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ABSTRACT. Inrecent times, quantitative Voronovskaya type theorems have been presented in spaces of non-periodic
continuous functions. In this work, we proved similar results but for Fejér-Korovkin trigonometric operators. That is

we measure the rate of convergence in the associated Voronovskaya type theorem. Recall that these operators provide

the optimal rate in approximation by positive linear operators. For the proofs, we present new inequalities related

with trigonometric polynomials as well as with the convergence factor of the Fejér-Korovkin operators. Our approach

includes spaces of Lebesgue integrable functions.
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1. INTRODUCTION

In recent times, there have been some interests in studying quantitative Voronovskaya-type
theorems, but almost all the papers are concerned with positive linear operators in spaces of
non-periodic functions. The methods used in those papers are not useful in dealing with peri-
odic functions for two reasons (at least). First they use different kinds of Taylor’s formula and
second, in the non-periodical case do not appear conjugate functions.

It is known that the Voronovskaya-type theorems are related with the saturation class of
some families of operators. We have noticed that in the case of trigonometric polynomial ap-
proximation process the Voronovskaya-type theorems depend on particular properties of the
operators. In [1], the authors considered this kind of problem for Fejér sums. In this paper, we
consider the Fejér-Korovkin operators.

Let (', denote the Banach space of all 27-periodic, continuous functions f defined on the real
line R with the sup norm

[flloc = max | | f(@) ]

TE€[—m,7
For 1 < p < oo, the Banach space L? consists of all 27-periodic, p-th power Lebesgue integrable
functions f on R with the norm

Il = (5 [ 156 pas) ™.

In order to simplify, we write X? = LL? for 1 < p < oo and X*° = Cy,. By W, , we mean
the family of all functions f € X? such that f,..., D" !(f) are absolutely continuous and
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D"(f) € XP. Here, D(f) = D'(f) = f" and D"*'(f) = D(D"(f)). Recall that for f € L! and
k € Ny, the Fourier coefficients are defined by
a(f) =L [ ftycosthtyar and  be(f) =L [ F(t) sin(kt)dt,

and the (formal) Fourier series is given by

fz) ~ +Z (ar(f) cos(kx) + b (f) sin(kx)) ZAk

For n € N, the Fejér-Korovkin kernel is defined by

1 .5 cos?((n + 2)z/2)

Kn(z) = n+2 s + 2 (cos(m/(n + 2)) — cos x)?

for x # 47 /(n+2) + 2jm, j € Z. For f € X! and n € N, the Fejér-Korovkin operator is defined
by

s

IFn(f,a:)zi ) flz+t)K,(t)dt.

Some Voronovskaya type theorems for the operators F,, are known.

Theorem 1.1. (Korovkin, [6]) If f € Cor, x € [—m, 7| and f"(x) exists, then
2
™ _
Fulf,2) — f(2) = 5y /() +0(n?).
Theorem 1.2. (Butzer and Gorlich, [2, page 385]) If 1 < p < coand f € Wg, then

=0.

p

1- R /)
im 5 f

‘ ‘ ’ 7T2
n—oo

The main purpose of the paper is to present a quantitative Voronovskaya-type theorem for
the operators F,,. That is we want to estimate the rate of convergence to zero in the results
presented above. This will be accomplished in the last section of the article, where the case
p = 1is also included.

The work is organized as follows. In Section 2, we include a collection of known definitions
and results which will be used later. For instance, in the non-periodic case conjugate functions
are not needed, but for our approach they are important. In Section 3, we prove some inequal-
ities related with trigonometric polynomials (we think that they have independent interest).
Section 4 is very technical. It involves complicated computations related with the convergence
factors of Fejér-Korovkin operators. In Section 5, we include the main result (Theorem 5.7). The
most important idea is to prove first a Voronovskaya theorem limited to polynomials (Proposi-
tion 5.8).

2. KNOWN RESULTS

The convolution of f, g € L', g an even function, is defined by

™

(rea@ = [ fa+na0ar = [ (G0t -

—T

It is known that if f € X? and g € X!, then f * g € X? and
(2.1) 1 = gllp < gl [[1p-
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For f € X!, the conjugate function is defined by

1 [T+t = fa—1)

fla) = g = —1im =[S~ J@—t)

o J, tan(t/2) ==0 27 . tan(t/2)
whenever the limit exists. It is known that if f € XP with 1 < p < oo, then f € XP, and that is

not the case for p = 1 and p = oco. Recall that for n € Nand f € X!, the Fejér sum of order n is
defined by

dt,

n

oulfia) =Y (1= =) Anlf.)
k=0

Throughout the paper, we use the following notations. T, denotes the family of all trigono-
metric polynomials of degree no greater that n, and T? is the family of all T € T,, with mean
zero, that is

/ T, (x)dx = 0.

