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Abstract

In this paper, we propose a new inertial self-adaptive subgradient extragradient algorithm for approximating
common solution in the set of pseudomonotone equilibrium problems and the set of �xed point of �nite family
of quasi−φ−nonexpansive multivalued mappings in real uniformly convex Banach spaces and uniformly
smooth Banach spaces. Strong convergence of the iterative scheme is established. Our results generalizes
and improves several recent results annouced in the literature.
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1. Introduction

Let E be a real Banach space and E∗ be the dual of E. Let C be a nonempty closed and convex subset
of E. The equilibrium problem is to �nd z̄ ∈ C such that

g(z̄, y) ≥ 0 ∀ y ∈ C, (1)

where g : C × C → R is a bifunction with property g(x, x) = 0 ∀ x ∈ C. The equilibrium problem (1) was
introduced by Blum and Oettli [5]. We denote by EP (g, C) to be the set solutions of equilibrium problem
(1), i.e.

EP (g, C) = {z̄ ∈ C : g(z̄, y) ≥ 0 ∀ y ∈ C}.
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Equilibrium problem (1) generalizes many important problems such as variational inequality problem, opti-
mization problem, complementarity problem, �xed point problem, see, for example, [5, 28].

A map T : E → E is said to be nonexpansive if ||Tx−Ty|| ≤ ||x−y|| ∀ x, y ∈ E . A point x ∈ E is said to be
a �xed point of T if x = Tx. The set of �xed points of T is denoted by F (T ), i.e F (T ) = {x ∈ E : x = Tx}.
T is called quasi nonexpansive ||Tx− z|| ≤ ||x− z|| ∀ x ∈ E, z ∈ F (T ) .

Let CB(E) be a family of nonempty closed and bounded subsets of E and T : E → CB(E) be a multivalued
mapping. A point z ∈ E is called a �xed point of T if z ∈ Tz. We denote by F (T ) the set of all �xed points
of T i.e F (T ) = {z ∈ E : z ∈ Tz}. A point z ∈ F (T ) is called an asymptotic �xed point of T if there exists
a sequence {xn} in E such that xn ⇀ z and lim

n→∞
d(xn, Txn) = 0. The set of all asymptotic �xed points of

T is denoted by F̃ (T ).

A multi-valued mapping T : E → CB(E) is called relatively nonexpansive if F (T ) 6= ∅, F (T ) = F̃ (T ) and
φ(z, p) ≤ φ(z, x) ∀x ∈ E, p ∈ Tx, z ∈ F (T ).
T is said to be quasi-φ-nonexpansive if F (T ) 6= ∅ and φ(z, p) ≤ φ(z, x) ∀x ∈ E, p ∈ Tx, z ∈ F (T ).
T is said to be closed if for any sequence {xn} in E with xn → x and {wn} ⊂ T (xn) with wn → y, then
y ∈ T (x).

Remark 1.1. Observe that from the above de�nitions, the class of quasi-φ-nonexpansive multi-valued map-
pings contains the class of relatively nonexpansive multi-valued mappings which require a strong restriction
F̃ (T ) = F (T ). Furthermore if E is a real Hilbert space H, the class of quasi-φ-nonexpansive mappings
coincides with the class of quasi nonexpansive mappings which inturn contains the class of nonexpansive
mappings.

Due to their importance, various methods have been imployed to approximate solutions of equilibrium
and �xed point problems (see, for example, [3, 18, 19, 35, 36] and the references contained therein). One of the
common methods use is the proximal point method in which the convergence analysis has been considered
when the bifunction g is monotone see [26]. However the proximal point method is not valid when the
underlying bifunction g is pseudomonone see Wen, [41].

Another method use is the extragradient-like method [1, 17, 22, 23, 25, 34, 39] which involved two strongly
convex optimization problem de�ned over the constrained set C and the Lipschitz-type condition imposed
on the bifunction g. Moreover to solve the two strongly convex problem over the constrained set C in each
iteration can be complicated especially if C is not simple. Motivated by this, Censor et al. [7] introduced
a method called subgradient extragradient for approximating solutions of variational inequality problem in
a real Hilbert space H, in which one projection was taken over constructed subpace which can easily be
computed. Hieu [21] extended the subgradient extragradient method equilibrium problems in a real Hilbert
spaces H, the author proposed the following algorithm;

x0 ∈ H
yn = argmin{λf(xn, y) + 1

2‖xn − y‖
2 : y ∈ C},

zn = argmin{λf(yn, y) + 1
2‖xn − y‖

2 : y ∈ Tn},
xn+1 = αnx0 + (1− αn)zn, n ≥ 0,

(2)

where Tn = {v ∈ H : 〈(xn−λwn)−yn, v−yn〉 ≤ 0}, wn∂2f(xn, yn) and λ, αn satisfy the following conditions;

1. 0 < λ < min { 1
2c1
, 1

2c2
}

2. 0 < αn < 1, lim
n→∞

αn = 0,
∑∞

n=1 αn = +∞.

The author proved strong convergence of the iterative sequence (2) to the solution of the equilibrium problem.
Recently, Dadashi et al. [14] used subgradient extragradient method to approximate solution of pseudomono-
tone equilibrium problem in real Hilbert spaces.
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One problem of the aforemention results was the computation of the Lipschitz constants c1, c2 of the bifunc-
tion f which sometimes is di�cult to estimate. Motivated by this, very recently, Yang and Liu [42] introduced
a new step size, in the subgradient extragradient method for pseudomonotone equilibrium problem and �xed
point of quasi nonexpansive mapping in a real Hilbert space. They proved strong convergence of the following
iterative sequence without the prior knowledge of the Lipschitz-type constants of the bifunction f .

x0 ∈ H
yn = argmin

y∈C
{λnf(xn, y) + 1

2‖xn − y‖
2},

Tn = {v ∈ H : 〈(xn − λnwn)− yn, v − yn〉 ≤ 0},
zn = argmin

y∈Tn
{λnf(yn, y) + 1

2‖xn − y‖
2},

tn = αnx0 + (1− αn)zn,
xn+1 = βnzn + (1− βn)Stn, n ≥ 0

(3)

where S is quasi nonexpansive map, wn ∈ ∂2f(xn, yn), λ0, µ ∈ (0, 1) and {αn}, {βn} are real sequences
satisfying some conditions and

λn+1 =

{
min{ µ(||xn−yn||2+||zn−yn||2)

2(f(xn,zn)−f(xn,yn)−f(yn,zn)) , λn}, f(xn, zn)− f(xn, yn)− f(yn, zn) > 0,

λn, Otherwise.

