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Abstract

In the paper some new results depending on the comparative growth properties of composite entire functions using relative (p, g,t)L-th order,
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Keywords: Entire function; relative (p,q,t)L-th order; relative (p,q,t)L-th type; relative (p,q,t)L-th weak type; growth; slowly changing function.
2010 Mathematics Subject Classification: 30D20;30D30;30D35.

1. Introduction, Definitions and Notations

Let C be the set of all finite complex numbers. For any entire function f = ¥ a,z" defined on C, the functions M(r,f) known as
n=0
maximum modulus function of f is defined as M(r,f) = max|f(z)|. When f is non-constant, then M (r) is strictly increasing and continuous
Z|=r

and its inverse My~ : (|£(0)],00) — (0,00) exists and is such that liﬁme*1 () =oo.
5300

However let us consider that x € [0,00) and k € N where N is the set of all positive integers. We define exp[k] xX= exp(exp[k’l] x) and
log[k] x= log(log[k*” x). We also denote log[o] X=2x, log[* = expXx, exp[o] x=2xand exp[_l] x =logx. Further we assume that throughout
the present paper /,p,q,m and n always denote positive integers and + € NU{—1,0}. Now considering this, we just recall that Shen et al. [7]
defined the (m,n)-¢ order and (m,n)-¢ lower order of entire functions f which are as follows:

Definition 1.1. [7] Let @ : [0,4+00) — (0,4-c0) be a non-decreasing unbounded function and m > n. The (m,n)-@ order plmn) (f,0) and
(m,n)-@ lower order 1) (f,@) of entire functions f are defined as:

[m] [m]
p(m,n)(f7 (P) _ mw and)L(m,n) (f (P) — lim M

r=e Jogll o(r) r—ee log @(r)
If we take m = p,n=1and ¢(r) = log[q*” r, then the above definition reduce to the following definition:

Definition 1.2. The (p,q)-th order and (p,q)-th lower order of an entire function f are defined as:
(] [P]
p(pvq)(f): HM M.

(PO () = 1i
re ogldl and :25(1) ;]g?o logl) r

Definition 1.2 avoids the restriction p > g of the original definition of (p,q)-th order (respectively (p,q)-th lower order) of entire
functions introduced by Juneja et al. [5].

However the above definition is very useful for measuring the growth of entire functions. If p =/ and g = 1 then we write p“ ) =
pD(f) and AED () = A (f) where p) () and A()(f) are respectively known as generalized order and generalized lower order of entire
function f. For details about generalized order one may see [8]. Also for p =2 and ¢ = 1, we respectively denote p2) () and 221 (f) by
p(f) and A(f) which are classical growth indicators such as order and lower order of entire function f.

In this connection we just recall the following definition of index-pair where we will give a minor modification to the original definition
(seee.g. [5]):
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Definition 1.3. An entire function f is said to have index-pair (p,q) if b < p(p’q) (f) <eoand p<1’*1"‘1*1> (f) is not a nonzero finite number,
where b =1 if p = q and b = 0 for otherwise. Moreover if 0 < p(P4) (f) < oo, then

p(p—n,q) (f) — o0 for n<p,
pPa=m)(£) =0 for n<gq,
p(p+n,q+n)(f):1 for n=1,2,---

Similarly for 0 < A(P-4) (f) < oo, one can easily verify that

AP (f) = for n<p,
APa=m () =0 for n<gq,
ARGt (£ =1 for n=1,2,---

However, the function f is said to be of regular (p,q) growth when (p,q)-th order and (p,q)-th lower order of f are the same. Functions
which are not of regular (p,q) growth are said to be of irregular (p,q) growth.
For entire functions, Somasundaram and Thamizharasi [6] introduced the notions of the growth indicators L-order and L-lower order

where L = L(r) is a positive continuous function increasing slowly i.e.,.L(ar) ~ L(r) as r — oo for every positive constant ‘a’ i.e., lim 1‘L<(arr)> =1
r—yoo

where L = L(r) is a positive continuous function increasing slowly. The more generalized concept of L-order and L-lower order for entire
function are L*-order and L*-lower order. Their definitions are as follows:

Definition 1.4. [6] The L*-order p}* and the L*-lower order l}%* of an entire function f are defined as

. logPlm . log? M
Pj% :hm()gif(r)andgf :mw_
e log[rek(r)] r—e log[rek(n)]

If we take m = p, n =1 and @(r) = logld=! r-expl* U L(r), then Definition 1.1 turn into the definitions of (p,q.t)L-th order and
(p,g.t)L-th lower order of an entire function f which are as follows:

— logP M(r
Pk(p.q.r)= Tm —° )

loslP) M
———————and lﬁ(p,q,t) = lim— % s(r)
r==logld r +expll L(r) '

rjolog[q] r+ exp[’] L(r) ’

In order to compare the relative growth of two entire functions having same non zero finite (p,g,t)L-th order, one may introduce the
definitions of (p,q.t)L-th type (respectively (p,q,t)L-th lower type) of entire functions having finite positive finite (p,q,t)L-th order in the
following manner:

Definition 1.5. [2] Let f be an entire function with non-zero finite (p,q,t)L-th order pjé (p.q.t). The (p,q,t)L-th type denoted by G}(p,q,t)
and (p,q,t)L-th lower type denoted by 3%( D.q.t) are respectively defined as follows:

g ()
G}‘(pvqat) = rlg?o lg—1] 1 . ph(p,gyt)
[IOg q r- exp[”f ] L(r)} F\P:q;

and

_ : log” "1 M;(r)
G (p.q.1) = 1 !
7(p.q.1) e [1og[‘1—‘]r~exp[’+1]L(r)]p~%(p’q‘t)