Proposition 2.1. ([1, Prop. 2.4]) For each n,r € Nand T € T,,, one has

-1 r/2 .
ﬁD (1), r even,
(I —0,)"(T) = i
(_1) " r(m

CEE D™(T), r odd.

Theorem 2.3. ([9,p.215]) If1 <p < oo,r,n € Nand T € T,, then
n T

2.2 D™ (T < |\ — AT
22) 1@l < (5gmienry) 1257l

forany h € (0,27 /n). Moreover ||D”(T)||p <n"||Tp.

For r € N, a function f € XP, and h > 0, the usual modulus of smoothness of order r is
defined by
(2.3) wr(f,t)p = sup [[(I =Th)"(f)llp,
[h|<t

where T, (f,z) = f(z + h) is the translation operator. We also use the notations A} f(z) =
(I —=Tn)"(f).- Forl < p < oo and f € XP?, the best approximation of f by elements of T, is
defined by

Enp(f) = Tlg%n ILf =Tl
Theorem 2.4. (Foucart et al, [5, Theorem 2.5]) If 1 < p < oo, f € XP,and n € N, then

En,p(f) < dwy (fv %)p~

The following result is easy to prove (see [3, p. 77]).
Proposition 2.2. Assume 1 < p < oo and

Qn(r) = % + Z Ao cos(kx)

k=1
is a non-negative trigonometric polynomial. If g € W72, then

i

lg = g% Qnlly < (1= A1) ID*(9)llp-
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We need some results taken from the Zygmund book [10, pages 93 and 183].

Proposition 2.3. If {c,} is a convex and bounded sequence, then {c,} decreases, nA'c,, — 0, and

Z(n +1)A%c, = co — lim c,,.
70 n—oo

Proposition 2.4. If {c,} is a convex sequence which converges to zero, then the series

Co =
0} + kz_:l ¢k cos(kx)

converges for all x # 0 to a nonnegative and integrable function.

3. INEQUALITIES FOR TRIGONOMETRIC POLYNOMIALS

Proposition 3.5. The function

o) = i cos](Ckzgc)7 £ 40,
k

=1

is integrable. Moreover

3
el < 3

Proof. If we consider Proposition 2.4 with the sequence {a,}, given by ap = 3/2 and a;, = 1/k
for k € N, then

3 <= cos(kx)
- >
ity 20
k=1
for x # 0. But
1 [T | cos(kx) 3 1 [™13 X cos(kx)
_ < Z 4 - =z
o ) > ‘d$—4+2w/,ﬂ PR D ‘dx
k=1 k=1
3 1 [T /3 <Xcos(kx)
“ira [ G e
31 )
k=0
_3
=5
where we use Proposition 2.3. O

Remark 3.1. In the proof of the previous Proposition, we can not take ay < 3/2, because we
need that A2a0 = ag — 2@1 + a9 = ag — 3/2 > 0.

Theorem 3.5. For 1 <p < oo,eachn € Nand T € T, one has

3(n+1
10— 0@l < XYy = g2,
where o, denotes the Fejér sum. Moreover, if T € T2, then
3(n+1
71, < 201 = 00l

2
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Proof. Define 7,, : T — T? by the equation

S

(3.4) T (T) =

k=1
where T'(z) = >°;_, Ax(z). Notice that, for each T' € TY, it follows from (2.1) that

3(n +1)

[T (D)llp < (n+ DllelalI T, < 17l

where ¢ is the function in Proposition 3.5. On the other hand, if T'is given as in (3.4), then

(3.5) Tn((l—an)(T),x)=Tn<znf_1Ak,x) =3 Aulw) =
k=1 k=1

Therefore, forany T € T,,, if we set T* = T — Ao(T)/2, then
(I = on)(D)llp = (I =) (T) I,
= (17 (I = 00)*(T) I,
3(n+1)

<=5 lI-0o )2 (Tl
n+ 1
=3y o)),
Finally, if T € T?, it follows from (3.5) that
3(n+1)

1Tl = 7 (L = o) (T)llp < =5 = o) (D)llp-
O

Intermediate derivatives have been used by several authors. Here, we present some partic-
ular constants.