They proved strong convergence of (3) to common point in the set of �xed point of quasi nonexpansive
mapping and set of pseudomonotone equilibrium problems.

Recently, inertial method which was introduced by Polyak [30] to speed up the rate of convergence of the
iteration methods has been considerably attracting interest of reseachers, (see, for example, [4, 8, 9, 11, 12,
13, 16, 27, 29, 31, 37, 40] and the references contained therein).

Motivated by the above results, the purpose of this paper is to propose an inertial self-adaptive subgradi-
ent extragradient algorithm for approximating common solution in the set of pseudomonotone equilibrium
problem and the set of �xed point of �nite family of quasi−φ−nonexpansive multivalued mappings in real
uniformly convex Banach spaces and uniformly smooth Banach spaces. The step size ηn is chosen self
adaptively and estimates of Lipschizt-type constants are dispensed with.

2. Preliminaries

Let E be a real Banach space and E∗ be the dual of E. Let C be a nonempty closed and convex subset
of E. We denote by J : E → 2E

∗
the normalized duality mapping de�ned by

J(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2},

where 〈., .〉 denotes the duality pairing between the element of E and that of E∗. It is well known that J(x)
is nonempty for each x ∈ E, see [36]. We denote weak and strong convergence by ⇀ and → respectively.

Let S(E) be a unit sphere centered at the origin. A Banach space is said to be strictly convex if ‖x+y
2 ‖ < 1,

whenever x, y ∈ S(E) and x 6= y. The modulus of convexity of E is de�ned by

δE(t) = inf
{

1− 1

2
‖x+ y‖ : ‖x‖ = 1 = ‖y‖, ‖x− y‖ ≥ ε

}
, ∀ t ∈ [0, 2].

E is called uniformly convex if δE(t) ≥ 0 ∀ t ∈ [0, 2] and p-uniformly convex if there exists a constant cp > 0
such that δE(t) ≥ cptp ∀ t ∈ [0, 2]. Note that every p-uniformly convex Banach space is uniformly convex and
every uniformly convex is strictly convex and re�exive. The modulus of smoothness ρE(τ) : [0,∞)→ [0,∞)
is de�ned by

ρE(τ) = sup
{‖x+ τy‖+ ‖x− τy‖

2
− 1 : ‖x‖ = ‖y‖ = 1

}
.
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E is said to be uniformly smooth if ρE(τ)
τ → 0 as τ → 0 and E is q−uniformly smooth if there exists dq > 0

such that ρE(τ) ≤ dqτ
q. It is well known that if E is q−uniformly smooth, then q ≤ 2 and E uniformly

smooth. Furthermore every uniformly smooth Banach space is smooth. We know that (see, for example,
[10]) if E is smooth, strictly convex and re�exive, then J is single-valued, one-to-one and onto respectively
and J−1 is also single-valued, one-to-one, onto and it is the duality mapping from E∗ into E. In addition
if E is uniformly smooth, then the norm on E is fréchet di�erentiable and J is uniformly norm-to-norm
continuous on bounded subsets of E and E is uniformly smooth if and only if E∗ is uniformly convex.

Let E be a smooth Banach space and C be a closed convex subset of E. The function φ : E×E → R de�ned
by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀ x, y ∈ E, (4)

is called Lyapunov bifunction introduced by Alber [2], where J is the normalized duality mapping. Observe
from the de�nition of φ in (4) above, we have that,

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉, ∀x, y, z ∈ E, and (5)(
‖x‖ − ‖y‖

)2
≤ φ(x, y) ≤

(
‖x‖+ ‖y‖

)2
, ∀x, y ∈ E (6)

Follwing Alber [2], the generalized projection ΠC : E → C is a mapping de�ned by

ΠC(x) = arg min
y∈C

φ(y, x) ∀x ∈ E.

Remark 2.1. (1) If E is a Hilbert space, then φ(y, x) = ‖y − x‖2, and the generalized projection reduces
to metric projection PC of E onto C.

(2) If E is smooth and strictly convex, then φ(x, y) = 0 if and only if x = y ∀x, y ∈ E, see, for example,
[36]

De�nition 2.2. (see [6, 24]) The subdi�erential of f , ∂f is the mapping ∂f : E → 2E
∗
de�ned by

∂f(x) = {x∗ ∈ E∗ : f(y)− f(x) ≥ 〈y − x, x∗〉 ∀ y ∈ E} for all x ∈ E.

Remark 2.3. It is known that if the function f is proper, lower semicontinuous and convex, then for each
x ∈ D(f) the subdi�erential ∂f(x) is a nonempty closed convex set, where D(f) is the domain of f .

De�nition 2.4. A bifunction g : C × C → R is said to be;

1. γ-strongly monotone on C if there exists γ > 0 such that

g(x, y) + g(y, x) ≤ −γ||x− y||2 ∀ x, y ∈ C,

2. Monotone if
g(x, y) + g(y, x) ≤ 0 ∀ x, y ∈ C,

3. Pseudomonotone if
g(x, y) ≥ 0 ⇒ g(y, x) ≤ 0 ∀ x, y ∈ C,

It is clear from De�nition 2.4, that (1) ⇒ (2) ⇒ (3). To solve the equilibrium problem, we assume the
bifunction g : C × C → R satis�es the following conditions;

(D1) g(x, x) = 0 for every x ∈ C;

(D2) g(x, .) is convex, lower semicontinuous and subdi�erentiable on E;

(D3) g is pseudomonotone on C;
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(D4) g is jointly continuous on E × C in the sense that if x ∈ E y ∈ C and {xn}, {yn} are two sequences
such that xn → x, yn → y, then g(xn, yn)→ g(x, y);

(D5) g(x, y) + g(y, z) ≥ g(x, z)− c1φ(y, x)− c2φ(z, y) ∀ x, y, z ∈ C and some c1, c2 > 0.

In the sequel we will need the following lemmas:

Lemma 2.5. [43] Let E be a real uniformly smooth and uniformly convex Banach space. Let T : E → 2E

be a closed quasi-φ-nonexpansive multivalued mapping, then F (T ) is closed and convex.

