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ABSTRACT

The aim of the study is to determine the most appropriate discrete model for the volatility of Bitcoin returns using the discrete-
time GARCH model and its extensions and compare it with the Lévy-driven continuous-time GARCH model. For this purpose, 
the volatility of Bitcoin returns is modeled using daily data of the Bitcoin / United States Dollar exchange rate. By comparing 
discrete-time models according to information criteria and likelihood values, the All-GARCH model with Johnson’s-SU 
innovations is found as the most adequate model. The persistence of the volatility and half-life of the volatility of the returns 
are calculated according to the estimation of the discrete model. This discrete model has been compared with the continuous 
model in which the Lévy increments are derived from the compound Poisson process using various error measurements. In 
conclusion, it is found that the continuous-time GARCH model shows a better performance in predicting volatility.
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INTRODUCTION

Cryptocurrencies are electronic currencies that 
use cryptography to secure the transactions made 
with it and to control the process of introducing new 
currencies. They are considered as a subset of alternative 
currencies in general and, in a narrower sense, digital 
currencies. Cryptocurrencies show the peculiarities of 
their distribution and having a public book, rather than 
the centralization of the control mechanism. Moreover, 
they are not controlled by any government, financial 
institution, or central bank. Therefore, the process of 
creating new currencies, in other words, the mechanism 
of money supply through emissions, does not depend on 
monetary and fiscal policies. New currencies, in publicly 
known amounts, are produced by the system they are 
linked to. This production is done collectively by the 
created system. Cryptocurrencies can be evaluated in the 
category of virtual currencies that are not regulated and 
in digital format according to the classification made by 
the European Central Bank. Accordingly, non-regulation 
states that the currency is not in a market-traded 
structure regulated by any official institution. However, 
the fact that it has a digital format indicates that money 
does not need to be represented theoretically with any 
physical material (Plassaras, 2013).

Although cryptocurrencies were initially traded in the 
market under the leadership of very few cryptocurrencies, 
they are being used by more and more people day by day 

due to their accepted positive features. These features can 
be listed as being anonymous, low transaction fees and 
being available anywhere with an internet connection. 
Blockchain technology, a technological innovation 
brought by cryptocurrencies and especially the 
predecessor currency Bitcoin, has led to transformation 
in many areas that affect people’s lives.

Satoshi Nakamoto introduced Bitcoin to the world 
with an article titled “Bitcoin: A Peer-to-Peer Electronic 
Cash System “ written in 2008. The innovation brought 
by Nakamoto is that it avoids double spending, with 
a mechanism that uses diffuse processor power that 
approves the transfer every 10 minutes. Nakamoto 
proposed a new solution to the problem of information 
sharing in a potentially fraudulent, insecure, and scattered 
processor network without using a central authority. 
Further, he proposed a solution to the double-spending 
problem using a peer-to-peer network (Nakamoto, 2008). 

Nakamoto disappeared in April 2011 and despite this, 
the system is completely transparent and continues to 
perform its operations in the same manner within the 
framework of mathematics principles. The total speed 
of the Bitcoin network, which started operating in 2009, 
is higher than the power of the fastest computers in the 
world. In 2010, it was seen that Bitcoin was used for the first 
time in history by ordering pizza as a means of payment. 
Many cryptocurrencies have been derived since the first 
Bitcoin exchange platform, Mt-Gox, was founded. These 
currencies have become financial products that are 
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traded on many exchange platforms and future contracts 
on cryptocurrencies are done in the markets. 2013 was 
the first turning point for Bitcoin, which was valued 
between $ 10 and $ 50 in 2011-2013. Rising above $ 100 
in the first months of 2013, Bitcoin caught a serious break 
during the year and managed to reach over $ 1000 by 
the end of the year. This output, which is very important 
for the early investors of Bitcoin, was welcomed in the 
Bitcoin communities, while it was talked that the crypto 
money is now entering an uptrend period, but just two 
weeks later, Bitcoin, which was traded below $ 1000 
again, to exceed $ 1000 for the second time. he had to 
wait another year or so. Bitcoin price exceeded $ 10,000 
in 2017. Then, within a very short time, Bitcoin reached 
its highest value of $ 20,089 (btcturk.com, 2019). Now it 
is traded below $ 10 thousand.  These price fluctuations 
show that the volatility in the cryptocurrency market 
is quite high. Therefore, the importance of modeling 
volatility has emerged in the cryptocurrency market. 

Financial markets may act quite overdramatically, 
also the prices of the financial products may seem very 
volatile with fundamental changes. These kinds of facts 
have been studied over the years and are still extensively 
studied. Volatility as a phenomenon and a concept is at 
the center of modern financial markets and academic 
research. The link between volatility and risk has been 
somewhat incomprehensible, but volatility in financial 
markets should not be perceived as a bad thing. In fact, 
while naturally, existing volatility in the financial markets 
can be the basic structure for effective price setting, 
dependence in volatility refers to predictability.

The volatility studies have an extensive area in the 
field of financial economics. The changes in the volatility 
of a financial asset affect the asset pricing models used 
for obtaining equilibrium prices. Therefore, the mean-
variance theory is a basis for investment management 
while derivative pricing methods are based on reliable 
volatility estimates. Market analysts, corporate treasurers, 
and portfolio managers closely monitor volatility 
trends since price changes can have a great impact on 
investment and risk management decisions. 

Kalotychou et al. (2009) elaborated on the four proposals 
that reveal the relationship between information, volume 
(liquidity), and volatility. These approaches can be counted 
as the mixture of distributions hypothesis (MDH), the 
sequential information hypothesis (SIH), the dispersion 
of beliefs approach (DBA), and the information trading 
volume model (ITVM). MDH assumes that volume and 
volatility are simultaneously and positively related and act 
in partnership with a stochastic variable that is defined 
as the information flow. SIH shows that price volatility is 
predictable based on transaction volume information. 
The DBA approach states that financial markets involve 
both informed and uninformed sets of investors and that 
uninformed investors react to volume/price changes as 
if these changes include new information. On the other 
hand, since informed investors have homogeneous 
beliefs, they make transactions that reflect their prices at 

fair values. Therefore, uninformed investors are expected 
to undermine prices and make the prices highly volatile. 
The ITVM approach is based on the idea that volume has 
an important place in the information in an environment 
where investors receive different signals from the pricing 
level. Although these mentioned approaches have 
shortcomings, it shows that the effect of volatility on 
information and liquidity is indisputable.