Corollary 3.1. Ifn € Nand T € TY, then
9
1Tl < 0T s 1Ty < *lng( D)l

- 3 ~
177l < SIT Nps 177 < *IIDg( D)l

and
ID3(T)]lp < 2(n+ DT,

Proof. The result follows from Theorem 3.5 and Proposition 2.1. For instance,

i, < 2Dy oy, < L5y o2y, = 2,
and 5
iz, < X E 1 oy @y, = D i @),
On the other hand,
1Tl = (4 DI =)Dl < 50+ DA = 0 (D)l = 2171,
and

Il < g(nJr DI = 0n)* (D)l = *IIDB( T)llp-
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Finally,
17", = I(T") ||, = (n 4+ DI = o )(T")lp < 2(n+ DT,

4. ESTIMATES RELATED WITH CONVERGENCE FACTORS

Proposition 4.6. The Fejér-Korovkin kernel can be written in the form
K,(x)= 1 + i( (L> cos(kx) = 1 + i cos(kx)
n - 9 e n n+2 - 2 kZIQk,n .

The numbers gy, ,, are usually called the convergence factors. Representations for the con-
vergence factors of Fejér-Korovkin operators appeared in different places. For instance, see [8,
p- 1098 ]. We set

(4.6) Cn(z) = (1 —x)cos(max) + %Jrz cot nLJrQ sin(ma).

Corollary 4.2. For each n > 1, one has

s 1
- =GOS , L=1-2(1— cos? (1— )
a1, CObn+2 o2, ( €08 n+2) n+2
and
1— 09m 2(1 2
il g T Aldcos(n/(n+2))
lfgl,n n+2 n+2

We need some estimates related with the convergence factors. In what follows, we set

1
an = f(l—LcotL),

s n—+2 n -+ 2
: 2 2
4.7) H,1(z) = (1 —x)cos(rx) + M %xQ - %w37
4.8) H, 2(z) = ay(sin(nz) — mx)
and
k w2 k? w2k3 k

49 Mem=1—Co(-2) - Ca,
“9) " ¢ <n+2> 2 m+2? (3my2F " Mni2

Lemma 4.1. For 0 < x < w, one has
2 2

1fx—§xcotx§17x—.
2 3
In particular,

< m
an < ——.
2(n+2)?

Proof. The first assertion follows from standard arguments. For the second one,

1(1 T ot T ><1 w2
a,=—(1- ot —— ) < ——.
™ n+2  n+2 7 2(n + 2)2
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Lemma 4.2. Let xy € (0,7/2) be defined by the Equation 3 tan(nzg) = n(1 — xo). For z € [0, zo],
one has

m(1 —2z)(1 — cos(mx)) + sin(mz) — 7z > 0.
Moreover, zq > /6.

Proof. For0 <z <1,
—4cos(mx) — (1 — ) sin(wz) < 0.
Therefore, the function f;(x) = —3sin(rz) + 7 (1 — x) cos(wx) decreases in [0, 1]. But f;(z¢) =0
if and only if
tan(mxg) = g(l — ).

Hence, f1(x) > 0 for z € [0, xo].

With similar arguments, we verify that the function fo(z) = —2+2cos(nz) +7(1 — ) sin(nz)
increases in [0, zg]. Thus, f2(x) > 0 for z € [0, zg].

If f3(z) = 7(1 — 2)(1 — cos(wx)) + sin(wx) — 7z, then fi(x) = nfa(x) > 0, for x € [0, xo).