Lemma 2.6. [39] Assume the bifunction g satisties (D1)-(D4), then the set EP (g, C) of solutions of the
equilibrium problems is closed and convex.

Lemma 2.7. [38] Let C be a nonempty subset of E and f : C → R be a convex and subdi�erentiable function,
then f is minimized at x ∈ C if and only if

0 ∈ ∂f(x) +NC(x),

where NC(x) is the normal cone to C at x ∈ C, i.e.

NC(x) = {ζ ∈ E∗ : 〈y − x, ζ〉 ≤ 0 ∀ y ∈ C}.

Lemma 2.8. [10] Let E be a re�exive Banach space and f : E → R, g : E → R are two convex functions
such that dom f ∩ dom g 6= ∅ and f is continuous, then

∂(f + g) = ∂f(x) + ∂g(x), ∀ x ∈ E.

Lemma 2.9. [2] Let E be a strictly convex, smooth and re�exive Banach space and let K be a nonempty
closed and convex subset of E. Let x ∈ E, then

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x) ∀y ∈ C.

Lemma 2.10. [44] Let E be a uniformly convex Banach space and r > 0, then there exists a strictly
increasing, continuous and convex function f : [0, 2r]→ [0,+∞) such that f(0) = 0 and∥∥∥ N∑

i=1

αixi

∥∥∥2
≤

N∑
i=1

αi‖xi‖2 − αiαjf(‖xi − xj‖),

where αi ∈ (0, 1),
∑N

i=1 αi = 1 and xi ∈ Br(0), ∀i ∈ {1, 2, . . . , N},

Lemma 2.11. [26] Let E be a smooth and uniformly convex Banach space and let {xn} and {yn} be two
sequences in E. If either {xn} or {yn} is bounded and φ(xn, yn) → 0 as n → ∞, then xn − yn → 0 as
n→∞.

3. Main Results

In this section we propose the following inertial hybrid self adaptive subgradient extragradient algorithm
in a real uniformly convex Banach space E which is also uniformly smooth;

η1 > 0, µ ∈ (0, 1), x0, x1 ∈ C1 = E,
θn = xn + αn(xn − xn−1),
yn = argmin

y∈C
{ηng(θn, y) + 1

2φ(y, θn)},

Γn = {z ∈ E : 〈Jθn − ηnwn − Jyn, z − yn〉 ≤ 0},
zn = argmin

y∈Γn

{ηng(yn, y) + 1
2φ(y, θn)},

un = J−1(βnJzn + (1− βn)[γn,0Jθn +
∑N

i=1 γn,iJtn,i]),
Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, θn)},
xn+1 = ΠCn+1x0, n ≥ 1

(7)
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where wn ∈ ∂2g(θn, yn), tn,i ∈ Tiθn, Ti, i = 1, 2, 3, . . . , N are quasi−φ−nonexpansive multivalued mappings
and

ηn+1 =

{
min{ µ(φ(yn,θn)+φ(zn,yn))

2(g(θn,zn)−g(θn,yn)−g(yn,zn)) , ηn}, g(θn, zn)− g(θn, yn)− g(yn, zn) > 0.

ηn, Otherwise

Observe, it is obvious from (7) that C ⊆ Γn. Also using algorithm (7), we have the following Lemmas:

Lemma 3.1. The sequence {ηn} is a monotone nonincreasing and has a lower bound min
{

µ
2 max{c1,c2} , η1

}
,

Proof. It is clear that {ηn} is a monotone nonincreasing sequence. By condition (D5), we get

µ(φ(yn, θn) + φ(zn, yn))

2(g(θn, zn)− g(θn, yn)− g(yn, zn))
≥ µ(φ(yn, θn) + φ(zn, yn))

2(c1φ(yn, θn) + c2φ(zn, yn))
≥ µ

2 max{c1, c2}
.

Hence {ηn} has a lower bound min
{

µ
2 max{c1,c2} , η1

}
. Consequently the lim

n→∞
ηn exists.

Lemma 3.2. Let yn be de�ned as in algorithm (7). Then ∀ n ≥ 1 and y ∈ C we have

ηng(θn, y)− ηng(θn, yn) ≥ 〈y − yn, Jθn − Jyn〉.

Proof. Let n ≥ 0 and y ∈ C, then by Lemma 2.7 and Lemma 2.8, we get

0 ∈ ηn∂2g(θn, yn) +
1

2
∇1φ(yn, θn) +NC(yn).

Therefore there exists w ∈ ∂2g(θn, yn) and w̄ ∈ NC(yn) such that

0 = ηnw + Jyn − Jθn + w̄. (8)

Since w ∈ ∂2g(θn, yn), then
g(θn, y) ≥ g(θn, yn) + 〈y − yn, w〉. (9)

Using (8) and De�nition of NC(yn), we get

〈y − yn,−ηnw − Jyn + Jθn〉 ≤ 0,

so that
ηn〈y − yn, w〉 ≥ 〈y − yn, Jθn − Jyn〉. (10)

Hence by (9) and (10), we obtain

ηng(θn, y)− ηng(θn, yn) ≥ 〈y − yn, Jθn − Jyn〉.

Lemma 3.3. Let C be a nonempty closed convex subset of real uniformly convex and uniformly smooth
Banach space E. Let Ti : E → 2E , i = 1, 2, 3, . . . , N be �nite family of quasi−φ−nonexpansive multivalued
mappings. Assume g satis�es (D1)-(D5) and F = EP (g, C)∩ (∩Ni=1F (Ti)) 6= ∅. Let {θn}, {yn} and {zn} be
de�ned as in algorithm (7), then

φ(x∗, zn) ≤ φ(x∗, θn)− (1− ηn
ηn+1

µ)φ(yn, θn)− (1− ηn
ηn+1

µ)φ(zn, yn).
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Proof. Let x∗ ∈ F , then from De�nition of zn, Lemma 2.7 and Lemma 2.8, we get

0 ∈ ηn∂2g(yn, zn) +
1

2
∇1φ(zn, θn) +NΓn(zn).