Analogously in order to determine the relative growth of two entire functions having same non zero finite (p,q,t)L-th lower order one
may introduce the definition of (p,q,r)L-th weak type of entire functions having finite positive (p,q,r)L-th lower order in the following way:

Definition 1.6. [2] The (p,q,t)L-th weak type denoted by T}‘( D.q.t) of an entire function f is defined as follows:

logl?—1 pmp
th(p.q,1)= lim 0g 7(r)

) O < )LL ) 7t < oo,
r—-+oo [log[‘l—l] r~exp[’+1]L(r)]}%%(P,qJ) f (]7 q )

Also one may define the growth indicator ?% (p,q.t) of an entire function f in the following manner :

_ _ logl”~1 M, (r)
T4(p,g,1) = Tim ! ’
f(P q.1) A [log[qfl] r-exp[’+1]L(r)]ka(p7q’t)

0< Af(p.q.t) <eoo.

Mainly the growth investigation of entire functions has usually been done through their maximum moduli in comparison with those
of exponential function. But if one is paying attention to evaluate the growth rates of any entire with respect to a new entire function ,
the notions of relative growth indicators [1] will come. In order to make some progress in the study of relative order, recently Biswas [3]
introduce the notion of relative (p,q,t)L-th order and relative (p,q,t)L-th lower order of an entire function f with respect to another entire
function g in the following way:

Definition 1.7. [3] Let f and g be any two entire functions. Then relative (p,q,t)L-th order denoted as pép"q"t)L( f) and relative (p,q,t)L-th

)L . . . . .
lower order denoted as lg(p 1) (f) of an entire function f with respect to another entire function g are define by

i log[l’] M;l (My(r))

i log!?! Mz (M (r))
m--———-—-—-—"——
H‘”log[‘l] r+expl L(r)

(p.q;t)L _
() r—eologldl r +explll L(r)”

Py and A7) =
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Now to compare the relative growth of two entire functions having same non zero finite relative (p,q,t)L-th order with respect to another
entire function, one can introduce the notion of relative (p,q,t)L-th type (respectively relative (p,q.t)L-th lower type) of an entire function
with respect to another entire function which is as follows :

Definition 1.8. /3] If0 < pép’q"[)L(f) < oo, then relative (p,q,t)L-th type Gép’q’l)L(f) and relative (p,q,t)L-th lower type G(p’q’ >L(f) of an
entire function f with respect to another entire function g are defined as

T L U/ Q)
"7 [log lg=1] r-expl HL(r))Ps
logP~1 a1 (M (r))

pqu

and
(pqt)L

—(p.g.t)L _ :
or ) = L - 1 . explt+11 L(7)]08
[logl?~ 1 - expli+11 L(r)]P¢

Similarly, one can define relative (p,q,t)L-th weak type to determine the relative growth of two entire functions having same nonzero
finite relative (p,q,t)L-th lower order with respect to another entire function in the following manner:

Definition 1.9. /3] If0 < lép "q’l)L( f) < oo, then relative (p,q,t)L-th weak type ‘L'é,p ’q’l)L( f) of an entire function f with respect to another
entire function g is defined as:
(Pl o) _ ) logl 1M, ! (M (1)
Tg (f) = lim 1 (Pa:L £y
r=e [logld= 1 . expl+1 L(r)) """ ()

(

Further one may define the growth indicator ?gp 4

’t>L( f) of an entire function f with respect to an entire function g in the following way :

_ loglP =1 M (M
?épqut)l‘(f) — hm Og 8 ( f(r))

L0 < APIIL(F) <o
7= 1ogld =1 . expli+1] L(r)]lé”‘q‘”" (f) ¢ )

In the paper we study some maximum modulus oriented growth properties of composite entire functions on the basis of their relative
(p,gst)L-th order, relative (p,q,t)L-th type and relative (p,q.¢)L-th weak type of entire function with respect to another entire function
improving some earlier results where p,g € N andr € NU{—1,0}. We do not explain the standard definitions and notations in the theory of
entire functions as those are available in [9].

2. Lemmas.
In this section we present two lemmas which will be needed in the sequel.

Lemma 2.1. [4] If f and g are any two entire functions then for all sufficiently large values of r,

Myog(r) < My(Mg(r)).

Lemma 2.2. [4] If f and g are any two entire functions then for all sufficiently large values of r,
1
Myeg(r) 2 My (7643 )

3. Theorems.

In this section we present the main results of the paper.

Theorem 3.1. Let f, g and h be any three entire functions such that 0 < l,gp’q't)L(f) <eoor0< p;(lp’q’r)L(f) < coand GgL(m,nJ) < oo where
m—1=q. Ifexpl!! L(M,(r)) = o([log" 1 r-expl 1 L(r)]%) as r — oo and for some positive o < ng(m,n,t), then

lim logl?l M, ! (Mog(r))

< oL(m,n,t).
log b, (Mf(expwlog[" U -explH1 (o))

8

Proof. Let us consider 0 < /l}sp’q’tﬂ‘(f) < oo,
Since M, ! (r) is an increasing function of r, it follows from in view of Lemma 2.1, for a sequence of values of r tending to infinity that

1ogl?) My (Mo (r)) < logl? bt (M (M (1))
ice.. ogl! My (Mg (r)) < (AP4F () + ) [l0gl) My (r) + exp L(My ()]
ice., 10glP My (Mpog (r) < (AP (f) + &) logh" =Y My (r) +expl L(M, (1))
ice.. logl! My (Myog(r) < (A7VM(f) +e)-

