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Abstract

In this work we study the approximation properties of the classical Riesz potentials
I°f = (=A)"%2f and the so-called bi-parametric potential-type operators Jgf =
(E + (—A)5/2)*O‘/ﬁf as a — ag > 0 where, a > 0, § > 0, E is the identity operator
and A is the laplacian. These potential-type operators generalize the famous Bessel po-
tentials when S = 2 and Flett potentials when § = 1. We show that, if A% is one of
operators Jg or I%, then at every Lebesgue point of f € L,(R™) the asymptotic equality
(A%f)(z) — (A f)(z) = O(1)(a — ap), (@ — ag) holds. Also the asymptotic equality
[A%f — A% f][, = O(1)(a — a), (v — ag) holds when A% = Jg.
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44A35
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1. Introduction

The famous Riesz potentials I* f, Bessel potentials J* f, parabolic Riesz potentials H* f
and parabolic Bessel potentials H® f play an important role in analysis and its applications
(see, e.g [3], [6], [7], [12], [13], [17] and references therein). These potentials are interpreted
as negative fractional powers of the differential operators (—A), (E — A), (% — A) and
(% + E — A), respectively. Here A is the laplacian and E is the identity operator.

The boundedness and other properties of these operators and their explicit inverses in
the framework of L,-theory were studied by many authors (see, e.g. [3], [4], [12], [13],
17)).

The approximation properties of these operators and their various modifications as
a — 0% have been studied by T. Kurokawa [11], A. D. Gadjiev, A. Aral, I. A. Aliev [2],
8], S. Sezer [14], S. Uyhan, A. D. Gadjiev, I. A. Aliev [18]. Also the nice paper [9] by S. G.
Gal should be mentioned, where the exact order of approximation of analytic functions is
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obtained by several potential type operators generated by the gamma function and some
singular integrals.

Note that in the one dimensional case, the approximation properties of the fractional
integrals

1 z t
20)0) = iy [ ot e <2 <),
as &« — ap > 0 and the strongly continuity of the semigroup I3, ¢, (o > 0) has been
studied in the book [13], (p. 48-53), by S. Samko, A. Kilbas, O. Marichev.
In this work we study the approximation properties of the so-called bi-parametric
potential-type operators J3¢ and classical Riesz potentials I%¢ as o — ozaL . Note that

the operators J§ have been introduced by I. A. Aliev [1] and are defined as follows:

a

o)) = s [ e T )
g I'(a/B) Jo ! ’

where z € R", ¢ € L,(R"), (1 < p < o0), and «, B € (0,00). Here {Wt(ﬁ)go}tzo is the

[B-semigroup defined by

W) ) = [l =y (yit)dy, (¢ > 0)
R

and Wéﬁ )go = F (the identity operator). The kernel function w((y;t) is the inverse
Fourier transform of exp(—t|z|%), i.e.,

w(y;t) = FHe ) (), (y e RY).

The B-semigroup Wt(ﬂ )cp is the generalization of the Gauss-Weierstrass semigroup (for
B = 2) and Abel-Poisson semigroup (for 5 = 1). Besides that, the bi-parametric potentials
Jig ¢ generalize the Bessel potentials (for B = 2) and Flett potentials (for § =1).

The article is organized as follows: Section 2 contains some necessary notations, defini-
tions and auxilary lemmas. Section 3 and 4 include the main results of the article and are
devoted to the approximation properties of the families Jipand [%p as a — aa“ . Roughly
speaking, our main results assert that, if A*f is one of I f or Jg f, then under some con-
ditions on f € Ly(R™), the asymptotic equality ((A“f)(z) — (A% f)(z)) = O(1)(a — )
as @ — ag is valid at the Lebesgue points of f. Also, we obtain asymptotic equality
[A%f — A% f]l, = O(1)(a — ap) as a — af , when A® = Jg.