Mandelbrot (1963) stated that the financial time series 
has no autocorrelated increments and are not usually 
stationary, but their squares present autocorrelation. 
Further, he showed that there exist volatility clusters 
which are the characteristic of financial returns mirror 
non-normal returns’ distribution. The distribution of 
financial returns is not normal because of the leptokurtic 
shape (fat tails). The source of the volatility clusters is the 
direction and magnitude of the price changes. Volatility 
clustering occurs towards major/minor price changes 
after major/minor changes in both directions. 

Volatility is a natural consequence of the trade that 
takes place with the arrival of news and the subsequent 
reactions of investors. After reaching information to the 
markets, the successive movements of market actors 
will force the price to reach the equilibrium point. The 
updates of expectations and the subsequent positions of 
market actors will be reflected in the liquidity of a market. 
Since the information flow is continuous, information, 
liquidity, and volatility are expected to be related.

The leverage-effect, which is introduced by Black (1976), 
is caused by fluctuations in prices and is assumed as one 
of the important stylized facts of financial time series. 
The leverage-effect helps to describe that unexpected 
negative shocks have a greater influence on the volatility 
than positive shocks. Thus, it can be concluded as bad 
news in stock markets affect volatility more than good 
news. Furthermore, the leverage effect shows that the 
volatility of an asset has asymmetric properties.

In financial studies, it is assumed that if the relationship 
between expected return and expected volatility is 
positive and future cash flow is not affected by this, the 
instantaneous index value will decrease and vice-versa. 
This situation is known as volatility feedback in the 
literature. This theory is based on the assumptions that 
there is a positive relationship between expected return 
and expected volatility, while at the same time volatility is 
being persistent. Another important topic to examine and 
discuss for financial time series is the long-term persistence 
of volatility. It is a measure of how persistent the shock of 
today’s price will have an impact on future unconditional 
variance. Volatility is persistent if unconditional variance 
converges to infinity. The duration of volatility persistence 
can be measured over its half-life.

In recent years, researchers have made remarkable 
progress in modeling the volatility of financial markets, 
considering the characteristics of asset returns that were 
not previously considered. The time intervals between 
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LITERATURE REVIEW

Naturally, studies in this area have accelerated with the 
rapid increase of the value of Bitcoin and the volume of 
the cryptocurrency market. Especially the introduction of 
other cryptocurrencies in the financial markets under the 
leadership of Bitcoin and the development of regulations 
for cryptocurrencies have gradually increased the number 
of studies. From this part of the study, the abbreviation 
BTC has been used for Bitcoin. Studies on BTC volatility 
can be briefly listed as follows.

Chen et al. (2016) conducted an econometric analysis 
of Crypto Money Index (CRIX) returns in their study. 
The CRIX index is created from the 30 most traded 
cryptocurrencies in the market. ARIMA-GARCH model 
was applied for conditional mean and variance on 
CRIX index returns. At the same time, the volatility 
relationship between CRIX, Exact CRIX (ECRIX) and Exact 
Full CRIX (EFCRIX) indices, which are from the CRIX family, 
was estimated by multivariate GARCH models. They 
concluded that student-t GARCH(1,1) satisfied the best 
fit in the univariate case and  DCC-GARCH(1,1) was the 
proper process to show the volatility clustering and time-
varying covariances between three CRIX indices.

Dyhrberg (2016) estimated the BTC volatility by using 
the GARCH model in his study of variables such as 
exchange rate and gold in addition to the BTC variable 
and concluded that BTC showed that it could be used as 
a hedging tool for investors who avoided risk due to bad 
news expectations. 

Bouri et al. (2017a) examined the relationship of BTC 
with other assets such as gold, oil, general commodity 
index and US Dollar. GARCH volatility model was used in 
the study and, unlike Dyhrberg (2016), it was found that 
BTC has a weak hedge structure. Analyzes show that BTC 
can serve as an effective diversifier in some cases. The 
study also concludes that BTC is a safe harbour against 
weekly excessive fluctuations in Asian stocks.

Bouri et al. (2017b) examined the return-volatility 
relationship in the Bitcoin market around the price crash 
of 2013 using symmetrical and asymmetrical GARCH 
models. They examined the relationship between the 
GJR-GARCH model, which is an asymmetric model, and 
the volatility of the BTC series before and after 2013. After 
their comparison, they found that the GJR-GARCH model 
explained BTC returns better volatility. At the same time, 
the researchers found an inverse relationship between 
the US volatility index and BTC volatility.

Bouri et al. (2017c) try to find out whether Bitcoin 
can serve as a diversifier, hedge, or safe-haven for 
commodities in general and for energy commodities in 
particular. Their study shows that BTC exhibits hedge 
and safe-haven properties for the general commodity 
index and for the energy commodity index, for the 
entire period and the pre-crash period in 2013. They fit a 
multivariate GARCH model and concluded that there is a 
weak correlation between BTC and energy commodities.

observations of financial data are constant is one of the 
underlying assumptions of time-series studies. However, 
the changes in prices and the receiving of new information 
can occur at irregular time intervals.

From this point of view, Engle opened a new page 
in the volatility modeling in his study using the UK 
inflation data in 1982, and Engle won the Nobel Prize in 
2003 for this work. Engle (1982) proposed that, while the 
unconditional variance is fixed, when the conditional 
variance is time-dependent, this conditional variance is a 
function of the squares of the residuals obtained from a 
conditional mean equation. In ARCH model the squares of 
the returns/log-returns can be used instead of the squares 
of the residuals. This work by Engle has taken its place 
in the world of economy and finance under the name 
of ARCH (Autoregressive Conditional Heteroskedastic). 
The ARCH model is important not only it considers some 
of the empirical findings in financial asset returns, but 
also it finds application in many different areas such as 
microeconomics, macroeconomics, electronics, computer 
sciences and brain wave studies. The variance prediction 
in the ARCH model also includes information from 
previous periods. The model allows defining error term 
variance as a function of squares of previous term error 
terms. The ARCH model, which was insufficient to capture 
some of the stylized features of the financial time series 
mentioned above, was developed as a generalized ARCH 
(GARCH) model by Bollerslev (1986). In GARCH models, 
the conditional variance in the instant period is not only 
dependent on the historical values   of the error terms, but 
also on the conditional variances in the past. Therefore, 
the conditional variance is affected by both past values of 
residuals   and conditional variance values.