(oF(m.n,1)+ &)logh ! r-expl I L(r)PEm0) 4 expll L (M, (r))]

ire., ToglP) My (Myog(r)) < (AP5(f) + ) -
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[(oF(m.,1)+ &) togh Y r-expl I L(r)PEm0) 4 expl! L(My ()] (3.1)

Further, we obtain for all sufficiently large values of r that
log[”] M, (Mf(exp[" [log" . exp[’“]L(r)}sz("lf"-r’))) >
(A}SP#N)L(f) o S)UOg[n—l] - exp[r—H] L(r)]p[f(m,n,t)

+ (l,sp’q’r)L(f) - s)exp['] [L(exp[q] [log[”fl] r-expl ™! L(r)]pé(m*””))}

log[l’] (Mf (exp[ ][]Og[" 1] r- exp[tJFl] L( )}P;(’"ﬁ-f))) > (A«;Epﬁq’t)L(f) _ 8)[log["71] e exp[tJrl] L(r)}p‘é(m,n,t).
Now from (3.1) and above it follows for a sequence of values of r tending to infinity that

logl?l M, 1 (Myog ()
log[p] (Mf(exp[‘l [logl"=1 7+ explt+11 L(7)]Pe (1) )

AP (f) &) [ (o (m,m,t) +£)llogh ™ r-expl L] expl) L ()]

<
) (AP (f) = &) llog ™1 - expltt () o)

(p.a)L L expl’l L(M, (1))
) log[P] M;l (Mfog(r)) < ()“h (f) + 8) : [(O-g (man) + 8) + [logh~1 r-expl-+1] L(r>]p[§(mﬂ.f):|
ie., : <
togl7 ;" (M1 (expldlog 1] -explt 1] () PFm0)) (W) —e)
(3.2)
Asa < pé(m,n,t) and expl] L(M,(r)) = o([log!" " r-expl ™1 L(r)]*) as r — oo, we obtain that
My

i OPULOLO) a3
r=e [Jogl=1] . expli+1 L (r)]Pe (1)
Since £(> 0) is arbitrary, it follows from (3.2) and (3.3) that

log!”! MV (M,
liim o8 ( fg( )) L SGgL(manJ)'
r%wlog[l’] thl <Mf(exp[‘1] [1Og[n 1] r-explit1] L(r)]Ps (mJlJ)))
Similarly if we consider 0 < p<p ’q’r)L( f) < oo, then using the same technique one can easily verify that

log!”) MY (Mo,
m 0g ( fg( )) - SO'gL(m,nJ)-
r—=logl?] M ! (M f(exp[q] [log[n - expl+1] L ()]P# <mﬁn,z>)>
Thus the theorem is established. O

In the line of Theorem 3.1, the following theorem can be carried out and therefore its proof is omitted:
Theorem 3.2. Let f, g and h be any three entire functions such that 0 < l,gp’q‘t)L(f) <eoor0< p(p @ Z)L(f) < oo and ?{‘;(m,n,t) < oo where
m—1=gq. Ifexpl! L(My(r)) = o([logh" =" r-expl 11 L(r)]*) as r — oo and for some positive @ < lgL(m,n,t), then
logl”! M, 1 (Mo
lim og h ( £ g(r)) _
r==1ogl! M (M ((expldlogh'1) - exple+1] L(r) 4 (m) ) )

<7 L(m,n,1).

: : (p.g:1)L (p.g:1)L L 1
Theorem 3.3. Let f, g and h be any three entire functions such that 0 < 2, (f) <p, (f) <eoand og(mn,t) <oowherem—1=gq.
Ifexpll L(My(r)) = o([log" 1 r-expl 1 L(r)]%) as r — oo and for some positive o < ng(m,n,t), then

im logl”! M_I(Mfog( ) < Pf,p’q’t)L(f)-Gé(m,n,z)
r~>°°]0g[ 12§, (Mf(exp[ ][log['l 1] .. exp[’“] (,.)]pé(m,n,t))) - l}([p,q,t)L(f)

Theorem 3.4. Let f, g and h be any three entire functions such that 0 < l}Ep,q L (N< p<p 4L (f) <coand ?g,‘(m,n,t) < ocowherem—1=gq.
Ifexpl] L(My(r)) = o([log!" " r-expl ™ L(r)|%) as r — oo and for some positive o0 < lgL(m,n,t), then

T log!” M, ' (Mo (1) _ o) )
r%‘x’]Og[ Plym (Mf(exp[ ][log[” 1] r.exp[t+l] L(,,)]pé(m.n,r))) - /»L]Ep.,q,t)L(f)
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We omit the proofs of Theorem 3.3 and Theorem 3.4 as those can easily be established in the line of Theorem 3.1 and Theorem 3.2
respectively.

Using the notion of (m,n,t)L-th lower type and (m,n,t)L-th weak type we may state the following two theorems without their proofs
because those can be proved in the line of Theorem 3.3:

Theorem 3.5. Let f, g and h be any three entire functions such that 0 < A/Ep,q.t)L N < p,(lp’q’tﬂ“ (f) <eoand Eé(m,n,t) <ocowherem—1=gq.
Ifexpl] L(M, o(r)) =0 (Nogl" =1 r - expl U L(r)]%) as r — oo and for some positive o < pé,‘(m,n,t), then

. logl! M, (M0 (1)) _ AN )T (mm )
’—>°°log[ 12573 (Mf(exp[ ][log[” 1]r~exp[t+1] L(r)]PxL(’"'f””))) a A}Ep’q’t)L(f)

Theorem 3.6. Let f, g and h be any three entire functions such that 0 < l}gp’q"t)l‘ (N < p;lp’q’t)l‘(f) < oo and ‘L'gL(m,n,t) <ocowherem—1=gq.
Ifexpl! L(My(r)) =0 (Nlogl" =1 - expl U L(r)]%) as r — oo and for some positive o < lgl,‘(m,n,t), then

. logl”! My (Mg (1)) _ PN e (mm)
r>logl?l (Mf(exp[ ][log[" U explt+1] (r)]’lgL(m*”*’))) B l}sp’q’t)L(f)

Now we state the following three theorems without their proofs as those can be carried out in the line of Theorem 3.1 and Theorem 3.3
repectively.