2. Notations, definitions and auxiliary lemmas

Let L, = Ly,(R"), 1 < p < o0, be the standard space of measurable functions with the
norm

1/p
171, = ( / If(w)lpdx) <00, [/l = esssup /()]
R xeR™

where x = (21, 2, ..., ) and dz = dz1dxs...dz),.
The Fourier and inverse Fourier transforms are defined by

fz) = Ff(2) = /J‘"(Sv)e_”““z’dﬂj and f(2) = F7f(2) = (2m) "F f(~2),
Rn

where xz = x121 + 229 + ... + Tpzp.
Let f € L,, 1 < p < co. The Poisson (or Abel-Poisson) semigroup associated with the
function f is defined as

Pif(@) = [ply0f @ =)y, 0 <t < ox. (21)
.
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Here, the Poisson kernel p(y,t) has the form

r 2 t n
p(y,t) = (o (n+1)32/ : (2 + ‘y| )(n+1)/2 y’ 1) (2:2)

and is the inverse Fourier transform of e !¢, (EeRM), ie

Flp(,0))€) =e it >0, |¢) = (F+& +...+ )2

Another important semigroup is the famous Gauss-Weierstrass semigroup:

Wif(x /w (y,t) f(x —y)dy, 0 <t < 0, (2.3)
RTL

where the Gauss-Weierstrass kernel w(y, t) is defined in Fourier terms by
Flu(.0](©) =™, (1> 0, £ € R
and is explicitly computed as

w(y,t) = (4mt) " exp(— |y|* /4t). (2.4)
The Bessel potentials are defined in Fourier terms by

JOf=F 1+ ) PFf=(E-A)f, (0 < a < ).

n
E is the identity operator and A = > 88722 is the laplacian. If f € L,, then J®f has the
k=1""k

following integral representation'

(J°f) / fly —y)dy ([13], p.540; [17], p. 132), (2.5)

where

An(@) = 27T (0/2), Gal(x) = /0 pla=n) /2 ~t—laf*/at % ‘

These potentials play important role in various branches of mathematics and its appli-
cations; see, e.g. [7], [12], [13], [17].

There are other fractional integral operators whose behaviours are "almost midway"
between the Bessel and Riesz potentials. These potentials are introduced by T. M. Flett
in his fundamental paper [7] (see, also [13], 541-542).

Flett potentials F*f are defined in terms of Fourier transform as

F[Ffl(z) = 1+ |z]|) “F[f](z), (z € R", 0 < o < 00)

and are interpreted as negative fractional powers of the operator (E + v/ —A), i.e., FOf =
(E + +v—A)~*f. These potentials can be represented as convolution

— [ 1@)®ala ~ y)dy.
4.

Buly) = —— o [T s (2.6
W@ e '

with v, (o) = 7 D/20(a) /T((n + 1)/2); see, [5], [7], p. 447 and [13], p. 542.

For f € L,, 1 < p < oo, the Bessel and Flett potentials have significant "one dimen-
sional" integral representations via the Abel-Poisson and Gauss-Weierstrass semigroup [7]
(see, also [12], [13]), namely

(T ) (@) = r(i/z) /OOO 5L W, f(2)dt, 0 < a < oo (2.7)

where
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and
1 o0
(Ff) () = —— / 1916 By f(2)dt, 0 < o < oo, (2.8)
(@) Jo
where the integral operators P, f(x) and W f(z) are defined as (2.1) and (2.3).
In the paper [1] a notion of the bi-parametric potentials, which are natural generaliza-

tions of the Bessel and Flett potentials, has been introduced. Bi-parametric potentials are

defined as

U5 = g [, T WP @t (29)

where ¢ € L,(R"), (1 <p < o0), and a, 5 € (0, 00).
Here {Wt(ﬂ )cp}tzo is the [-semigroup defined by

Wp)w) = [plw— yw®(yit)dy, (¢ > 0). (210)
R”

The kernel function w(®) (y; t) is the inverse Fourier transform of exp(—t |z|%), i.e.,

WO (y;t) = FLe 1) (y), (y € R). (2.11)

It is easy to see that the S-semigroup (2.10) is a natural generalization of the Gauss-
Weierstrass semigroup (for 8 = 2) and Abel-Poisson semigroup (for 5 = 1). Furthermore,
the bi-parametric potentials Jg ¢ generalize the Bessel potentials (2.7) (by setting 8 = 2)
and Flett potentials (2.8) (by setting 8 = 1) and the operators Jg are interpreted as

negative fractional powers of the operator (E + (—A)#/2), i.e., for Schwarz test functions
© we have

Jgo=F ' (1+[¢°) " Fp = (B + (-0)"2) /P,

The behaviour of these integral operators in the framework of L,-spaces and explicit
inversion formulas for them have been obtained in [1].
We give here some properties of operators Jg‘go, (0 < < ).