Bollerslev (2010) provide an easy-to-use encyclopedic-
type reference guide to the long list of ARCH acronyms. 
Although he has listed well over 100 variants of the 
original model, the GARCH model extensions are defined 
utilizing Hentschel’s approach in “rugarch” R-package of 
Ghalanos (2020a; 2020b) in this paper. Furthermore, along 
with the discrete volatility models, this paper contains 
the Lévy Driven Continuous GARCH (COGARCH) model, 
which is introduced to the literature by Klüpellberg et al 
(2004). COGARCH model is applied via R-based software 
“yuimagui” developed by Iacus and Yoshida (2018).

In this study, the eight extensions of discrete GARCH-type 
and Lévy Driven COGARCH models are utilized to model 
the volatility of Bitcoin returns. Volatility is estimated using 
discrete and continuous GARCH models and forecasting 
performances are measured. For this purpose, this paper 
is organized as follows. The paper first starts with a section 
with a short literature review on Bitcoin volatility studies. In 
the third section, the features of the discrete-time GARCH 
model and the extensions of this model are examined in 
detail. Afterward, the continuous-time GARCH model is 
introduced in the fourth section. In the following chapters, 
the descriptive of the data set and the findings of applied 
models are given, respectively. The study is ended with a 
brief conclusion part.
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Chu et al. (2017) modelled the volatility of the seven 
most popular cryptocurrencies via twelve GARCH models 
and compared them according to five criteria. Moreover, 
they made a model comparison of the best fitting models 
using forecasts and acceptability of value at risk estimates. 
The normal distributed integrated GARCH (IGARCH) was 
founded best-fitting model depends on information 
criteria for the BTC volatility. Katsiampa (2017) compared 
the volatility forecast of BTC with the appropriate GARCH 
models. It is concluded that AR-CGARCH model is an 
adequate model and gives the optimal fit for the volatility 
of daily closing prices   of BTC. Urquhart (2017) compared 
the heterogeneous autoregression (HAR) model with the 
GARCH models depending on their forecasting ability 
for the BTC market. As a result, they illustrated that HAR 
models are more robust in modelling Bitcoin volatility 
than traditional GARCH models.

Klein et al. (2018) first analyzed and compared the 
conditional variance properties of BTC and Gold in their 
studies that questioned whether BTC is new Gold. As a 
result, they found a structural difference in conditional 
variances. They continued their work by applying BEKK-
GARCH, which is a multivariate model that predicts 
the correlation transition between BTC and Gold. They 
concluded that BTC behaves as the exact opposite 
and it positively correlates with downward markets. 
Stavroyiannis and Babalos (2017) examined the dynamic 
properties and the relation of Bitcoin and the Standard and 
Poor’s index, using a variety of econometric approaches 
through univariate FIAGARCH and multivariate BEKK-
GARCH models and vector autoregressive specifications. 
Their results indicate that Bitcoin does not exhibit any of 
the hedge, diversified, or safe-haven properties; rather, its 
attributes are independent of US market developments.

Peng et al. (2018) estimated the conditional mean 
and volatility of the three cryptocurrencies including 
BTC using the Support Vector Regression GARCH (SVR-
GARCH) model and compared with the GARCH family 
models. They combined the traditional GARCH model 
with a machine learning approach to estimate volatility. 
As a result of their work, they found SVR-GARCH models 
showed better performance than GARCH, EGARCH and 
GJR-GARCH models with Normal, Student’s t and Skewed 
Student’s t distributions.

Cermak (2018) stated in his thesis that the biggest 
obstacle for BTC to be an alternative currency is price 
volatility. Cermak (2018) analyzed the volatility of 
the currencies of the countries with the highest BTC 
transaction volume and BTC volatility by applying the 
GARCH (1,1) model. The researcher pointed out that BTC 
already behaves similarly to fiat currencies in China, the 
U.S. and the European Union but not in Japan. Moreover, 
as a result of the thesis, Cermak indicated that BTC acts 
as a safe-haven asset in China and the volatility of BTC 
has been steadily decreasing throughout its lifetime. The 
most important interpretation of the study is that BTC 
has a decreasing trend of volatility for six years and if this 
trend continues the volatility of BTC reaches the volatility 

levels of fiat currencies soon and become a functioning 
alternative to fiat currencies.

Ardia et al (2019) show that there exist regime changes 
in the log-returns volatility of BTC using the Markov–
switching GARCH (MSGARCH) models. Moreover, they 
compare the MSGARCH to traditional single–regime 
GARCH via one–day ahead Value–at–Risk (VaR). The 
most significant part of the study is that they use the 
Bayesian approach to estimate the parameters and the 
VaR forecasts. They conclude the study there is strong 
evidence that MSGARCH models outperform single–
regime specifications when predicting the VaR.

Mba and Mwambi (2020) claim that the returns of 
Bitcoin have a form regime-switching, therefore regime-
switching models could be more successful to capture 
these dynamics and Markov-switching COGARCH-R-
vine (MSCOGARCH) model is fitted to select portfolio. 
They also compare the MSCOGARCH with the single-
regime COGARCH-R-vine using the expected shortfall 
risk. According to the comparison result, MSCOGARCH 
outperforms the single-regime.

Studies show that while modeling the return volatility 
of cryptocurrencies is a new field of study, discussions 
such as increasing rules in the crypto money market 
and taxation are important for investors’ perception. The 
consequences of these discussions and the increased 
transaction costs of cryptocurrencies affect the volatility 
of returns. In particular, the volatility of BTC, the largest 
currency in the cryptocurrency market, becomes more 
important. In this study, the volatility of BTC will be 
estimated using discrete and continuous GARCH models.

GARCH MODEL

One can state the log-return of the financial time series 
 as 

where  is conditional mean and  is residuals. The 
residuals can be expressed

where  and  are volatility process and innovation 
process respectively and  represent probability 
density function that has zero mean and unit variance. 
In a non-normal distribution case,  is a set of additional 
distributional parameters which are used for the scale 
and shape of the distribution.

 The variance equation of the GARCH (p,q) model 
(Bolerslev, 1986) can be expressed in two ways which are 
given in equations (3.3) and (3.4)  as
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iv. ARCH(∞) is equivalent to GARCH(1,1). 