Theorem 3.7. Let f, g, h and k be any four entire functions such that /'L(l miL ( ) >0, lép’q’t)L(f) < oo and GAI,“ (m,n,t) < oowherem—1=q.

I expl L(My(r)) = o([logl" " r-expl 1 L(7)]%) as r — oo and for some positive o0 < pE(m,nt), then

1ogl” M~ (Mg (1)) A,E”"”)L( f) og(m n.1)
L

lim

<
r==1ogl M (M (expliflogh 1 - expl 1l L (r)Prm) ) ) 8)

Theorem 3.8. Let f, g, h and k be any four entire functions such that p,El’n’t)L(g) >0, pflp"q’l)L(f) < oo and GA{‘ (m,n,t) < oowherem—1=gq.

Ifexpl] L(My(r)) = o([log!" " r-expl* N L(r)|%) as r — oo and for some positive o0 < ng(m,n,t), then

. logl? M~ (M0 (1)) p\PADL (). Gk (m,n, 1)
rﬁ”log[ ]Mlzl <Mg (exp[”] [IOg[”*l] r-explttl] L(r)]PgL(ma”J)>) - pIEI ot L(g)
(pat)L

Theorem 3.9. Let f, g, h and k be any four entire functions such that lk(l’n’t)L(g) >0, p, (f) <ooand GgL(m,n,t) < ocowherem—1=gq.

Ifexpl] L(My(r)) = o([log!" " r-expl™ N L(r)|%) as r — oo and for some positive o0 < ng(m,n,t), then

im log[P] M;l (Mfog(r)) § p}(l[hq.t)L(f) ) Gé‘(m,l’l,l‘)
r—>°°10g[l] Mk*I <Mg (exp["] [log["*l] re exp[’“] L(,,)]Pﬁ(m,n,t))) - l,fl"n’z)l‘(g)

Theorem 3.10. Let f, g, h and k be any four entire functions such that lk(l’n’t)L(g) >0, p,(zp’q’l)L(f) < eoand 5{‘; (mn,t) < oowherem—1=q.

Ifexpl] L(My(r)) = o([log!" " r-expl ™ L(r)|%) as r — oo and for some positive o < ng(m,n,t), then

lim log M, (Mg (1) _ o) k)
i’*)iwlog[l] MI:I <Mg (exp[”] [10g[n71] r- exp[’“] L(,)]pﬁ(m,n,t))) - Ak(l.n,t)L(g)

‘We omit the proof of Theorem 3.10 as it can easily be established in the line of Theorem 3.5.
Further we state the following theorem which is based on (m,n,r)-th L-weak type:

Theorem 3.11. Let f, g, h and k be any four entire functions such that ),k(l’"'t)l‘ (g)>0, p,ip’q"m‘ (f) <o and TgL(m,n,t) <ocowherem—1=gq.

Ifexpl! L(My(r)) =0 (Nogl" =1 r-expl U L(r)]%) as r — oo and for some positive o < lgL(m,n,t), then

lim log!" ¢, ! (Myeg(r)) - o) - 2 (mym, 1)
Hioo]ogm Mk—l<M <exp[”][log[” 1], exp[""I]L( )] (mnt))) - )L]El,n,t)L(g)

Proofs of the above theorem can be carried out in the line of Theorem 3.10 and therefore its proof is omitted.
Using the concept of the growth indicator ?é (m,n,t) of an entire function g, we may state the subsequent three theorems without their
proofs since those can be carried out in the line of Theorem 3.11.

Theorem 3.12. Let f, g, h and k be any four entire functions such that kk(l""’r)L(g) >0, /I,Ep’q’t>L(f) < o and ?éL, (mn,t) < oowherem—1=gq.
Ifexpl L(M o (1) = o([log"" 1 r-expl 1 L(r)]%) as r — oo and for some positive o < lgL(m,n,t), then

lim log” M | (Myoq(r) OB A G
r—T\OIOgU] M]:1<M (exp[ﬂ] [lOg[" 1], exp[t+1]L( )] L (myn, t))) - )Lk(l,n.,t)L(g)
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Theorem 3.13. Let f, g, h and k be any four entire functions such that p,El’"’t)L (g) >0, p,(lp’q’t)l‘(f) < oo and Té(m,n,t) <ocowherem—1=gq.