Lemma 2.1. ([1]) Let 1 <p < 00 and ¢ € Ly(R™). Then,
a) Jgp is well-defined for all o > 0, B> 0 and is bounded on L,, i.e.,

|78¢], <) lell,-

Moreover, if 0 < § < 2, then we can write ¢(3) = 1.
b) The operator Jg is a convolution type operator with the Fourier multiplier m(§) =

(14 [€]P)=2/8, (¢ € R"), i.e., for any Schwarz test function ¢ we have

FII32)(6) = (L+[€7) P Flel(€).

c) For any fixed parameter > 0, the family {Jg}azo has the following semigroup
property:
ng+o‘2<,0 = Jg'(J5%p), (1,00 >0, Jy=E).

The following Lemma gives some properties of the semigroup Wt(ﬁ )go.

Lemma 2.2. ([1]) Let the kernel function w®(y;t), (y € R™,t > 0) and the 3-semigroup
Wt(ﬂ)cp be defined as (2.11) and (2.10). Then,
a)
/w(ﬁ)(y;t)dy =1,Vt>0,V5 > 0.
R”
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b) If 1 < p < oo, then

W] <e®liel, . vt > 0,98 >0,

where ¢(B) = [ |w®(y, 1)‘ dy < oco. If 0 < <2, then ¢(B) = 1.
Rn

c) For almost all x € R™ and all >0

sup (WP0)(@)| < cs(M)(@), ¢ € Ly, 1 <p< o0,

where M is the well-known Hardy-Littlewood mazximal function:

1
(M) () = B (/ ) ()| dy

with B(x,r) is the ball of radius r, centered at x € R™.

sup
z€R™

(W g)(@)] < et g, 1 < p < oo

Wt(ﬁ)(Wf(ﬁ)go) = t(_f)Tcp, Vt, 7 >0, (the semigroup property).
f) Let o € L,, 1 <p < oo. Then
Jim (W7 )(2) = o()

with the limit being understood in the Ly-norm or pointwise for almost all x € R",
e.g. for any Lebesgue point of function .

3. Approximation properties of the family of bi-parametric potentials
J§p as a — ag.

In this section we will study the approximation properties of the family of bi-parametric
potentials J5¢ as a — aa’, where ap > 0 being a fixed number and ¢ € L,(R™). The
main result of this section is the following.

Theorem 3.1. Let ¢ € L,(R™), (1 <p < o0) and the family of integral operators Jge be
defined as (2.9). Then

a) for any ag > 0 and for almost all x € R™, (e.g. for any Lebesgue point x of
function )

((59)(@) = (J30)(2)| = 0(1)(a — ag) as a = ag ;
(6% QU _ +
b) HJﬁw - JBO(’DHLP(RTL) =0(1)(a—ag) asa — af .

Corollary 3.2. Let ¢ € L,(R"), (1 < p < o0) and A%p be either one of the Bessel or
Flett Potentials of the function ¢. Then,

a) for any ap > 0 and for almost all x € R™ (e.g. for any Lebesgue point x of function
©)
|(A%p)(2) — (A% p)(z)| = O(1)(a — ap) as a = af;

b) [[A%p —.Ao‘og0||Lp(Rn) =0(1)(a— ap) as o — o .
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Proof. a) Given ag > 0, let a € (ap,2ag). Then
1 1 OO i)
U5 ~ U6 = (a— ) ) TP
B B
+ré>ﬁweta31—t?5wwmwxmm

= Ii(a)+ Ix(«a).

(In fact, the expressions I1(a) and Iz(«) also depend on the z-variable. However,
since z is fixed, we only wrote the variable «.)
By the mean value theorem we have

1 1 ‘ 1
[(a/B)  T(ao/B)l  T(a/B)I(an/B)

/B)
where 6 € (%, 5) C (%, =3").

1 1 ')
/ e_tte_llntdt‘ g/ e_tte_llngdt—i—/ et M ntat
0 0 1

1 oy 1
< / t5 ' dt+/ e~ t0dt
0 t
a_p 1 20
< /tl3 lngdt+/ e "t dt = ¢(ap, f) < .
0 1

Using this and the estimate Igaigf(t) =0,88... > 1 we have from (3.1)
>

0| (e — ag), (3.1)

o)

T =

c(ao, B)(a — ap)

‘ 1 1 ' 4
L(a/B)  T(ao/B)

and therefore,

(@) < Zela0,B) [(J5)e(@)] (@ - ao)

B
= O(1)(a—ap), (@ = af). (3.2)
Further,
RO = g | T =W @
L M1 8 (8)
< F(a/ﬁ)/o 57 P [P @) at
1 et 15 N D o) (2
s T =@

= I(a)+ Li(a).
According to Lemma 2.2,

sup |(W{70)(@)] < e(Mp)(z), (i € Ly, 1 < p < 00), (3.3)

for almost all z € R"™, where M is the Hardy-Littlewood maximal operator. By
making use of these, we have for a > ay

c 1 a_q 207
0) < gz (M) [ 5 - F
c 1 1
= W(M@)(x)ﬁ(go - a)
cf 1
= —(a — ap).