(]
Lemma 4.3. Suppose that n,m € N, n > m > 5and H,, ; is defined by (4.7), then
4,4

‘1_£hﬂ(n?2)lg662?%4(2_50::%>’

m m—1 73 (m —1)3
0< Hn (-5 ) = Hua (Ss ) <
=i g2 M\n+2 4(n 4+ 2)4

and, for 0 < k <m —2,

k+2 k+1 k itk +1)2
Hoa (5g) = 2 (g) o (55) | < -
"1n+2 o 2) TGS 22y

Proof. Notice that
H), 1(z) = —n(1 — ) sin(rz) + m°2(1 — 2) = 7(1 — z) (72 — sin(rz))
and
Hgmm:w@a—xmpmmmmymmm@—w@.
(i) If x, = m/(n + 2), then
| 1= Hpy(2m) [ =] Hn1(0) = Hy 1 (2m)

Tm

H;v,,l(s)ds

0
= 77/ (1 —s)(ms — sin(ws))ds.
0

For 0 <y <1, one has
73y

6 (1 7y)a

0 < (1—y)(ry —sin(ry)) <

hence, for 0 < z < n + 2, the function

F(z) = /OZ/(n+2)(1 — 8)(ms — sin(ms))ds — _T (ZZ _ Zi)
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decreases. Taking into account that F'(0) = 0,

mimt /1 m
1= Hua(om) = w () < o700 (- 2.

(ii) On the other hand, if y = (m — 1)/(n + 2),

- m_ 1\ uL/ne2)
0<Hp1 (m> —H, 1 (m) = / HT’L,l(S)dS
y

y+1/(n+2)
7T/ (1—13s) (71'5 - sin(ﬂs))ds.
y

As before, for z > 0, the function

y+z 71_3 B 44
Gy(z) = /y (1 —s)(ms —sin(rws))ds — ((23;’1(_; —: 2)49 )
— /2(1 —(y+ 9))(w(y +s) —sin(n(y + s))ds — 73 ((y +21)4 —y4)
0

decreases and G (0) = 0. Therefore,

m m — 3 n 4 _ 4
H’1<n+2>_H <n+21)§ ((y+1/(24+2)) v

7T3 y3 y2 y 1
- ﬂ<4(”+2) +6("+2)2 +4(n+2)3 - (n+2)4)
7T3
T Ut 2 (4(m —1)>+6(m—1)* +4(m - 1) + 1)
_7r3( —1)3 6 4 1
T 2+ 2)" (4+ ST ey (m_1)3>
71'3(m )
~ 4A(n+2)4

for m > 5.
(iii) Let 2o be given as in Lemma 4.2. Set z = k/(n + 2). Note that

0<2<aoqt 2 <m—2+2<7r
2 <z —
- n+2- n+2 T 6

< Zy.
Hence, if 0 < s < 24 2/(n + 2),

0< %H (s)
(1 — 8)(1 — cos(ws)) + sin(ws) — s
(1 — cos(mws))
7

s)?
2
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Therefore,

1 2
s ) s )
0< H,1(2) 2t o) HHnalzt

1/(n+2)
- / (Hl 1 (2 + 5+ 1/(n+2) — H, (=2 + 9))ds

1/(n+2) ,1/(n+2)
/ / H) (2 + s +t)dtds

1/(n+2) 1/(n+2)
— / / (z + s+ t)*dtds

<
:/1/(n+2) (z+5)2 +3(2+s) N 1 )ds
nt2 | Cm+2?  (nt2)?
G <n+2(n+2+(n3—22)2+(n—i2)3> (n+2) (Z+n—1|—2) (n—i?)
- n+24(3 +3k+1+3k+3+1)
- n+24@ + 6k + )
< n+24@ﬁ+ﬁk+@
:ﬂgﬁﬁ®+”~

Lemma4.4. Ifn,m € N,n >m > 5, and H, o is defined by (4.7), then

-1
’Hn2(m )_Hn2< o )’Sl L ’
“An+2 “A\n 42 4 (n+2)>5

and, for 0 < k <m —2,

k+6_ ”4k_w+ (k N<MQW+%+n

ml(
"2n+2 n+2 \n+2 4(n +2)°

Proof. (i) If x = m/(n + 2), one has

| Hy2(x) | = 1 (1 — T ot nLH) (rx — sin(mx))

s n+2
< 1 7% (nz)?
“w2(n+2)?2 6
t md

12 (n+2)5
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(ii) On the other hand, there exists § € (w(m — 1)/(n + 2),7m/(n + 2)) such that (see Lemma

4.1)
—1 -1
s (Bg) = o) | = afsin (55) —sin (M) - 5
“\n+4 2 T\n+42 n-+ 2 n-+2 n -+ 2
Tay,

= +2(1—cos€)

Finally, taking into account Lemma 4.1 and setting z = k/(n + 2), one has

| Hp2(z+2/(n+2)) = 2Hy 5(2 + 1/(n +2)) + Hn 2(2) |
=a, | sin(m(z 4+ 2/(n+2)) — 2sin(n(z + 1/(n + 2)) + sin(7z)) |

1/(n+2) ,1/(n+2)
/ / sin(n(z 4+ s+ t))dsdt
0 0

o /01/(n+2> (1 — cos ( (z+s+ %)))ds

) 1/(n+2) 1
<— (z + s+ 7> ds
“4(n+2)? /0 +2

4

- 2
:4(n+2)2(n—3k2<z+ 12) +(n—§2)2(z+n—1§—2)+ (n—:Q)?’)