Ifexpl! L(My(r)) =0 (Nogl" =1 - expl U L(r)]%) as r — oo and for some positive o < lé{‘(m,n,t), then

lim logl”) ;! (Mg (r)) PO (f) T (m, )
r—]ogll] Mkfl < M, (exp[n] [log[n 7 expl+1 L r)]x;(m,n,z)> ) = 0 Iil,n,t)L ()

Theorem 3.14. Let f, g, h and k be any four entire functions such that llfl’”’t)L(g) >0, p,(lp’q’t)l‘(f) < oo and ?é(m,n,t) < cowherem—1=gq.
Ifexpl! L(M, o(r)) =0 (Nogl" =1 - expl U L(r)]%) as r — oo and for some positive o < lé{‘(m,n,t), then

)L -
fim logl? M, (Mo (1) PN (f) T (m, )
r—)oolog[l] M/:l <Mg<exp[n] [log[" 1] r-exp[’Jrl]L(r)]ng(m’n’l))) - llgl,n,t)L(g)
Theorem 3.15. Let f, g and h be any three entire functions such that plgp’q‘t)l‘(f) = ng(m,n,t), 0< O'gL(m,n,z) < o and O.(Pq t)L(f) <0

where m—1 =n=gq. Then

) () ok ) |
_ logl? M (Myoy(1)) < P i 1 el LMy () = o{log P g (M ()

lim
P loglh™ U, (Mf( r)) +expl) L(My(r)) ~

o) i oM (M (7)) = ofexp! LMy (1))

Proof. Since M, ! (r) is an increasing function of r, it follows from in view of Lemma 2.1 for all sufficiently large values of r that

1og” M, (Mg (r) < Togl? M, (M (M (1))

ie.. 1ogl” My (Mg (1) < (0" () +€)llogl?) My(r) + exp!! L(M ()]

i, 10l My (Mg (1)) < (" (1) + &) llog" ™ M (r) +expl!| L (M ()]
(M pog (1) < (1) e)-

(ck(m,n,1) -+ &) logh 1) - expl 1 L(r)JPE 1) 4 expld LMy ()]

i.e., logl?! M,

8

Since p(p )L = pé{‘(m,n,t), we obtain from above for all sufficiently large values of r that

ire., 10g?) My (Myog (1) < (P94 (f) +€) -

(p.q.t) .
[(O'gL(m,n,t) + 8)[10g["_]] re exp[”"l] L(r)}phpq ") +exp[’] L(Mg(r))|. (3.4)
Again we get for all sufficiently large values of r that

1og? M, (M (7)) > (GPTE(f) - £)lloglt =1 r-expl 1 L ()P (D)

—1] a1
i, flogt™ V- expl 1 ()P ) < W—hMM
(" () —e)

—1] g1
ie., [log"! r,exp[tH]L(r)]pg(”“”)L(f) < log[(”]flzl—th(r)- (3.5)
(Ehp%t (f) - 8)
Now from (3.4) and (3.5) it follows for all sufficiently large values of r that
1og?! M, ! (Myog(r)) < (0E(m,n,1) +€) - expl L(M,(r)) +
loglP~Upm'm
(P4 (f) + )b mmr) ) Mo Mr(r)
(@, () —¢#)
(p.gt)L; o
ol =14 (ra)L (e (j&:ﬁ(cé(m%n,r)w)
i 0g " My, (Myog(r)) < () +E) @ ")) (.6)
7 oY m Mrm, = log” U () exp! L(M,(r) .
og h ( f(r)) +CXP ( g(r)) 1 W;’W 1 k)g[p—l\Mh—le(r)

If expl’] L(M,(r)) = o~{1og[P*1]Mh’1 (My(r))} then from (3.6) we get that

— logl”) 8, (Mg (1)) <(P;(f"”’)L(f)+8)( of(m.n.1) + )
r==logP M, 1 ( f( r)) +explll L(My(r)) ~ @) —g) '
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Since £(> 0) is arbitrary, it follows from above that

= logl"l M, ! (Mo (1)) PP (f) ok (m,m, 1)
rﬁwlog[Pfl]M}lfl(Mf(r)) +exp[’]L(Mg(r)) = Eilp’q’tﬂ‘(f)

Again if 10g[1”*1]M71 (My(r)) = ofexpl! L(M, ¢(r))} then from (3.6) it follows that

o toel (M)
o Tat a1y (0) o3 L0,

< (PP E(f) 4 €).

As g(> 0) is arbitrary, we obtain from above that

oy ]Og[ ] (M O, )

im = fog(r) 7plgpqt) (f).

r=e=log? M, (Mf( r)) +expl] L(Mg(r))

Thus the theorem is established. O

Theorem 3.16. Ler f, g and h be any three entire functions such that )Ligp,q ML (f) <o, p<p 0L () = ng(m,n,t), 0< Géf(m,n,t) < e and
El(lp’q’t)L(f) >0wherem—1=n=gq. Then

AP () ok (mon.t) 1],
1027 M~ (M0 (1)) W if expl!! L(My(r)) = ofloglP =1, ! (M (1))},

lim
r—oologl? 1 M1 (M4 (r)) +expl! L(M, -
og w ( f()) expl) L(M,(r)) %Ep,q,r)L(f) i og? M (M () = ofexpl! L(M,(1)}.

Theorem 3.17. Let f, g and h be any three entire functions such that p;lp’q’t)L(f) = ng(m,n,t), 0< GgL(m,n,t) < oo and G,Ep’q’tﬂ“(f) >0
where m—1 =n=gq. Then

(p.a.t)L
) f m,n, . _ _
log!” M (M (1) | A el Lt () = otogag, Nt ),

O

lim
e loglP— 1]M M +expltl L(M,(r
> OO PPIOL () if togl =1 ag (M (1)) = ofexpl) LM (1))

Theorem 3.18. Let f, g and h be any three entire functions such that p}(lp’q’t)l‘(f) = pé‘(m,n,t), 0< Eé(m,n,l) < oo and G(p @ t)L(f) >0
where m—1 =n=gq. Then

(p.g.t)L n, - B
ogug ) | i o e L0t () =ofiod oty 0ty(r),

e T, 0 (0) + expl L)

)L . _
PR (f) if 1ogl U by (M () = ofexpl! L(My (1)}
‘We omit the proof of the above three theorems as those can be carried out in the line of Theorem 3.15.