So, it is possible to say that the conditional variance 
at time t is equal to the weighted sum of past squared 
residuals. Further, the weights decrease as going further 
back in time. 

v. The unconditional variance of returns  
 is plugged into the Equation (3.6) 

where , then it is

vi. This form of the GARCH(1,1) model makes it easy 
to observe that the next period’s conditional variance is 
equal to the weighted combination of the unconditional 
variance of returns, last period’s squared residuals 
and last period’s conditional variance with weights 

 respectively.

 vii.  and  are considered ARCH term and GARCH 
term respectively in the GARCH equation given in 
Equation (3.6). The ARCH term  measures how much 
the volatility shock that exists today affects volatility 
tomorrow. It also shows the short-run persistence of the 
shocks on the return variance. 

viii. The model given in Equation (3.6), the coefficient 
of the lag value of the conditional variance, that is, the 
GARCH term coefficient  shows the effect of the old 
shocks on the long-run persistence of volatility. In the 
literature, there are various studies that show GARCH(1,1) 
is an adequate model to capture the volatility clustering, 
one of the most important ones is Akgiray (1989). As the 
frequency of the observed data decreases, that is, from 
daily to weekly, from weekly to monthly, the ARCH effect 
decreases. In the model, the sum of the coefficients of 
the terms ARCH and GARCH  indicates volatility 
persistence and measures the rate of decay of the volatility 
feedback effect over time. The sum of  close to 1 
indicates high persistence, meaning that volatility shocks 
will be felt even less in the future. Although the decay of 
shocks occurs over a period of more than a month, the 
reversion to the mean of long-run variance occurs within 
a few days. The fall in persistency when monthly data is 
used weakens the predictability of volatility based on 
available information. Volatility persistence makes able 
to predict future economic variables and the changes in 
the risk-return trade-off over business cycles.

where  and  are polynomials of degrees p and 
q respectively, where B denotes backward shift operator. 

GARCH(p,q) model is assumed covariance stationary 
when and  
for t ≠ s if and only if . Bolerslev (1986) 
used the Maximum Likelihood Estimation Method 
(MLE) for the model’s parameter estimation. There are 
many Bayesian methods that have been developed for 
parameter estimation of the GARCH model. Although 
Bayesian methods give better results, MLE method, 
which is a frequentist approach, is widely used due to 
the calculation difficulty encountered in some Bayesian 
methods. The MLE method by maximizing the given log-
likelihood function 

where  denotes the expected mean of 
residuals and  is set of parameters the variance equation 

.

The Properties of GARCH Models

The GARCH (1,1) model is successful in capturing the 
characteristics of financial time series. Therefore, the 
general features of the GARCH model is represented via 
GARCH (1,1) model. 

 i. The GARCH (1,1) model, which has a similar 
structure to the Autoregressive Moving Average (ARMA) 
model, is as follows

where  GARCH process is 
weak stationary.

 ii. GARCH models can also be fitted without the 
need for a conditional mean model, accepting observed 
log-returns as residuals. First,  is defined to 
show that the GARCH model is an ARMA process. So,

which is an ARMA(1,1) process on squared residuals.

iii. The unconditional variance of   is

and since   is a stationary process and .
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ix. In relation to the volatility persistence measurement, 
the ‘half-life’ (denoted by  ) defined as the number 
of days it takes for half of the expected reversion back 
towards to the expected variance value, can be calculated 
as following.

The Estimation of GARCH Model

In this section, parameter estimation of GARCH (p, q) 
process, in which innovations follow a normal distribution, 
is done using MLE method. If  is assumed a normal 
distribution with zero mean and unit variance  then the 
likelihood function is

and the log-likelihood function is

For the MLE of the GARCH(p,q) process under the 
normality assumption the conditional likelihood of the 

 observation is  where the constant 

term is omitted. The partial derivatives of  with respect 
to parameter vector are

where 

The gradient of the log-likelihood function is

where .

The Fisher information matrix

So, the ML estimates can be found using the iteration 
scheme  where.  is inverse of Fischer 
information matrix.

Parameter estimation of Normal-GARCH (1,1) model is 
easily done by putting  in log-likelihood 
function in equation (3.13) and taking partial derivatives 
of log-likelihood function with respect to parameter set 

 and applying the Equations (3.14) and 
(3.15).

The Discrete Time GARCH-type Models

In this study, the maximum order of the model is 
determined as one since simplicity and the model is 
adequate (Akgiray, 1989) and better (Jafari et al., 2007). In 
addition to standard GARCH, ten of its extension models 
are considered. Moreover, the distribution of innovations, 
respectively, the normal distribution (norm), skew-
normal distribution (snorm), Student’s t distribution 
(std), skew Student’s distribution (sstd), generalized error 
distribution (ged), skew generalized error distribution 
(sged), normal inverse Gaussian distribution (nig) and 
Johnson’s SU distribution (jsu) is considered. In the 
continuation of this section, Ghalanos’ (2020b) study 
“Introduction to the rugarch package – Version 1.3-
8” is followed which is a well-written manual for R. The 
mentioned models are

i. The standard GARCH model of Bollerslev (1986) that 
is discussed in details in the previous section is denoted 
by GARCH(1,1) and given in equation (3.6) as following

ii. Engle and Bollerslev (1986) proposed a model 
that is a strictly stationary form of the standard GARCH 
model is denoted integrated GARCH (iGARCH) where the 
persistence parameter . Due to unit persistence, 
unconditional variance, half-life and other results 
cannot be calculated. The stationarity of the model has 
been discussed and demonstrated in many studies in 
the literature. However, before accepting iGARCH as 
the preferred model, it is necessary to investigate the 
possibility of a structural break.

iii. Nelson (1991) proposed the exponential GARCH 
(EGARCH) since the positive and negative errors have the 
same effect on the volatility in standard GARCH models. 
In other words, the effect of negative and positive errors 
have an asymmetric effect is a weakness of the standard 
model. As it is mentioned before, although the negative 
errors have the same magnitude as positive ones, the 
influence of negative shocks is greater than the positive 
shocks in real. In light of all of these facts, the EGARCH 
model is based on the idea of the weighted innovations 
to allow for asymmetric effects between positive and 
negative asset returns. Thus the model can be expressed 
as follows
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vii. The Threshold GARCH (TGARCH) model of Zakoian 
(1994) is another particular case of the APARCH model 
when .

viii. The ALL GARCH (1, 1) model due to Hentschel 
(1995) has:

where  and . 
The persistence of the model is equal to  where  is given 
in Equation (3.19).

ix. The Nonlinear GARCH (NGARCH) model due to 
Higgins and Bera (1992) is a particular case of the 
ALLGARCH model when  and . 

x. The Nonlinear Asymmetric GARCH (NAGARCH)  
model of Engle and Ng (1993) for  and  is 
another reduced form of the ALLGARCH model.