(a/ﬂ) ezely
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Since I'(a/B) > 3 , we get

4
Is(a) < A(a — o), where A = CB.
o
Thus,
Ii(a) = O(1)(a — ap) as o — af . (3.4)
Let us estimate I4. Using (3.3) and the mean value formula,
a_ 20 _ 1 6 _
A = 5l —ao)t? "Int, (3.5)
we have (M) () 1
c(Mep)(x ;0
Lila) < —————(a— ap / e ‘tA T Intdt,
(@) T'(a/5) 5( ) ).
where oy < 6 < a < 2ay.
Since
o —t, 21 o —t42a0—1
/ e 'ts lntdt</ e 't Intdt < oo,
1 1
we have
Ii(a) = O(1)(a — ap) as o — af . (3.6)
Finally, taking into account (3.2), (3.4) and (3.6) we get
‘(Jﬁcp)( ©)(z) ‘— ) — ap) asa—)ag,

for almost all z € R”.
b) As in proof of part a), we have for @ > ap and p € L,, 1 <p < o0

(J5e)(@) — (J5%¢)(x) = Li(z) + L(x),

where
@) = (a5 ~ e o @
L(a/B)  Tlao/B)" Jo
and 1 -
Ir(z) = 7/ e t5 1T YW P ) (a)dt.
Hence,
| 780 =I5 < Inall, + 1221, - (37)
By making use of (3.1) and Lemma 2.1-a) we have
4
112, < Getao. 8) [ 75|l = ol < Bligll, lo = el (3.8)
where the coefﬁc1ent B depends only on the parameters o and S3.
Further,
Ir(x) = I3(x) + 14(x), (3.9)
where ) .
Is(x) = 7/ et (5 YW D) () dt
@) = Far )W) (a)
and

Li(x) = r(al/ﬂ) [ et e

By using Minkovski inequality and Lemma 2.2-b) we get

c(B) b oao a_q
sy, < gy Il || 67 =3 ar

B 2B
el sl = a) < 22570

el (@ = o).
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Therefore,
73], = O(1) (e — ap) as o — af . (3.10)
Further,

c(B) © ey %0y
I3l < Frergy el | @3 =% Har

By making use of the formula (3.5), we have

c(6)

[ 14]],, < A (a/B) ol (o — Oé(])/l e "tF Intdt, (g < 0 < a < 2ayp),

and therefore
14, = O(1)(a — ) as o — af . (3.11)
By (3.9),
12ll, < sl + [Lall,
and as a result, we have from (3.10) and (3.11) that
22, = O(L)(a — ap) as o — ag - (3.12)
By taking into account (3.12) and (3.8) in (3.7) we conclude that
HJg‘cp - Jg(](pHp =0(1)(a—ag) as a — af,

and the proof is complete.

4. Approximation properties of the Riesz potentials [°f as a — of .

In this section we study the approximation properties of the famous Riesz potentials
(see, e.g. [17], p.117)

o _ ! fy)
(I f)(ﬂ?) - ,yn(a)ﬂzlm._mn—ady’ (41)

where 0 < o < n and 7, (a) = 272D (a/2)/T((n — a)/2).

It is known that the operators I*f are well defined for all f € L,(R"), 1 < p < o0,
provided that 0 < a < n/p.

We need the following;:

Lemma 4.1. ([15], p. 552) Let 0 < a < n, 1 < p < n/a and f € L,(R™). Then the
Riesz potentials I*f admit the following "one dimensional” integral representation via the

B-semigroup Wt(’B)f :
1

(If)(z) = (o /B)

where B is an arbitrary positive number.

| @, (42)

Remark 4.2. The interested reader can find the proof of this Lemma in [15]. Recall that,
the well known formulas

(I°f) () = F(la) /0 " L (Pof)(x)dt (E. Stein [16))
and . -
(1)) = £ra75) /O £5-1(Gof)(x)dt (R. Johnson [10])

are the special cases of the general formula (4.2). Namely, P;f = Wt(l) f is the Abel-Poisson
integral and G f = Wt@) f is the Gauss-Weierstrass integral.
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The following theorem shows that, the rate of pointwise a.e. convergence of family
(I°f)(z) to (I f)(x) as & — «f is not worse than O(1)(a — ag) for a.e. z € R™ (e.g.
Lebesgue points of f).