Similarly using the concept of the growth indicator T}EP ’q’l)L( f) and f’g (m,n,r) we may state the subsequent four theorems without their
proofs since those can be carried out in the line of Theorem 3.15, Theorem 3.16, Theorem 3.17 and Theorem 3.18 respectively.

Theorem 3.19. Let f, g and h be any three entire functions such that p,(lp’q’tﬂ“(f) < oo, lép’q’t)l‘(f) = lgL(m,n,t), 0< Tg(m,n,t) < oo and
T;Ep’q’t)l‘(f) >0 wherem—1=n=gq. Then

(pg:t)L
- tog?! M, ! (Meg(r) Py o exp LMy (1) = otlod I b1y ()
lim : <

r==1ogl? 1 M, (M (r) +expl] L(M,(r))

pAPADE (1) if ol My (M4(r) = ofexpl] LMy (1))}

Theorem 3.20. Let f, g and h be any three entire functions such that l,gp"q’t)L(f) = )LgL(m,n,t), 0< ?é(m,n,t) < oo and T}(lp’q"t)L(f) >0
where m—1 =n=gq. Then

M 1 LM, (r)) = o{logl?~ ) M (M
lim logl?l M (Mog(r)) oy I PTLMy () =otlogTEM, T (Mr(r)},

roesloglP 1M,V (M (r)) +expll] L(M (7)) ~

LPAOLE) if1ogl Y b (My(r) = ofexpl L(M, (1)}

Theorem 3.21. Let f, g and h be any three entire functions such that p,(lp’q’t)L(f) < oo, /'L;Ep’q’t)l‘ )= lgL (m,n,t), 0 < ?é (m,n,t) < oo and
?]Sp’q’t)L(f) >0 wherem—1=n=gq. Then

php'q'[)l‘(f>71‘(m,
10g[p] (Mfog( r) _ 712,,1“)%”

if expl L(M,(r)) = ofloglr =", (M4 (1))},
lim
leog[” UM, (Mf( r)) +expl L(Mg(r))

pAPADE(p) i ol My N (M (r)) = ofexpl! L(M ()}
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Theorem 3.22. Let f, g and h be any three entire functions such that p;lp’q’t)l‘(f) < oo, l,gp’q’t)l‘(f) = ),gL(m,n,t), 0< ‘EgL(m,n,t) < oo and
T}Ep’q’t)L(f) > 0 where m—1=n=gq. Then

(Pg0)L L m,n, . — —
logl”! M; | (Myoq (1)) Aty f expllLOMy(r) = olog g 41y ()
lim

r=eloglP 110, (M (r)) +expl) L(M(r) ~

p\PADE (1) if ol My (M4 (r)) = of{expl!] LMy (1)}

Analogously we state the following four theorems under some different conditions which can also be carried out using the same
technique of Theorem 3.15 and therefore their proofs are omitted.

Theorem 3.23. Let f, g and h be any three entire functions such that p<p 0L (f) < oo, lép’q’l)L(f) = pé‘(mnt) 0< GgL(m,n,l) < oo and
T,qu’) (f) >0 wherem—1=n=gq. Then

p(l""")L(f)GgL(m’n’t> i ) h
e | ey e () =olog e 44y (r))

lim
o T, (0, () + expl L))
% A pPAL () i loglv=1 M (M,(r)) = o{expl) L(M(r)}.

Theorem 3.24. Let f, g and h be any three entire functions such that 7L<p a4k (f) = pél;(m,n,t), 0< Gé‘(m,n,t) < oo and T,(lp’q’t>L(f) >0
wherem—1 =n=gq. Then

l([’ql)l(f)o_ (mng) . 8 B 1] 11
10gl?) M (M oy (1)) T if exp!! L(My(r)) = of{log?™ I M)~ (M (r))},

lim <
r=eloglP =M1 (M (r)) +expl) L(Mg (1))

AP (p) i gl My (M (r)) = ofexpl!l L(M, (1))}

Theorem 3.25. Let f, g and h be any three entire functions such that p;lp’q’t)L(f) = lgL(m,n,t), 0< ?é(m,n,t) < oo and 0'<p @ [)L(f) >0
where m— 1 =n=gq. Then

(pat)L ¢ \=L
PP () () iy
_ log[p] Mh—l (Mfog(r)) W f exp ( ( )) = O{IOg[p I]Mh I(Mf(r))}7

lim
r==loglP = M, (M (r) +expl] L(M(r)) ~
og h ( f(r)) exXp ( g(")) p}(lp,q,t)L(f) iflog[l”llMgl(Mf(r)) _ o{exp[’] L(Mg(r))}.

Theorem 3.26. Let f, g and h be any three entire functions such that plsp’q’l)L(f) = lgL(m,n,t), 0< f[{,‘(m,n,t) < oo and G<p @ Z)L(f) >0
where m— 1 =n=gq. Then

;L;Elhq,f)L(f)TL(m n t ) [ _]] »
h e Er Y =o{log?~ "M (M
lim log!?! M, 1(Mfog(r)) G (f) if exp!! L(M,(r)) = o{log W (Mp(r)},

r=eloglP =V M (M p(r)) +expll] L(M (r) —

AP i loglh =V My (M (r)) = ofexpl!) LM, (r)) -

Theorem 3.27. Let f, g and h be any three entire functions such that (i) p;lp’q’t)L(f) = ng(m,n,t), (i) 0 < ﬁé(m,n,t) < oo and (iii)