COGARCH MODEL

This section that contains the derivation of the 
Continuous-Time GARCH (COGARCH) process and its 
second-order moment properties, is constructed on 
the studies of Klüppelberg et al (2004 and 2011) and Arı 
(2019).

Klüppelberg et al. (2004) preserved the structure and 
basic features of the discrete-time GARCH model and 
built the COGARCH model by replacing the innovations 
in this model with the increments obtained from the Lévy 
process. That is, they created a continuous-time analogue 
using the discrete-time GARCH (1,1) model. The basic idea 
is to use increments derived from Lévy processes instead 
of the white noise process present in the discrete-time 
model. So, the continuous time GARCH process  
can be obtained by replacing the ,  and 

 in the discrete time GARCH(1,1) model, then the 
continuous volatility process can be expressed as follows

and the variance process  are defined by the 
stochastic differential equations

for  and  and  is the 
discrete part of the quadratic variation Lévy process. 

The definition shows that the size of the jumps of the 
process G  is the same as L, and the size of the jumps is 

 for . So, it is observed that  has 
same behaviour as innovations in case of discrete GARCH 
models. 

where  and   is a measure 
of the sign effect, and  is a measure of the size effect. 
Further,  is a persistence parameter. In the standard 
model, the conditional variance is a function of past 
innovations. The difference of the EGARCH model from 
the standard model is that the conditional variance is 
written as a function of standardized innovations.

iv. The GJRGARCH model which is developed by Glosten 
et al. (1993) has an indicator function that asymmetrically 
models positive and negative shocks on conditional 
variance. The conditional variance of GJRGARCH(1,1) is 

where  shows the leverage term and the indicator 
function I takes on value of 1 when  for  
otherwise 0. In this case, persistence is  where 

  is the expected value of the standardized residuals  
below zero (efectively the probability of being below 

zero).

where f is the standardized conditional density with 
any additional skew and shape parameters. Half-life 
and unconditional variance follow from the persistence 
parameter are calculated as in Section 3.1.

v. The asymmetric power ARCH model (APARCH) of 
Ding et al. (1993) is successful to capture leverage effect 
of financial time series, in addition to capturing the effect 
that the sample autocorrelation of absolute returns was 
usually larger than the sample autocorrelation of squared 
returns.So, APARCH(1,1) is 

where  is leverage term and  is a 
Box-Cox transformation of . The persistence of the 
APARCH process is  where  is the expected 
value of the standardized residuals  under the Box–
Cox transformation of the term including leverage term. 
Hence, it is computed by

One can easily obtain the extensions of the standard 
GARCH model using APARCH model. For instance, when   

 and  APARCH model is reduced to a standard 
GARCH model.

vi. The Absolute Value GARCH (AVGARCH) model of 
Taylor (1986) and Schwert (1990) is a particular case of 
APARCH model. APARCH(1,1) model is reduced to a 
AVGARCH (1, 1) model of for when  and .
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One can use several frequentists and Bayesian methods 
for the parameter estimation of COGARCH and its extensions 
models. Maller et al. (2008) proposed an approximation 
in which the model is fitted by deriving a pseudo-
maximum likelihood (PML) function. In this method, PML 
function is maximized numerically in order to estimate the 
corresponding parameters. one of the advantages of the 
method is that it can be applied for either equally or unequally 
spaced time data. They suppose that the observations are 

 where , on the integrated  

COGARCH  and assumed to be 

stationary.  The  are assumed fixed time points. 

Let  denote the observed returns 
and the difference between the observations is 

. So, the observed return can be written as 

following  where L is a Lévy process with 

 and .

The purpose is to estimate  from the observed  
using pseudo-maximum likelihood (PML) 

method.  is conditionally independent of  
given information set  since  is Markovian. So, 

 for the conditional expectation of , and, for 
the conditional variance,

  , with  and  satisfy 
the stationarity of the model. The pseudo-maximum 
likelihood function for  can be written as 
following with the assumption of , are conditionally

 

Above equation (2.5) needs a calculable quantity 
for . Hence  should be substituted by 

. After substituting  
for  and resulting modified , pseudo-maximum 
likelihood function can be found for fitting a GARCH 
model to the unequally spaced series. The recursion of 

 can be easily done taking  as an initial 
value. The maximization of  gives PMLEs 
of . In this study, PMLE method is applied for 
parameter estimation of COGARCH model.

DATA

The Bitcoin versus USD exchange rate (BTC-USD) data 
is downloaded from “finance.yahoo.com” via “quantmod” 
package (Ryan et al., 2018) in R. The dataset consists of the 
daily log-returns of the BTC-USD exchange rate between 

2015-01-02 and 2020-05-01. The mentioned models in 
Section 3.3 and Section 4. are fitted to log-returns of the 
BTC-USD of which time series plot is given in Figure 1. 
using the “rugarch” package (Ghalanos, 2020a) and later a 
COGARCH(1,1) by R package “yuima” by Iacus et al. (2015).

The descriptive statistics of log-returns of BTC-USD 
exchange rate is given below Table 1.

FINDINGS

The discrete-time GARCH-type models are compared 
according to the Akaike information criterion 

, Bayesian information criterion 
, Shibata information criterion  
and Hannan–Quinn information 

criterion  where n: number 
of observations, k: number of parameters and  
maximum log-likelihood of estimated parameter set 

. The model comparison results are given in Table A1 
at Appendix A. According to the comparison results, it 
is understood that the jsu-ALLGARCH(1,1) model is the 
discrete-time volatility model that best fits the BTC-USD 
log returns.  The ALLGARCH (1, 1) model is

with Johnson’s SU distributed innovations. So, the log 
likelihood function is 

where  and  are skew and shape parameters 
respectively. One can easily estimate the parameters of 
the jsu-ALLGARCH(1,1) by following the MLE method 
given in Section 3.2. The estimation of the model 
parameters and the time-series plot of the volatility are 
given in Table 2 and Figure 2 respectively.