Hence 0 = ηnw̄n + Jzn − Jθn + w̄ for some w̄n ∈ ∂2g(yn, zn) and w̄ ∈ NΓn(zn), i.e.

w̄ = −Jzn − ηnw̄n + Jθn. (11)

From De�nition of normal cone NΓn(zn), we have

〈y − zn, w̄〉 ≤ 0 ∀ y ∈ Γn. (12)

By (11) and (12), we obtain

ηn〈y − zn, w̄n〉 ≥ 〈y − zn, Jθn − Jzn〉 ∀ y ∈ Γn.

Since x∗ ∈ F ⊂ EP (g, C) ⊂ C ⊂ Γn ⊂ E, we have

ηn〈x∗ − zn, w̄n〉 ≥ 〈x∗ − zn, Jθn − Jzn〉. (13)

On the other hand since w̄n ∈ ∂2g(yn, zn), we have

g(yn, y)− g(yn, zn) ≥ 〈y − zn, w̄n〉 ∀ y ∈ E. (14)

Therefore, combining (13) and (14), we obtain

ηn(g(yn, x
∗)− g(yn, zn)) ≥ 〈x∗ − zn, Jθn − Jzn〉. (15)

As g is pseudomonotone, we have g(yn, x
∗) ≤ 0. Thus,

−2ηng(yn, zn)) ≥ 2〈x∗ − zn, Jθn − Jzn〉 − 2ηng(yn, x
∗)

≥ 2〈x∗ − zn, Jθn − Jzn〉. (16)

Since wn ∈ ∂2g(θn, yn), then

g(θn, y)− g(θn, yn) ≥ 〈y − yn, wn〉 ∀ y ∈ E.

Letting y = zn we obtain
2ηn(g(θn, zn)− g(θn, yn)) ≥ 2ηn〈zn − yn, wn〉. (17)

Observe as zn ∈ Γn, we get
2〈zn − yn, Jθn − Jyn〉 ≤ 2ηn〈zn − yn, wn〉. (18)

Combining (16), (17), (18) and (5), we obtain

2ηn

(
g(θn, zn)− g(θn, yn)− g(yn, zn)

)
≥ 2〈zn − yn, Jθn − Jyn〉+ 2〈x∗ − zn, Jθn − Jzn〉
= −2〈zn − yn, Jyn − Jθn〉 − 2〈x∗ − zn, Jzn − Jθn〉
= −(φ(zn, θn)− φ(zn, yn)− φ(yn, θn))

−(φ(x∗, θn)− φ(x∗, zn)− φ(zn, θn))

= φ(zn, yn) + φ(yn, θn)− φ(x∗, θn) + φ(x∗, zn). (19)

Thus, from (19) we have

φ(x∗, zn) ≤ φ(x∗, θn)− φ(zn, yn)− φ(yn, θn)

+ 2ηn

(
g(θn, zn)− g(θn, yn)− g(yn, zn)

)
.
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From the De�nition of ηn we obtain

φ(x∗, zn) ≤ φ(x∗, θn)− φ(zn, yn)− φ(yn, θn)

+
2ηn
ηn+1

ηn+1

(
g(θn, zn)− g(θn, yn)− g(yn, zn)

)
≤ φ(x∗, θn)− φ(zn, yn)− φ(yn, θn)

+
ηn
ηn+1

(
µ(φ(yn, θn) + φ(zn, yn))

)
= φ(x∗, θn)−

(
1− ηn

ηn+1
µ
)
φ(yn, θn)−

(
1− ηn

ηn+1
µ
)
φ(zn, yn).

Theorem 3.4. Let C be a nonempty closed convex subset of real uniformly convex and uniformly smooth
Banach space E. Let Ti : E → 2E , i = 1, 2, 3, . . . , N be �nite family of closed quasi−φ−nonexpansive
multivalued mappings. Assume g satis�es (D1)-(D5) and F = EP (g, C) ∩ (∩Ni=1F (Ti)) 6= ∅. Let {αn}, {βn}
and {γn,i} be real sequences such that αn, βn ∈ (0, 1), γn,i ∈ (ε, 1−ε) for some ε ∈ (0, 1) and γn,0+

∑N
i=1 γn,i =

1. Then the sequence {xn} generated by (7) converges strongly to p∗ = ΠFx0.

Proof. The proof is divided in to steps;

Step 1: We show F = EP (g, C)∩ (∩Ni=1F (Ti)) is closed and convex. By Lemma 2.5, ∩Ni=1F (Ti) is closed and
convex and by Lemma 2.6, EP (g, C) is closed and convex, therefore F = EP (g, C) ∩ (∩Ni=1F (Ti)) is closed
and convex.

Step 2: Here we show Cn, ∀n ≥ 1 is closed and convex;
Observe C1 = C is closed and convex. Assume Cn is closed and convex for some n > 1, then

φ(z, un) ≤ φ(z, θn)

is equivalent to
2〈z, Jθn − Jun〉 ≤ ‖θn‖2 − ‖un‖2.

Thus, we obtain Cn+1 is closed and convex and therefore Cn is closed and convex ∀n ≥ 1. This shows that
the iterative sequence generated by (7) is well de�ned.

Step 3: We show F ⊂ Cn ∀n ≥ 1.
It is clear that F ⊂ C = C1. Suppose F ⊂ Cn for some n > 1. Then for any x∗ ∈ F ⊂ Cn, we have

φ(x∗, un) = φ(x∗, J−1(βnJzn + (1− βn)[γn,0Jθn +

N∑
i=1

γn,iJtn,i]))

= ‖x∗‖2 − 2〈x∗, βnJzn + (1− βn)γn,0Jθn + (1− βn)
N∑
i=1

γn,iJtn,i〉

+‖βnJzn + (1− βn)[γn,0Jθn +
N∑
i=1

γn,iJtn,i]‖2

≤ ‖x∗‖2 − 2βn〈x∗, Jzn〉 − 2(1− βn)γn,0〈x∗, Jθn〉

−2(1− βn)
N∑
i=1

γn,i〈x∗, Jtn,i〉+ βn‖Jzn‖2

+(1− βn)‖γn,0Jθn +

N∑
i=1

γn,iJtn,i‖2
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≤ ‖x∗‖2 − 2βn〈x∗, Jzn〉 − 2(1− βn)γn,0〈x∗, Jθn〉

−2(1− βn)
N∑
i=1

γn,i〈x∗, Jtn,i〉+ βn‖Jzn‖2

+(1− βn)γn,0‖Jθn‖2 + (1− βn)
N∑
i=1

γn,i‖Jtn,i‖2

= βnφ(x∗, zn) + (1− βn)γn,0φ(x∗, θn) + (1− βn)

N∑
i=1

γn,iφ(x∗, tn,i).