=2 an,

n+25(3 (k + 1)2 + 3( k+1)+1)

2
n+25 3K+ Ok + 7).

Lemma 4.5. Ifn,m € N,5 <m < nand Ay, is defined by (4.9), then

7t mt wm?
< - -
| Amon [< 24 (n+2)% | m(Am—1,n = Amn) [S 4(n +2)*
and
m—2 4,3
m*m>(m — 1)
E4+ 1AM ngo| < ———————2
| 2 e 0| < T
Proof. Notice that
sin(rz) 12 72

1= Hyo (%) + Hnp(x) =1 — (1 — ) cos(mz) — 2% + —2® + a,(sin(rz) — 7x)

m 2 3
T .7 VP S
=1—(1—x)cos(mz) — . cot - sin(mzx) — -2 + 3T~ L.
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Therefore,

k k
An:17m10—f) ml( )
k, 1 n+2 + -2 n+2

(1) If m > 5, it follows from Lemmas 4.3 and 4.4 that

m
1= |1 = Fa (555) + 2 (75|
[ Amn | T2) T
7t mt 1 m 7t md
R N
6 (n+2)4\4  5(n+2) 12 (n+2)5
at m?
= 24 (n+2)%

(ii) On the other hand,

o () [+l () — (555

| m()\mfl,n - )\m,n) | S m’Hn 1(

mm(m 1) n at m3
An+2)7% 4 (n+2p
< M (m -1+ L)
~ 4(n+2)* (n+2)
7r3m4
S it ot

(iif) Finally, for 0 < k < m — 2, then

| A% X pga | < ’Hn,1<k+2) *QHn1(k+1> +Hn,1( i )‘

n+2 +2 +2
k+2 k+1
() ~2a(5F) + ()
rt(k+1)2 743k +9k+7)
~ 2(n+2)* 4(n +2)5
<™ (4K + 11k + 8)
~ (n+2)* '
Since
m—2 m—2
> (k4 1)k + 11k +8) = > (4k° + 15k% + 19k + 8)
k=0 k=0
B (2m—3) 19 8
= (m = 1)(m —2)((m = 2)(m — 1) +15 - +2-+m_2)
—mt 3
Therefore,
m—2 4 3(m - 1)
k4 1)A2), ‘< Tmm =)
| 2t D8] < T
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5. MAIN RESULTS

Theorem 5.6. Assumel <p <oo,m € Nandm > 2.Ifg € Wg, T €Ty, and||g—T|p, = Enp(9),
then

(5.10) ||9” - T”Hp <30 Em,p(g//)'
Proof. It was proved in [1, Th. 3.4] that, forany r € N, g € Wy, T €T, and m > max{2,r}.

emn

5 ) Ena(D" ().

1D (g) = D" (8 < (44 +n(2n)) (14 %

when ||g — S|, = E p(g). Since
1 em
(4 +5+ ln(4)) (1 n ?) < 30,

one has

ID*(g) = D*(T)llp < 30E,(D*(g))-

O
Proposition 5.7. If1 < p < oo g € W}, then
-
lg = Frn(g)llp < WHDZ(Q)HP-
Proof. It follows from Proposition 2.2 and Corollary 4.2 that
2
lg = Fa(g)lly < 5 (1= ot ID*(9)]ly
= (1o ) I
< D7l
O

Proposition 5.8. Foreach1 <p <oo,ifn,m € N,n>m>5and T € TY, then

2
™ 1"

2(n + 2)2

3,,,4 2 2 2 1
Fo(T) ~ T — < ( I m 5 mm 4 ))\IT”\Ip~

42t T dmt2? " Bnt2)p
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Proof. Let i, be defined by (4.9). If T = "  Ax(z) € T,, with Ay(z) = aycos(kz) +
by, sin(kx), then