The persistence of jsu-ALLGARCH(1,1) volatility is equal 
to 0.9840795 that is calculated using to  where 

 is given in Equation (3.19). The half-life is 43.1905 
that is the number of days the volatility takes for half of 
the expected reversion back towards to the expected 
variance value. The asymmetry parameter  for rotation 
is non-significant but the other asymmetry parameter  

 that is used in persistence calculation is statistically 
significant. The conditional sigma power parameter  is 
statistically significant.

The all discrete-time GARCH-type models assume 
that there is no autocorrelation between standardized 
residuals and no remaining ARCH effect on standardized 
residuals. The Ljung-Box test on standard residuals 
assesses the dependence of the first moments with a time 
lag. In other words, it tests the presence of autocorrelation 
between the residuals. The Ljung-Box test and the 
ARCH-LM test on the squares of standardized residuals 
evaluate the dependence of the second moments with 
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Figure 1. The plot of log-returns of BTC-USD

Table 1. Descriptive Statistics

Descriptive Statistics of Log-Returns of BTC-USD (sample size )

min max range sum median mean

-4.66E-01 2.23E-01 6.90E-01 7.26E-16 2.15E-04 3.73E-19

SE.mean CI.mean.0.95 var std.dev kurtosis skew

9.11E-04 1.79E-03 1.62E-03 4.02E-02 1.34E+01 -1.00E+00

Table 2. The Parameter Estimation of jsu-ALLGARCH(1,1) Model  

Optimal Parameters

parameter estimate   Std.Error  t value Pr(>|t|)

0.001614 0.001248 1.29307 0.19599

0.174181 0.01727 10.08586 0

0.8668 0.011607 74.678 0

0.037569 0.133442 0.28154 0.7783

-0.223334 0.034805 -6.41667 0

0.734313 0.269369 2.72605 0.00641

-0.033581 0.029939 -1.12165 0.26201

1.004228 0.04972 20.19762 0

Figure 2. Time-series Plot of the JSU-ALLGARCH Volatility
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a time lag. Findings obtained by the mentioned test are 
given in Appendix B in the tables Table B1, Table B2 and 
Table B3 respectively. According to the results, there 
is no autocorrelation by the weighted Ljung-Box test 
on standard residuals. Further, the Ljung-Box test and 
the ARCH-LM test on standardized squared residuals 
are supporting each other by concluding that there is 
no autocorrelation and ARCH effect on standardized 
squared residuals.

The Sign Bias Test proposed by Engle and Ng (1993) 
to verify whether previous positive and negative 
shocks have a different impact on heteroscedasticity 
The Sign-Bias Test that is designed for detecting 
asymmetry in the conditional variance (leverage 
effect) requires a finite fourth moment.. Specifically, 
it examines whether the standardized squared 
residual is predictable using (dummy) variables 
indicative of certain information. Three dummy 
variables are used in the Sign Bias Test to test for the 
impact of positive & negative shocks on volatility not 
predicted by the model, the effect of large and small 
negative shocks.The null hypothesis for these tests 
is those additional parameters corresponding to 
the additional (dummy) variables are zero. The most 
important point of these tests is that in the case of 
the null hypotheses are rejected, the coefficients of 
the additional parameters are non-zero indicating 
misspecification of the model. The result of the test 
given in Appendix B in Table B4 shows that there is 
no misspecification in the model and there are no 
leverage effects remained in the residuals.

The adjusted Pearson goodness-of-fit test for 
the GARCH diagnostics compares the empirical 
distribution of the standardized residuals with the 

selected theoretical distribution. The null hypothesis 
is that the empirical and theoretical distribution is 
identical, in other words, the conditional distribution 
is chosen appropriately. The test results in Appendix 
B in Table B5 indicates that the conditional 
distribution of the innovations is proper.

The Nyblom Stability Test that is used to determine 
the structural break in time series examines the 
constancy of all parameters in the model. However, 
Nyblom Stability Test does not give any information 
about the type and the date of structural change. 
The structural break/change means that the 
relationship between variables changes over time. 
The null hypothesis of the test is that the parameter 
values are constant and have zero variance. The test 
results in Appendix B in Table B6 indicate that some 
parameters are constant over time individually but 
there is a structural change in time series.

After this point, the outputs of the COGARCH 
process are discussed. As in the work of Klüpellberg 
et al. (2004), the Gaussian white noise process of 
the discrete model GARCH (1,1) is replaced by the 
compound Poisson Lévy increments to obtain a 
continuous process. The parameter estimation of the 
discrete-time GARCH model, in which innovations 
have a normal distribution, is used as the initial 
values   of the COGARCH parameters. COGARCH 
parameter values   and initial values   found by the 
PML estimation method are given in Table 3. The 
plot of volatility obtained from COGARCH process is 
given in Figure 3.

Figure 3. Time-series Plot of the COGARCH Volatility

Table 3. The Parameter Estimation of COGARCH(1,1) Model

Coefficients: Var-Cov Matrix

initial Estimate Std.Error a0 a1 b1

a0 7.61E-05 0.001666256 5.05E-09 a0 2.55E-17 5.15E-15 7.95E-15

a1 1.71E-01 1.022156927 1.08E-01 a1 5.15E-15 1.17E-02 1.10E-02

b1 8.08E-01 1.053472221 1.04E-01 b1 7.95E-15 1.10E-02 1.09E-02
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CONCLUSION

In this study, Bitcoin volatility, which is accepted as 
the origin of crypto coins, has been examined. Volatility 
is modeled on BTC-USD exchange rate data. In volatility 
modeling, ten different discrete-time GARCH models with 
eight different innovation distributions and compound 
Poisson COGARCH models were used. The structure and 
properties of these models are given in detail. Among 
the discrete-time GARCH models, the most appropriate 
model was selected according to the information criteria 
and the JSU-ALLGARCH model was found to be the 
best-fitting model. The order of all compared models is 
determined to be one for convenience and simplicity. 
Parameter estimation of the models was made by 
pseudo maximum likelihood method. In the study, the 
most widely used models in the “rugarch” package and 
in the literature were preferred. Anyone can include 
more extensions of the GARCH model in the analysis. In 
the COGARCH model, innovations are derived only with 
compound Poisson increments. While Lévy increments 
derived from Variance Gamma and normal-inverse 
Gaussian distributions can be used, parameter estimates 
can also be made by the method of moments and 
other Bayesian methods. In future studies, Exponential 
COGARCH and GJR-COGARCH models, which are the 
derivatives of the COGARCH model, can also be used.