Glsp’q’t)L(f) < oo where m — 1 = n = q and exp! L(ar) ~ expl! L(r). Then

p(p‘mL(f)O' (m,n,t) . _ _

- loglP M (Mg (2r)) W if expl) L(My(r)) = ofloglP =11 M, ' (M(r))},
m
r==loglP =M, V(M (r)) +expll] L(M,(r)) ~

pAPAIE(p) i ol My N (M (r)) = ofexpl!l LM, (1))}

Proof. Since M, 1 (r) is an increasing function of r, in view of Lemma 2.2 we get for a sequence of values of r tending to infinity that

1
log[p] (Mfog(Zr)) >log[p]M le(16Mg(r))

e, loglP My (Mpog(2r) > (o (f)—g)-
1
[1og[Q] (EMg(r)) +exp[’] L(%Mg(r))]
e, loglP My (Myog(2r) > (""" (f)—€)-

log"™ =1 My (r) + expl L(M (r) +O(1)]

i.e., logl?! M (Myeg(2r)) = (pPVE(f) — &)
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Lm,n,1) — ) llogh"~ 1 (r) - expl 1 L(r)]PE 110 1 expl!] L(My (1) + O(1)]

(o
Now in view of condition (i) we have from above for a sequence of values of r tending to infinity that

i.e., 10glM(; ' Myog(2)) = (0747 (1) — &)

(GEmon,1) — &) llog"~)(r) - expl 11 L))+ expld (M () + O(1)] (3)
Again we get for all sufficiently large values of r that
togl? =10, (M4() < (07" (1) + &) loght ) - expl 1 L(r) P10

logl =1 M, (M (r))
(P40 (1) +e)

[lOg[‘l 1], exp[t-‘rl] L(r )]Pr&p"q'r)L(f) >

togl? = ;" (M (1))
(07 (f) +€)

i.e., [logh—1r-expl+1l L(,)]PE"‘”")L(f) > (3.8)

Now it follows from (3.7) and (3.8) for a sequence of values of r tending to infinity that
log” 1, (M (r))
(0,5 (f) +e)

logl? M, (Myog(26)) = (9,7 () — £) (@5 (mn,1) —€) -

+ (p\P4OE () — ) expl LM, (1)) + O(1)]

logl M, (Myog(21)) "M —e)

" loglP= U, (M (r)) +expld L(Mg(r) ~ 4 log[”‘ % (z(w,><>r>>
exp r

ie.

(0" (1) &) (@ (mnt) )
(0" () +e) o)

expl] L(M, (1)) looP~Upr—Y(m [r(m '
b ST g (0 (1) + expl L(M(r)

+

(3.9)

If exp[’]L(Mg(r)) = o{log[f’*”M}:l(Mf(r))} then from (3.9) we get that

e logllag (Mg (2r)) _ @) —e) @ mnr) —e)
r><logP~ M, 1 (Mp(r)) +expl L(M,(r)) ~ (0\ P4 (f) + )

Since £(> 0) is arbitrary, it follows from above that

= logl?l M, (Mg (2r)) _ AN ()T (mm)
== loglP UM (M () +expl LM () — 6P ()

Again if logl? ! M;l (Mys(r)) = ofexpl! L(Mg(r))} then from (3.9) it follows that

i 1oBM; (M0, 21))
logl M (7)) + expl! (M (r)

> (p () —g).

As (> 0) is arbitrary, we obtain from above that

= logl”! M, 1 (Myog (2r))
r==loglP=U M, (M (r)) + expl] L(My(r))

> o).

Thus the theorem follows. O

Theorem 3.28. Let f, g and h be any three entire functions such that (i) l,gp’q’t)L(f) >0, (if) p,gp’q’l)L(f) = ng(m,n,t), (iif) GgL(m,n,t) >0
and (iv) G,Ep"q’t)l‘(f) < oo where m—1=n = q and exp! L(ar) ~ expl! L(r). Then

2 ()0t (mm)

_ logl?) My | (My.4(2r) i expl LMy (1)) = o{1og” ™ M, (41y(r) ).

lim )
r==loglP =V M, (M (r)) + expll] (M, (r))

WPIOE)if togle M (M (1) = ofexpl) L(M, (1)}
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Theorem 3.29. Let f, g and h be any three entire functions such that (i) ?L;Ep’q't)l‘(f) >0, (if) p}(lp’q’l)l“(f) = pé(m,n,t), (iif) Eé(m,n,t) >0
and (iv) ﬁip"q’t)L(f) < oo where m— 1 = n = q and exp! L(ar) ~ expl L(r). Then

WP (F)BE (mon )

Elw,y(f Lif expl L(My(r )) = ofloglr VM, (My(r))},

= loglP) M, 1 (Myog(2r))
r==loglP~1lp, ! (Mf( r)) +expl] L(Mg(r))

ALY if logle =V My (M (r)) = ofexpl!) L(M,(r)) -

Theorem 3.30. Let f, g and h be any three entire functions such that (i) l,gp’q’t)l‘(f) >0, (if) plgp’q’t)l‘(f) = ng(m,n,t), (i) 6§(m,n,t) >0
and (iv) G,Ep"q’t)L(f) < oo where m— 1 = n = q and exp! L(ar) ~ expl L(r). Then

A8 (f)GE ()
o, (f)

) logl?) M, (Mo (2) Lif expl! L(M,(r)) = o{log? 1 M, (M(r)},

)
r—elogl =t p ! (Mf( r)) +expl! L(M,(r))

AP i logle =V My (M (r)) = ofexpl!) L(M,(r)) ).

We omit the proofs of the above three theorems as those can be carried out in the line of Theorem 3.27.