Theorem 4.3. Let f € L,(R"), 1 <p < oo and 0 < op < o < %. Let further I1¢f be
the Riesz potential of f, defined as in (4.1). Then, for almost all x € R™ (e.g. for any

Lebesgue point = of function f) the asymptotic equality
(If)(z) — (I f)(x) = O(1)(a — ag) as o —
holds.

Remark 4.4. As mentioned above, the operators I f and I f are well defined provided
that f € Lp(R") and 0 < ap < a < 7.

Proof. Let f € L,(R"), (1 <p<oo)and 0 < ap < a < . According to formula (4.2),
the choice of the parameter 5 > 0 is at our disposal and we choose it as 8 = ag. In this
case the potential 190 f has the simpler form
o
(o n@ = [
and then we have

(1°f) (@) — (I f)(x) = r<al/a0> 7 e gy
S RUARTIEY
= F(al/ao) /ooo tea = (W) f) ()t
= A(a)+ B(a). (4.3)
Let us estimate A(a) as o — agp. We have
_ ; LSy (@) £y
A@) = e |0 = nr @
4 / (t50 — 1) (W) f)(x)dt]
= ai(@) + az(a) (4.4)

By making use of Lemma 2.2- ¢) and the condition O% > 1, we have

1 1
ja1(e)] < F(a/a)/o

1 o
r(al/aO)CMf(x)/o (1 —t#Y)de
= e M@=
= mM}c(m)(a — ap), for almost all x € R".

Since Itn>i(I)1F(t) =0,88... > 1 and ag < «, we have

a1 (a)| < e1(a — o), (4.5)

vt 1| ) )| e

IN

where ¢; = ¢1(z) = %Mf(x)
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To estimate agz(«), we will use Lemma 2.2-d):

az(a)| = IR Y b a1 (@0) £y (o
o) = Frras / (5 = OV e

< cllfly 57— F(a/a ) /Oo(t%_l — 1)t wor dt

o n 4 O n
= teo o dt — t cordt
eIl Fars /a0> [T [T ]

= cao|fl, F(a/a JE—a)(® _ao)(a—ao)~

Since 0 < ap < a < % and @ — ag, we can assume that a < %(ao + %) Then,
(3 — o) > %(% — ap) and therefore, 1/(7 — a)(5 — ao) <2/(5 — )2
By taking into account this and the estimate I'(a/ag) > 3 we have

laz(a)| < ca(a — ap), (4.6)

where ¢3 = 2cag(} — a0) " ? [ f]l, < oo
Now, denoting ¢; + ¢2 = c3, we obtain from (4.4), (4.5) and (4.6) that

|A(a)| < es(a—ap) as a — of . (4.7)
Let us now estimate B(«) in ( 3). We have
B < Fafan /a0> Dlafao) [~ |0V )] dt. (48)

By Lemma 2.2-¢) and d) we have

[Tl n@la = [ o n)aes [T e a

< cM¢(x)+c / t codt=cMs(x)+c—F .
(@) +cllfll, . (@) (n/p) —
Therefore,
| i )@ de < e (19)
where ¢4 = c4(z) = c(My(x) + (ODET ~) < oo for almost all z € R".
An application of the mean value theorem gives
«@ « a
1-T'(— = ') -T(—)| ="V - —
-1 = r@ TS| = roe - )
1
= — ') (a — ao), (4.10)
o
where 1 <A < 2 and F’ fooo e ‘A Llntdt.
Further, smce 1 <AL & < W’ we have
'] < / e A Int| dt
0
1 1 o0 no_q
< / ln(g)dt+/ e 'tPa0 Intdt = c5 < o0, (4.11)
0 1

By taking into account (4.9), (4.10), (4.11) in (4.7) and using the estimate I'(a/ag) > 3,
we have
|B()] < cola — ), (a = af), (4.12)

where cg = 26%00405 < 0.
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Finally, we obtain from (4.3), (4.7) and (4.12) that

(1 f) (@) = (I f)(@)] = O(1) (e — @), (a = o).

This completes the proof. ]
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