In the comparison of predictions made according to 
various measurements, it has been revealed that the 
continuous model has lower error values   and performs 
better than the discrete model. It is an expected result 
that continuous models can make better predictions 
with their flexibility in high-frequency data. However, to 
reach this inference, a simulation study must be done. 
It can also be compared using value-at-risk and option 
pricing calculations. All R codes used in this study can 
be downloaded from the website https://math-stat.net/
garch-and-cogarch-modelling.htm (Arı, 2020).

The Lévy increments of the COGARCH process are 
derived from the Compound Poisson distribution and 
the statistics for these increments can be found in 
Table 8. One can obtain these increments also using 
distributions such as normal, variance gamma, and 
normal inverse Gaussian. This application is done by 
using the R-based software “yuimagui” developed by 
Iacus and Yoshida (2018).

The delta value shows the difference between the 
observations while estimating the parameters of the 
continuous process. Usually, the delta value is used 
as  in daily data sets. The reason for this is that there 
is an average of 252 working days a year. However,  
was chosen since the larger delta value gave better 
prediction results in this study. The descriptive 
statistics of the increments is given at the following 
table.

The diagnostics test shows that the process is 
strictly stationary and the unconditional first moment 
of the Variance process exists. Moreover, the variance 
is a positive process with pseudo-log-likelihood value 
-3710.498.

Finally, the predictions of the discrete and 
continuous models are compared according to the 
mean square error (MSE), root mean square error 
(RMSE) and mean absolute error (MAE) measures, 
and it is concluded that the CP-COGARCH (1,1) model 
performs better. The comparison measures are given 
in Table 5.

Table 4. The Descriptive Statistics of the Lévy Increments

n Min. 1st Q Median Mean 3rd Q Max. Std. Dev. 

1947 -5.5499 -0.18091 0.003318 -0.00052 0.196352 3.480641 0.463035

Table 5. The Prediction Comparison of The Volatility Models

Model MSE RMSE MAE

JSU-ALLGARCH 0.00204 0.045165 0.040054

CP-COGARCH 0.000596 0.024409 0.012804
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Appendix A. Model Comparison

Table A1. The Comparison of GARCH-type Models with Order 1

# Model AIC BIC SIC HQC

1 jsu ALLGARCH11 -4.1874 -4.1645 -4.1874 -4.1789 4084.39

2 jsu AVGARCH11 -4.1873 -4.1673 -4.1873 -4.1800 4083.36

3 std ALLGARCH11 -4.1858 -4.1657 -4.1858 -4.1784 4081.85

4 sstd ALLGARCH11 -4.1858 -4.1657 -4.1858 -4.1784 4081.85

5 std AVGARCH11 -4.1855 -4.1683 -4.1855 -4.1792 4080.58

6 sstd AVGARCH11 -4.1855 -4.1683 -4.1855 -4.1792 4080.58

7 nig AVGARCH11 -4.1835 -4.1635 -4.1835 -4.1761 4079.63

8 nig ALLGARCH11 -4.1832 -4.1603 -4.1832 -4.1748 4080.34

9 jsu TGARCH11 -4.1831 -4.1660 -4.1832 -4.1768 4078.28

10 jsu APARCH11 -4.1821 -4.1621 -4.1821 -4.1747 4078.28

11 jsu EGARCH11 -4.1813 -4.1641 -4.1813 -4.1749 4076.46

12 jsu NGARCH11 -4.1811 -4.1639 -4.1811 -4.1748 4076.28

13 std TGARCH11 -4.1808 -4.1665 -4.1808 -4.1756 4075.03

14 sstd TGARCH11 -4.1808 -4.1665 -4.1808 -4.1756 4075.03

15 nig TGARCH11 -4.1800 -4.1628 -4.1800 -4.1737 4075.21

16 std APARCH11 -4.1798 -4.1626 -4.1798 -4.1735 4075.05

17 sstd APARCH11 -4.1798 -4.1626 -4.1798 -4.1735 4075.05

18 nig APARCH11 -4.1790 -4.1589 -4.1790 -4.1716 4075.23

19 nig NGARCH11 -4.1786 -4.1614 -4.1786 -4.1723 4073.84

20 std NGARCH11 -4.1785 -4.1642 -4.1785 -4.1732 4072.78

21 sstd NGARCH11 -4.1785 -4.1642 -4.1785 -4.1732 4072.78

22 std EGARCH11 -4.1785 -4.1642 -4.1785 -4.1732 4072.76

23 sstd EGARCH11 -4.1785 -4.1642 -4.1785 -4.1732 4072.76

24 nig EGARCH11 -4.1784 -4.1612 -4.1784 -4.1721 4073.69

25 ged ALLGARCH11 -4.1691 -4.1491 -4.1691 -4.1617 4065.63

26 nig NAGARCH11 -4.1684 -4.1513 -4.1685 -4.1621 4063.98

27 jsu NAGARCH11 -4.1682 -4.1510 -4.1682 -4.1619 4063.71

28 nig IGARCH11 -4.1675 -4.1560 -4.1675 -4.1633 4061.06

29 nig GJRGARCH11 -4.1675 -4.1503 -4.1675 -4.1612 4063.05

30 ged EGARCH11 -4.1673 -4.1530 -4.1673 -4.1620 4061.85

31 ged NGARCH11 -4.1671 -4.1528 -4.1671 -4.1618 4061.65

32 jsu GJRGARCH11 -4.1669 -4.1498 -4.1670 -4.1606 4062.52

33 sged EGARCH11 -4.1666 -4.1494 -4.1666 -4.1603 4062.18

34 sged NGARCH11 -4.1664 -4.1492 -4.1664 -4.1601 4062.01

35 nig GARCH11 -4.1662 -4.1519 -4.1663 -4.1610 4060.84

36 jsu IGARCH11 -4.1662 -4.1548 -4.1662 -4.1620 4059.83

37 jsu GARCH11 -4.1649 -4.1506 -4.1649 -4.1597 4059.56

38 ged IGARCH11 -4.1611 -4.1525 -4.1611 -4.1580 4053.87

39 sged IGARCH11 -4.1604 -4.1490 -4.1604 -4.1562 4054.16

40 ged NAGARCH11 -4.1603 -4.1460 -4.1603 -4.1550 4055.03

41 ged GARCH11 -4.1600 -4.1486 -4.1600 -4.1558 4053.77

42 ged GJRGARCH11 -4.1599 -4.1455 -4.1599 -4.1546 4054.62
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43 std NAGARCH11 -4.1597 -4.1454 -4.1597 -4.1544 4054.46