Since tn,i ∈ Tiθn and Ti, i = 1, 2, 3, . . . , N are quasi−φ−nonexpansive multivalued mappings, we obtain

φ(x∗, un) ≤ βnφ(x∗, zn) + (1− βn)γn,0φ(x∗, θn) + (1− βn)
N∑
i=1

γn,iφ(x∗, θn)

= βnφ(x∗, zn) + (1− βn)φ(x∗, θn).

By Lemma 3.3, we get

φ(x∗, un) ≤ βn

[
φ(x∗, θn)−

(
1− ηn

ηn+1
µ
)
φ(yn, θn)−

(
1− ηn

ηn+1
µ
)
φ(zn, yn)

]
+(1− βn)φ(x∗, θn)

= φ(x∗, θn)− βn
(

1− ηn
ηn+1

µ
)
φ(yn, θn)− βn

(
1− ηn

ηn+1
µ
)
φ(zn, yn).

Since lim
n→∞

ηn
ηn+1

µ = µ and 0 < µ < 1, then there exists a natural numberN0 such that 0 < ηn
ηn+1

µ < 1 ∀n ≥ N0.

Thus, ∀n ≥ N0, we have
φ(x∗, un) ≤ φ(x∗, θn),

which implies x∗ ∈ Cn+1, that is F ⊂ Cn+1. Hence F ⊂ Cn ∀n ≥ 1.

Step 4: We prove {xn} is Cauchy sequence.
Since xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn ∀n ≥ 1, then

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ(xn+1, x0), ∀n ≥ 1 (20)

Also by Lemma 2.9, we obtain

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ(x∗, x0)− φ(x∗, xn)

≤ φ(x∗, x0), ∀n ≥ 1. (21)

From (20) and (21), it follows that lim
n→∞

φ(xn, x0) exists. This implies {φ(xn, x0)} is bounded and from (6)

we have that {xn} is bounded. Observe from Lemma 2.9

φ(xn+1, xn) = φ(xn+1,ΠCnx0) ≤ φ(xn+1, x0)− φ(xn, x0). (22)

Therefore
lim
n→∞

φ(xn+1, xn) = 0.

By Lemma 2.11, we get
lim
n→∞

‖xn+1 − xn‖ = 0. (23)

From (22) and any m,n ∈ N with m > n, we obtain

φ(xm, xn) = φ(xm,ΠCnx0) ≤ φ(xm, x0)− φ(xn, x0). (24)
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Since the lim
n→∞

φ(xn, x0) exists, we get

lim
m,n→∞

φ(xm, xn) = 0.

Again by Lemma 2.11 we get
lim

m,n→∞
‖xm − xn‖ = 0. (25)

It follows from (25) that the sequence {xn} is Cauchy in C ⊂ E.

Step 5: We prove lim
n→∞

‖θn − tn,i‖ = 0, lim
n→∞

‖zn − yn‖ = 0, lim
n→∞

‖yn − θn‖ = 0.

Observe from the scheme (7),
‖θn − xn‖ = αn‖xn − xn−1‖.

Therefore from (23), we obtain
lim
n→∞

‖θn − xn‖ = 0. (26)

Also from (23) and (26), we get
lim
n→∞

‖xn+1 − θn‖ = 0. (27)

Now,

φ(xn+1, θn) = ‖xn+1‖2 − 2〈xn+1, Jθn〉+ ‖θn‖2

= ‖xn+1‖2 − 2〈xn+1 − θn, Jθn〉 − ‖θn‖2

= (‖xn+1‖ − ‖θn‖)(‖xn+1‖+ ‖θn‖)− 2〈xn+1 − θn, Jθn〉
≤ ‖xn+1 − θn‖(‖xn+1‖+ ‖θn‖) + 2|〈xn+1 − θn, Jθn〉|
≤ ‖xn+1 − θn‖(‖xn+1‖+ ‖θn‖) + 2‖xn+1 − θn‖‖Jθn‖.

Since {xn}, {θn} are bounded and the duality mapping J is uniformly norm-norm continuous on bounded
subsets of E, it follows from (27) that

lim
n→∞

φ(xn+1, θn) = 0. (28)

From the scheme (7), xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn. Hence

φ(xn+1, un) ≤ (xn+1, θn).

Therefore from (28), we obtain
lim
n→∞

φ(xn+1, un) = 0

and consequently by Lemma 2.11, we obtain

lim
n→∞

‖xn+1 − un‖ = 0. (29)

From (27) and (29), we get
lim
n→∞

‖un − θn‖ = 0. (30)

Observe that

φ(x∗, θn)− φ(x∗, un) = ‖θn‖2 − ‖un‖2 − 2〈x∗, Jθn − Jun〉
≤ ‖θn − un‖(‖θn + un‖) + 2‖x∗‖‖Jθn − Jun‖.

From (30) and norm-to-norm uniform continuity of J on bounded sets, we obtain

lim
n→∞

(φ(x∗, θn)− φ(x∗, un)) = 0. (31)
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Again, from the scheme (7)

φ(x∗, un) = φ(x∗, J−1(βnJzn + (1− βn)[γn,0Jθn +

N∑
i=1

γn,iJtn,i]))

= ‖x∗‖2 − 2〈x∗, βnJzn + (1− βn)γn,0Jθn + (1− βn)
N∑
i=1

γn,iJtn,i〉

+‖βnJzn + (1− βn)[γn,0Jθn +
N∑
i=1

γn,iJtn,i]‖2

≤ ‖x∗‖2 − 2βn〈x∗, Jzn〉 − 2(1− βn)γn,0〈x∗, Jθn〉

−2(1− βn)
N∑
i=1

γn,i〈x∗, Jtn,i〉+ βn‖Jzn‖2

+(1− βn)‖γn,0Jθn +
N∑
i=1

γn,iJtn,i‖2. (32)

Since {θn} is bounded, tn,i ∈ Tiθn, i = 1, 2, . . . , N and Ti are quasi−φ−nonexpansive multivalued mappings,
it follows that {tn,i} is bounded for each i ∈ {1, 2, . . . , N}. Let r = max