T(z) —Fo(T,x) + Q(nWWTH(w)
zé (1- Cn+2(n_]7_2) = Z(sz;z)Ak(x)
_ki_o (1 - <n+2(ni2) - 7;2(” i)g + 3(21’“32)3 *mnni”)flk(x)
+§ (m"n i 2 3(2?62)3)%(%)
S i) ¢ T

n+2 3(n+2)3
We apply twice the Abel transformation to obtain

m m—1 k
Z Men Ak () = Amn Z Ap(x) + (Akyn = Aksin) Z Aj(x)
k=0 k=0 §=0
m—1 k m—2 k J
= AnnT(@) + Amtn = Amn) D > Ap(@) + D> A% > Ai(x)
k=0 j=0 k=0 §=0i=0

m—2
= AT (@) + m(A N1 ) om (T, ) + > (k+ 1) AN 0w (T, ),
k=0

where ¢}, is the Fejér sum. It follows from Lemma 4.5 that
4 4 3mA 4,3

[ rmate@], < Gigrap * urap ’(Z(f;)_ D,

(116+1+16) mim? T
245 4 5/(n+2)4
7r3m4

< gl Tl
4r3m?

< gyl Tl
Now, taking into account Lemma 4.1, we obtain

man| T, _ w7
< e Ak ( ‘ ‘ P_ P
HZ knAr(@)|| + =755 3(n +2)
473m w2 ~ w2
4H llp + 73||T'Hp+73|
~ (n+2) 2(n +2) 3(n+2)
Each one of the norms given above can be estimated with the help of Corollary 3.1 (here the
condition T € T?, is needed). That is

2
™ 1"

2(n + 2)2

<

T—F,(T) + —— 1"
H ()+2(n+2

17"

9m3m* 32 22 (m + 1)
|7 = Fu() + < (( pEad

nr2d A28 T 32
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Theorem 5.7. Assumel <p<ooand0<a <1l Ifn+2> 72/ and f € WPQ, then

795>

1
b W”f ||P

2
lf//

[n+22Fnah) - ) - 5

Proof. Fix m € N such that
m+1=[(n+2)*?.
Note that
6<(n+2)°2-1<[(n+2)*=m+1<n.
Let T,,, € T,, be given by the condition E,, ,(f) = ||f — T |p- Since

2 2

(n+2)2(]Fn(f+c)—(f+c))_%(f_|_c)//:(n+2)2(Fn(f)_f)_%f,,

and

Emp(f +¢) = Emyp(f),

for any real constant ¢, without losing generality, we can assume that T},, has mean zero. That
is T,,, € TY,. Taking into account Proposition 5.7 and (5.10),

2
7T
[+ 22E(5) = ) = 51| < 0+ D2FF = To) = (7 = T
2 9 2
+ " = Tl + || (0 + 2@ (To) = Ton) = ST
P
7T4 ’/T2 " 1 2 ’/T2 17
< (7 + 5 )" = Thill + || 0 22 Bu(To) = To) = T
nt  x? 2
< e 5 Em " H 2 2 ]Fn Tm _TnL - 7T” .
<30(T + ) B + ||+ 22 (T2) — T) = 5T |
From Proposition 5.8, we know that
[0+ 22 @) - 1 ) -
ni\-m m 9 —m »
<( 9mr3m4 32 27‘(2(m—|— 1))HT,,||
“\(n+2)2 " 4(n+2) 3(n+2) i
93 (n + 2)% 3m? 212 (n + 2)/2
< T// g "
(T s i) (= 11+ 1771,
97'('3 37‘[‘2 27‘[‘2
< Em " 1"
_((n—|—2)2(1—f¥)+4(n+2)+3(n+2)1—a/2)<30 () +IIf ||p)
32y
<31r(op+ 2+ 2 1L p
<t ( 7TJF4+3)(n+2)a

2 "1l

<(31m) mi2)e
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Moreover, taking into account Theorem 2.4, one has

2 10 1 2m
% \g " o<1 2(Y 2 "
30(4 * 2) m.p(f7) < 1507 (4 +2)“"1( ’m+1)p
2
:4507r2w1( ”,mil)
p
2
2 "
< a0 (" ),
We have proved that
2 2 (317)2
QQFn o 71// <4502 1" .
i+ 220 = 1) = 7| < 45070 (£ =), + gyl
This yields the result. U
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