝐾) (1 −
1

𝐾
) cos2√𝜆 + (1 + 𝐾) (1 +

1

𝐾
) sin2√𝜆 + 𝑂 (

1

√𝜆
𝑒2𝑡) 

as |𝜆| → ∞, where 𝑡 = 𝐼𝑚√𝜆. 

PROOF. By applying well-known properties of Volterra integral equations, we can derive the following 

asymptotic formulas 

𝜙1(𝑥, 𝜆) = cos (√𝜆(𝑥 + 1)) + 𝑂 (
1

√𝜆
𝑒|𝑡||𝑥+1|) 

𝜙1
′(𝑥, 𝜆) = −√𝜆 sin (√𝜆(𝑥 + 1)) + 𝑂(𝑒|𝑡||𝑥+1|) 

𝜙2(𝑥, 𝜆) = cos(√𝜆(𝑥 − 1)) + 𝑂 (
1

√𝜆
𝑒|𝑡||𝑥−1|) 

𝜙2
′(𝑥, 𝜆) = −√𝜆 sin (√𝜆(𝑥 − 1)) + 𝑂(𝑒|𝑡||𝑥−1|) 

𝜒1(𝑥, 𝜆) =
1

√𝜆
sin (√𝜆(𝑥 + 1)) + 𝑂 (

1

𝜆
𝑒|𝑡||𝑥+1|) 

𝜒1
′ (𝑥, 𝜆) = cos (√𝜆(𝑥 + 1)) + 𝑂 (

1

√𝜆
𝑒|𝑡||𝑥+1|) 

𝜒2(𝑥, 𝜆) =
1

√𝜆
sin (√𝜆(𝑥 − 1)) + 𝑂 (

1

𝜆
𝑒|𝑡||𝑥−1|) 

𝜒2
′ (𝑥, 𝜆) = cos (√𝜆(𝑥 − 1)) + 𝑂 (

1

√𝜆
𝑒|𝑡||𝑥−1|) 

as |𝜆| ⟶ ∞, where 𝑂 denote the Landau symbol. Substituting these asymptotic formulas into (2.13) we arrive 

at 

Δ(𝜆) = [(1 − 𝐾)cos√𝜆 + 𝑂 (
1

√𝜆
𝑒|𝑡|)] [(1 −

1

𝐾
) cos√𝜆 + 𝑂 (

1

√𝜆
𝑒|𝑡|)] 

                                             − [(−1 − 𝐾)
1

√𝜆
sin√𝜆 + 𝑂 (

1

𝜆
𝑒|𝑡|)] [(1 +

1

𝐾
) √𝜆sin√𝜆 + 𝑂(𝑒|𝑡|)] 

                                       = (1 − 𝐾) (1 −
1

𝐾
) cos2√𝜆 + (1 + 𝐾) (1 +

1

𝐾
) sin2√𝜆 + 𝑂 (

1

√𝜆
𝑒2𝑡) 

This completes the proof. 

Theorem 2.3.3. If 𝐾2 ≠ 1, then the boundary-value-transition problem (2.1) − (2.3) has a countable set of 

eigenvalues without finite accumulation point. 

PROOF. Denote by Δ1(𝜆) the leading term of Δ(𝜆), that is 

Δ1(𝜆) = (1 − 𝐾) (1 −
1

𝐾
) cos2√𝜆 + (1 + 𝐾) (1 +

1

𝐾
) sin2√𝜆 

This function has a countable set of zeros 𝜆𝑛
′ , 𝑛 = 1, 2, ⋯ without a finite accumulation point. Applying now 

the well-known Rouche's theorem (see, for example, [13]) to the appropriate circles we conclude that the 

characteristic function Δ(𝜆) has a countable set zeros 𝜆𝑛, 𝑛 = 1, 2, ⋯ which satisfies the asymptotic equality 

𝜆𝑛 = 𝜆𝑛
′ + 𝑂 (

1

𝑛
). The proof is complete. 
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3. Conclusions 

In this study, antiperiodic Sturm-Liouville problems, including transition conditions, were investigated for the 

first time in the literature. A Hilbert space suitable for the problem is established. Then, an operator is defined 

on this Hilbert space that is the same as the problem's eigenvalues. It has been proved that the eigenvalues are 

real and the eigenfunctions are orthogonal. The problem's characteristic function is defined, and the asymptotic 

formula is obtained for the characteristic function. Finally, the asymptotic formula for eigenvalues was found 

using the asymptotic formula of the characteristic function. 
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