1≤i≤N
sup
n≥1
{‖θn‖, ‖tn,i‖}. Since E is

uniformly smooth, then E∗ is unifromly convex, therefore, from (32) and Lemma 2.10, we have

φ(x∗, un) ≤ ‖x∗‖2 − 2βn〈x∗, Jzn〉 − 2(1− βn)γn,0〈x∗, Jθn〉

−2(1− βn)

N∑
i=1

γn,i〈x∗, Jtn,i〉+ βn‖Jzn‖2

+(1− βn)γn,0‖Jθn‖2 + (1− βn)
N∑
i=1

γn,i‖Jtn,i‖2

−(1− βn)γn,0γn,if(‖Jθn − Jtn,i‖)

= βnφ(x∗, zn) + (1− βn)γn,0φ(x∗, θn) + (1− βn)
N∑
i=1

γn,iφ(x∗, tn,i)

−(1− βn)γn,0γn,if(‖Jθn − Jtn,i‖)
≤ βnφ(x∗, zn) + (1− βn)φ(x∗, θn)− (1− βn)γn,0γn,if(‖Jθn − Jtn,i‖).

By Lemma 3.3, we obtain

φ(x∗, un) ≤ φ(x∗, θn)− βn
(

1− ηn
ηn+1

µ
)
φ(yn, θn)− βn

(
1− ηn

ηn+1
µ
)
φ(zn, yn)

−(1− βn)γn,0γn,if(‖Jθn − Jtn,i‖). (33)

From (31), (33) and condition γn,i ∈ (ε, 1− ε), we obtain

lim
n→∞

f(‖Jθn − Jtn,i‖) = 0, ∀ i ∈ {1, 2, . . . , N}.

By the property of f , we get

lim
n→∞

‖Jθn − Jtn,i‖ = 0, ∀ i ∈ {1, 2, . . . , N}.

Since J−1 uniformly norm-to-norm continuous on bounded subsets of E∗, we have

lim
n→∞

‖θn − tn,i‖ = 0, ∀ i ∈ {1, 2, . . . , N}. (34)
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Also form (33), we have
lim
n→∞

φ(yn, θn) = 0, lim
n→∞

φ(zn, yn) = 0.

By Lemma 2.11, we obtain
lim
n→∞

‖yn − θn‖ = 0, lim
n→∞

‖zn − yn‖ = 0. (35)

Hence step 5 is proved.
Since {xn} is Cauchy and E is re�exive Banach space, there exists p∗ ∈ E such that xn → p∗ as n→∞.

As C is closed, we have p∗ ∈ C.

Step 6: We show p∗ ∈ F = EP (g, C) ∩ (∩Ni=1F (Ti)).

Since xn → p∗ as n→∞, then from (26),we have

lim
n→∞

‖θn − p∗‖ = 0. (36)

From (34) and (36), we obtain

lim
n→∞

‖tn,i − p∗‖ = 0, ∀ i ∈ {1, 2, . . . , N}. (37)

Since tn,i ∈ Tiθn for each i ∈ {1, 2, . . . , N}, then from (36), (37) and closedness of Ti, we have p
∗ ∈ F (Ti) ∀ i ∈

{1, 2, . . . , N}, i.e. p∗ ∈ ∩Ni=1F (Ti).
On the other hand

‖yn − p∗‖ ≤ ‖yn − θn‖+ ‖θn − p∗‖.

Therefore, using (35) and (36) we obtain

lim
n→∞

‖yn − p∗‖ = 0. (38)

From Lemma 3.2, we have

ηng(θn, y)− ηng(θn, yn) ≥ 〈y − yn, Jθn − Jyn〉 ∀ y ∈ C. (39)

Since lim
n→∞

ηn > min
{

µ
2 max{c1,c2} , η0

}
> 0, then from (39), (38), (36), conditions (D1) and (D4), we obtain

g(p∗, y) ≥ 0, ∀ y ∈ C, i.e. p∗ ∈ EP (g, C).

Step 7: Finally, we show p∗ = ΠFx0.
Let ȳ = ΠFx0, then since p∗ ∈ F , we have

φ(ȳ, x0) ≤ φ(p∗, x0). (40)

From the scheme (7), xn = ΠCnx0. Since ȳ ∈ F ⊂ Cn, we have

φ(xn, x0) ≤ φ(ȳ, x0).

Also since φ(., y) is continuous and xn → p∗ as n→∞, we obtain

φ(p∗, x0) ≤ φ(ȳ, x0). (41)

From (40) and (41), we have φ(p∗, x0) = φ(ȳ, x0). Thus, p∗ = ȳ = ΠFx0.
This compeletes the proof.
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Observe that if E is a real Hilbert space, then by Remark 2.1(1) algorithm (7) reduces to the following

η1 > 0, µ ∈ (0, 1), x0, x1 ∈ C1 = H
θn = xn + αn(xn − xn−1),
yn = argmin

y∈C
{ηng(θn, y) + 1

2‖θn − y‖
2},

Γn = {z ∈ H : 〈θn − ηnwn − yn, z − yn〉 ≤ 0},
zn = argmin

y∈Γn

{ηng(yn, y) + 1
2‖θn − y‖

2},

un = βnzn + (1− βn)[γn,0θn +
∑N

i=1 γn,itn,i],
Cn+1 = {z ∈ Cn : ‖un − z‖2 ≤ ‖θn − z‖2},
xn+1 = PCn+1x0, n ≥ 1

(42)

where wn ∈ ∂2g(θn, yn), tn,i ∈ Tiθn, Ti, i = 1, 2, 3, . . . , N are quasi nonexpansive multivalued mappings and

ηn+1 =

{
min{ µ(‖yn−θn‖2+‖zn−yn‖2)

2(g(θn,zn)−g(θn,yn)−g(yn,zn)) , ηn}, g(θn, zn)− g(θn, yn)− g(yn, zn) > 0.

ηn, Otherwise

Using (42), Theorem 3.4 reduces to the following Corollary;

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let Ti : H → 2H , i =
1, 2, 3, . . . , N be �nite family of closed quasi nonexpansive multivalued mappings. Assume g satis�es (D1)-
(D5) and F = EP (g, C) ∩ (∩Ni=1F (Ti)) 6= ∅. Let {αn}, {βn} and {γn,i} be real sequences such that αn, βn ∈
(0, 1), γn,i ∈ (ε, 1 − ε) for some ε ∈ (0, 1) and γn,0 +

∑N
i=1 γn,i = 1. Then the sequence {xn} generated by

(42) converges strongly to p∗ = PFx0.