Similarly using the concept of the growth indicator T;lp 'q’t)l‘( f) and ‘EgL (m,n,t) we may state the subsequent four theorems without their

proofs since those can be carried out in the line of Theorem 3.27, Theorem 3.28, Theorem 3.29 and Theorem 3.30 respectively.
4L . )L
Theorem 3.31. Let f, g and h be any three entire functions such that (i) p;lp ) (f) >0, (i) /I}Ep 1) N= kgL(m,n,t), (i) 0 < Té(m,n,t) <
oo and (iv) TEL‘” q't)L(f) < oo where m— 1 = n = q and exp! L(ar) ~ expl L(r). Then
i (f)ek(mon

nt) . _ 1] g1
_ 10g[p] M;l(Mfog(zr) TI() if eXp[f] L(Mg(r)) = 0{10g[17 ]Mh (Mf(r))},

lim )
r=e=loglt 1 M, (M (r)) + expl] L(M, (r))

P ) i togl gy (M7(r) = ofexpl! L(My (1))

Theorem 3.32. Let f, g and h be any three entire functions such that (i) /l,ip’q””“(f) = lgL(m,n,t), (if) 0 < ?é(m,n,t) < oo and (iii)

T]<p K t)L(f) < oo where m — 1 = n = q and exp!) L(ar) ~ expl’ L(r). Then

AP (VT (mon )

P4 ) Lif expl! L(My (r )) = o{log? ;! (My(r))},

= loglP) M, 1 (Myog(2r))
m
H‘”log[”*”M,;‘(Mf( ) +expl] L(M,(r))

APEORE) i logP My (M () = ofexpl L(M, (1) ).

Theorem 3.33. Let f, g and h be any three entire functions such that (i) l,gp'q’t)L(f) = kgL(m,n,t), (i) 0 < TgL(m,n,t) < oo and (iii)
T}Ep’q’t)L(f) < oo where m— 1 = n = q and exp!) L(ar) ~ expl! L(r). Then

A" ()t (mon,

T ) D if exp L(M,(r )) = ofloglr VM, (My(r))},

= loglP) M, 1 (Myog(2r))
m
H‘”log[”*”M,;‘(Mf( ) +expl] L(M,(r))

APRE) i toglr Y M (M () = ofexpl) L(My (1))}

Theorem 3.34. Let f, g and h be any three entire functions such that (i) l,gp'q’[)L(f) = lgL(m,n,t), (i) 0 < TgL(m,n,t) < co and (iii)
?]Sp’q’t)L(f) < oo where m— 1 = n = q and exp!) L(ar) ~ expl! L(r). Then

A" ()t (mon,

() D if exp L(M,(r )) = ofloglr VM, (My(r))},

, loglP) M, 1 (Myog(2r))
lim
roeologlP = M"Y (M (r)) + expll] L(My(r))

PIOE(E) i oghh Y My (M (r) = ofexpl! LM, (1))

Analogously we state the following four theorems under some different conditions which can also be carried out using the same
technique of Theorem 3.27 and therefore their proofs are omitted.

Theorem 3.35. Let f, g and h be any three entire functions such that (i) p,(lp a0k (f) >0, (i) A}Ep’q'OL N= ng(mnt) (i) 0 < Eé(m,n,t) <
oo and (iv) ‘L'Elp @ Z>L(f) < oo where m— 1 =n = q and exp! L(ar) ~ expl! L(r). Then

" ()sgmant) _ Ty,
- logl? M~ (Mo (20)) erxp L(My(r)) = o{logl"™ 1 1, (M (r))},

¥
rﬂlog[pfl]Mh (Mf( r)) +expl] L(My(r)) —

pAPAIE(E) i ol My (M (r)) = ofexpl! LM, (1))}
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Theorem 3.36. Let f, g and h be any three entire functions such that (i) ),;Ep’q't)l‘(f) = pé(m,n,t), (if) 0 < ﬁé(m,n,t) < oo and (iif)
?]Sp’q’t)L(f) < oo where m — 1 = n = g and exp!) L(ar) ~ expl’ L(r). Then

AP ()G (mon )

e if expll L) = oftogl” 1y (M (1)).

; logl7 1, ! (M2, (21)
im =
o T, 00+ x5 )

B togl ™ (M () = ofexp!) L(Mg(r)).
Theorem 3.37. Let f, g and h be any three entire functions such that (i) p}(lp’q"t)L(f) = lé‘(m,n,t), (i) 0 < Té(m,n,l) < oo and (iii)
G;Ep‘q’r)L(f) < oo where m—1=n=q and exp! L(ar) ~ expl! L(r). Then

(e ()

ot 2 if expl) (Mg (1)) = o ol by (41 ().

O

= loglP) M, ! (Myog(2r))
rloglP =1 M, (M (r)) + expl] L(My(r))

piPADL () if ol My (My(r)) = ofexpl! L(M,(r))}.

Theorem 3.38. Let f, g and h be any three entire functions such that (i) lép’q’l)L(f) >0, (if) plsp’q’l)L(f) = lgL(m,n,t), (i) 0 < TgL(m,n,t) <
oo and (iv) G,(lp"q’t)l‘(f) < oo where m— 1 =n = q and exp! L(ar) ~ expl! L(r). Then

ﬂ,('"ql)L(f> (m - -~
. logl?] My (Mo (2r)) W if expl!l L(M(r)) = o{logl?~ 1 ;! (M (1))},
r=eloglP =M (M (r)) + expl L(M(r) ()L

WP i loglr My (My(r)) = ofexpl L(M(r) ).
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