44 sstd NAGARCH11 -4.1597 -4.1454 -4.1597 -4.1544 4054.46

45 sged NAGARCH11 -4.1596 -4.1424 -4.1596 -4.1533 4055.37

46 sged GARCH11 -4.1593 -4.1450 -4.1593 -4.1540 4054.06

47 sged GJRGARCH11 -4.1592 -4.1420 -4.1592 -4.1529 4054.97

48 std GJRGARCH11 -4.1581 -4.1438 -4.1581 -4.1529 4052.93

49 sstd GJRGARCH11 -4.1581 -4.1438 -4.1581 -4.1529 4052.93

50 std IGARCH11 -4.1574 -4.1488 -4.1574 -4.1542 4050.23

51 sstd IGARCH11 -4.1574 -4.1488 -4.1574 -4.1542 4050.23

52 std GARCH11 -4.1561 -4.1446 -4.1561 -4.1519 4049.93

53 sstd GARCH11 -4.1561 -4.1446 -4.1561 -4.1519 4049.93

54 snorm EGARCH11 -3.8211 -3.8068 -3.8211 -3.8158 3724.84

55 snorm APARCH11 -3.8160 -3.7988 -3.8160 -3.8097 3720.88

56 snorm GJRGARCH11 -3.8159 -3.8016 -3.8159 -3.8107 3719.81

57 snorm ALLGARCH11 -3.8157 -3.7956 -3.8157 -3.8083 3721.56

58 snorm GARCH11 -3.8151 -3.8036 -3.8151 -3.8109 3717.99

59 snorm NAGARCH11 -3.8150 -3.8007 -3.8150 -3.8098 3718.92

60 snorm NGARCH11 -3.8146 -3.8003 -3.8146 -3.8093 3718.48

61 norm EGARCH11 -3.8145 -3.8031 -3.8145 -3.8103 3717.44

62 snorm IGARCH11 -3.8136 -3.8050 -3.8136 -3.8105 3715.55

63 snorm TGARCH11 -3.8112 -3.7969 -3.8112 -3.8060 3715.22

64 snorm AVGARCH11 -3.8104 -3.7933 -3.8105 -3.8041 3715.47

65 norm GJRGARCH11 -3.8088 -3.7974 -3.8088 -3.8046 3711.90

66 norm APARCH11 -3.8085 -3.7942 -3.8086 -3.8033 3712.61

67 norm NAGARCH11 -3.8081 -3.7966 -3.8081 -3.8039 3711.17

68 norm ALLGARCH11 -3.8076 -3.7904 -3.8076 -3.8013 3712.70

69 norm GARCH11 -3.8048 -3.7962 -3.8048 -3.8017 3706.99

70 norm AVGARCH11 -3.8047 -3.7904 -3.8047 -3.7994 3708.89

71 norm IGARCH11 -3.8043 -3.7986 -3.8043 -3.8022 3705.47

72 norm NGARCH11 -3.8038 -3.7924 -3.8038 -3.7996 3707.03

73 norm TGARCH11 -3.8032 -3.7917 -3.8032 -3.7989 3706.38

74 sged AVGARCH11 3.9718 3.9919 3.9718 3.9792 -3859.57

75 sged TGARCH11 3.9939 4.0111 3.9939 4.0002 -3882.08

76 sged APARCH11 3.9949 4.0150 3.9949 4.0023 -3882.08

77 ged TGARCH11 3.9952 4.0095 3.9952 4.0005 -3884.36

78 ged AVGARCH11 4.8044 4.8215 4.8043 4.8107 -4671.04

79 ged APARCH11 5.2909 5.3081 5.2909 5.2973 -5144.74

80 sged ALLGARCH11 na na na na na
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Appendix B. JSU-ALLGARCH(1,1) Diagnostics

Table B1. Weighted Ljung-Box Test on Standardized Residuals

Weighted Ljung-Box Test on Standardized Residuals
statistic p-value

Lag[1] 3.09 0.07878
Lag[2*(p+q)+(p+q)-1][2] 3.464 0.10511
Lag[4*(p+q)+(p+q)-1][5] 6.241 0.0789

df=0

Table B2. Weighted Ljung-Box Test on Standardized Squared Residuals

Weighted Ljung-Box Test on Standardized Squared Residuals
statistic p-value df

Lag[1] 0.02735 0.8686 2
Lag[2*(p+q)+(p+q)-1][5] 1.01777 0.8556
Lag[4*(p+q)+(p+q)-1][9] 2.16508 0.8844

Table B3. Weighted ARCH LM Tests

Weighted ARCH LM Tests
Statistic Shape Scale P-Value

ARCH Lag[3] 0.2575 0.5 2 0.6118
ARCH Lag[5] 2.1955 1.44 1.667 0.4296
ARCH Lag[7] 2.5342 2.315 1.543 0.6054

Table B4. Sign Bias Test

Sign Bias Test
t-value prob sig

Sign Bias 1.2971 0.1947
Negative Sign Bias 1.0711 0.2843
Positive Sign Bias 0.6655 0.5058

Joint Effect 3.8822 0.2745

Table B5. Adjusted Pearson Goodness-of-Fit Test

Adjusted Pearson Goodness-of-Fit Test
group statistic p-value(g-1)

1 20 17.22 0.5748
2 30 27.68 0.5348
3 40 35.97 0.6089
4 50 49.33 0.46
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Table B6. Nyblom stability test

Nyblom stability test
Parameters Individual Stats:

omega 0.24151
alpha1 0.2009
beta1 0.26743
eta11 0.02601
eta21 0.11419

lambda 0.17937
skew 0.36294
shape 0.24832

Joint Stat: 1.9578
Asymptotic Critical Values 10%   5%

Joint Stat: 1.89   2.11
Individual Stat: 0.35   0.47