Remark 3.6. Theorem 3.4 extends the results of Yang and Liu [42] from Hilbert space to real uniformly
convex and uniformly smooth Banach spaces and from single valued quasi nonexpansive mappings to �nite
family of multivalued quas−φ−nonexpansive mappings.

4. Numerical example

In this section, we demonstrate Theorem 3.4
Let E = R with ‖.‖ = |.| and 〈x, y〉 = xy. Let C = [−40, 40] and for i = 1, 2, 3, 4, let Ti : R→ 2R be de�ned
by Tix = [ x

i+3 ,
x
i ]. It is clear that 0 ∈ ∩4

i=1F (Ti). Let p ∈ Tix, then p = ax for some a, 1
i+3 ≤ a ≤

x
i and

φ(0, p) = |0|2 − 2〈0, p〉+ |p|2

= |p|2 = |ax|2 = a2|x|2

≤ 1

i2
|x|2

≤ |x|2

= |0|2 − 2〈0, x〉+ |x|2

= φ(0, x).

Thus, Ti is quasi−φ−nonexpansive multivalued mapping for each i ∈ {1, 2, 3, 4}.

De�ne g(x, y) = y2 + 6xy − 7x2. It is easy to see 0 ∈ EP (g, C). Also g satis�es (D1), (D2) with ∂2g(x, y) =
2y + 6x, (D3) and (D4). If φ(x, y) = (x− y)2, then

g(x, y) + g(y, z) = z2 + 6xy + 6yz − 7x2 − 6y2

= z2 + 6xy − 7x2 + 6yz − 6y2

= g(x, z)− 3(y − x)2 − 3(z − y)2 + 3(z − x)2

= g(x, z)− 3φ(y, x)− 3φ(z, y) + 3φ(z, x)

≥ g(x, z)− 3φ(y, x)− 3φ(z, y).
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Thus, g satis�es (D5) with c1 = c2 = 3. Furthermore if ηn = 2
5 , µ = 7

10 , αn = 3
10 , βn = n

3n+2 , ε = 1
10 , γn,0 =

γn,1 = γn,2 = γn,3 = γn,4 = 1
5 , then ε, µ, ηn, αn, βn and γn,i satisfy all the conditions of Theorem 3.4.

Therefore scheme 7 takes the following form;

θn = xn + αn(xn − xn−1),

yn = 1−6ηn
2ηn+1θn,

Γn = {z ∈ R : 〈Jθn − ηnwn − Jyn, z − yn〉 ≤ 0},
zn = θn−6ηnyn

2ηn+1 ,
θn
i+3 ≤ tn,i ≤

θn
i , i = 1, 2, 3, 4

un = βnzn + (1− βn)[1
5θn + 1

5

∑4
i=1 tn,i]),

Cn+1 = {z ∈ Cn : z ≤ θn+un
2 },

xn+1 = ΠCn+1x0 = θn+un
2

(43)

Using (43) the numerical results using MATLAB is given in Figure 1 and Figure 2.
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Figure 1: Convergence process of {(xn}
with initial points x0 = 15, x1 = −10
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Number of iterations:n
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Figure 2: Convergence process of {(xn}
with initial points x0 = −35, x1 = 25

5. Conclusion

We studied an inertial hybrid self-adaptive subgradient extragradient algorithm in a real uniformly convex
Banach space which is also uniformly smooth. Strong convergence Theorem was proved to approximate
solutions of pseudomonotone equilibrium problems and �xed points of quasi−φ−nonexpansive multivalued
mappings. Numerical example was presented to show that our iteratative scheme is implementable.

References

[1] P.N. Anh, A hybrid extragradient method extented to �xed point problems and equilibrium problems, Opt., (2011)
DOI:10.1080/02331934.2011.607497.

[2] Y.I. Alber, Metric and generalized projection operators in Banach spaces: Properties and applications, In: Theory and
applications of nonlinear operators of accretive and monotone type. Lecture notes, Pure Appl. Math., (1996), pp. 15-50.

[3] B. Ali and M.H. Harbau, Convergence theorems for Bregman K-mappings and mixed equilibrium problems in re�exive
Banach spaces, J. Function spaces, (2016) Doi:10.1155/2016/5161682.

[4] B. Ali, J.N. Ezeora and M.S. lawan, Inertial algorithm for solving generalized mixed equilibrium problems in Banah spaces,
PanAmerican Journal, 29 (2019), 64-83.

[5] E. Blum and W. Oettli, From Optimization and Variational inequalities to Equilibrium Problems, Mathematics Students,
63 (1994), 123-145.

[6] A. Brondsted and R.T. Rockafellar, On the subdi�erentiability of convex functions, Proc. Amer. Math. Soc., 16 (1965),
605-611.

[7] Y. Censor, A. Gibali and S. Riech, The subgradient extragradient method for solving variational inequalities in Hilbert
spaces, J. Optim. Theory Appl. 148 (2011), 318-335.

[8] C.E. Chidume, S.I. Ikechukwu and A. Adamu, Inertial algorithm for approximating a common �xed point for �nite family
of relatively nonexpansive maps, Fixed Point Theory Appl. 9(2018), Doi:10.1186/s13663-018-0634-3.

[9] C.E. Chidume and M.O. Nnakwe, Convergence theorems of subgradient extragradient algorithm for solving variational
inequalities and convex feasibility problems, Fixed Point Theory Appl. 16 (2018), Doi:10.1186/s13663-018-0641-4.

[10] I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, Kluwer, Dordrecht, (1990)
Doi:10.1007/978-94-009-212-4.

[11] W. Cholamjiak, P. Cholamjiak and S. Suantai, An inertial forward-backward splitting method for solving inclusion problems
in Hilbert spaces. Journal of Fixed Point Theory Appl., 20(1), (2018), 1-17.

[12] W. Cholamjiak, S.A. Khan, D. Yambangwai and K.R. Kazmi, Strong convergence analysis of common variational inclusion
problems involving an inertial parallel monotone hybrid method for a novel application to image restoration. Revista de la
Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 114(2), (2020), 1-20.

[13] W. Cholamjiak, N. Pholasa and S. Suantai, A modi�ed inertial shrinking projection method for solving inclusion problems
and quasi-nonexpansive multivalued mappings. Computational and Applied Mathematics, 37(5), (2018), 5750-5774.

[14] V. Dadashi, O.S. Iyiola and Y. Shehu, The subgradient extragradient method for pseudomonotone equilibrium problems,
Optim., (2019), Doi:10.1080/02331934.2019.1625899.



M.H. Harbau, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 507�522. 522

[15] P. Daniele, F. Giannessi and A.Maugeri, Equilibrium problems and Variational models, Kluwer Academic, Dordrecht, The
Netherlands, 2003.

[16] Q.L. Dong, H.B. Yuan, Y.J. Cho and T.M. Rassias, Modi�ed inertial Mann algorithm and inertial CQ-algorithm for
nonexpansive mappings, Opt. Letters, (2016), Doi:10.1007/s11590-016-1102-9.

[17] G.Z. Eskandani, M. Raeisi and T.M. Rassias, A hybrid extragradient method for solving pseudomonotone equilibrium
problems using Bregman distance, J. Fixed Point Theory Appl., (2018), Doi:10.1007/s11784-018-0611-9

[18] C. Garodia, A new �xed point algorithm for �nding the solution of a delay di�erential equation, AIMS Mathematics, 5
(4), (2020), 3182-3200.

[19] C. Garodia and I. Uddin, A new iterative method for solving split feasibility problem, J. Applied Anal. Compt., 10 (3),
(2020), 986-1004.

[20] K. Goebel and W.A. Kirk, Topics in metric �xed point theory, Cambridge Studies in Ad-vanced Mathematics, 28 Cambridge
University Press, Cambridge, 1990.

[21] D.V. Hieu, Halpern subgradient extragradient method extended to equilibrium problems, RACSAM, (2016)
Doi:10,1007/s13398-016-0328-9.

[22] D.V. Hieu, Convergence analysis of a new algorithm for strongly pseudomonotone equilibrium problems, Numer. Algorithm,
77(4), (2018), 983-1001.

[23] D.V. Hieu and J. J. Strodoit, Strong convergence theorems for equilibrium problems and �xed point problems in Banach
spaces, J. Fixed Point Theory Appl. (2018) Doi:10.1007/s11784-018-0608-4

[24] J.B. Hiriart-Urruty, Subdi�erential calculus in Convex analysis and Optimization, Pitman, London, (1982), 43-92.
[25] Z. Jouymandi and F. Moradlou, Extragradient and linesearch algorithms for solving equilibrium problems and �xed point

problems in Banach spaces, arXiv:1606.01615[Math].
[26] S. Kamimura and W. Takahashi, Strong convergence of proximal-type algorithm in a Banach spaces, SIAM J. Optim., 13

(2002), 938-945.
[27] S.A. Khan, S. Suantai and W. Cholamjiak, Shrinking projection methods involving inertial forward-backward splitting

methods for inclusion problems. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matemáti-
cas, 113(2), (2019), 645-656.

[28] I. V. Konnov, Equilibrium models and variationa inequalities, Elsevier, Amsterdam, (2007).
[29] A. Phon-on, N. Makaje, A. Sama-Ae, and K. Khongraphan, An inertial S-iteration process, Fixed Point Theory Appl.,

(2019), Doi;10.1186/s13663-019-0654-7.
[30] B.T. Polyak, Some method of speeding up the convergence of the iteration methods, USSR Comput. Math. Phys., 4 (1964)

1-17.
[31] H. Rehman, P. Kumam, W. Kumam, M. Shutaywi and W. Jirakitpuwan, The inertial subgradient extragradient method

for a class of pseudo-monotone equilibrium problems, Symmetry, (2020), Doi;10.3390/sym12030463.
[32] P. Santos and S. Scheimberg, An inexact subgradient algorithms for equilibrium problems, Comput. Math. Appl., 30 (2011),

91-107.
[33] Y. Shehu, Iterative approximations for zeros of sum of accretive operators in Banach spaces, J. Function spaces, (2016),

Article ID 5973468.
[34] J.J. Strodiot, V.H. Nguyen and P.T. Vuong, Stong convergence of two hybrid extragradient methods for solving equilibrium

problems and �xed point problems, Vietnam J. Math., 40(2), (2013), 371-389.
[35] S. Takahashi and W. Takahashi, Viscosity Approximation methods for Equilibrium problems and �xed point problems in

Hilbert Spaces, J. Math. Anal. and Appl., 331(2007), 506-515.
[36] W. Takahashi and K. Zembayash, Strong convergence theorem by new hybrid method for equilibrium problems and

reletively nonexpansive mappings, Fixed point Theory and Appl., (2008),Doi. 1155/2008/528476.
[37] B. Tan, S. Xu and S. Li, Modi�ed inertial hybrid and shrinking projection algorithm for solving �xed point problems,

Mathematics, (2020), 8, 236, Doi:10.3390/math8020236.
[38] J.V. Tiel, Convex analysis: An introduction, Wiley, New York, (1984).
[39] Q.D. Tran, L. D. Muu and H. V. Nguyen, Extragradient algorithms extended to equilibrium problems, Journal of Optim.

57 (2008) 749-776.
[40] N.T. Vinh, and L. D. Muu, Inertial extragradient algorithm for solving equilibrium problem, Acta Math. Vietnamica,

(2019), Doi:10.1007/s40306-019-00338-1.
[41] D.J. Wen, Weak and Strong convergence of hybrid subgradient method for pseudomonotone equilibrium problem and

multivalued nonexpansive mappings, Fixed point theory and appli, 2014:232.
[42] J. Yang and H. Liu, The subgradient extragradient method extended to pseudomonotone equilibrium problems and �xed

point problems in Hilbert space, Optim. Letters, (2019), Doi:10.1007/s11590-019-01474-1.
[43] S. Zhang, L. Wang and Y.Zhao, Multi-valued quasi-φ-asymptotically nonexpansive semi-groups and strong convergence

theorems in Banach spaces, Acta Math. Sci., 33(B), (2013), 589-599.
[44] H. Zegeye, E.U. Ofoedu and N. Shahzad, Convergence theorems for equilibrium problems, variational inequality problem

and countably in�nite relatively quasi-nonexpansive mappings, Appl. Math. Comput., 216 (2010), 3439-3449.


	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Numerical example
	5 Conclusion

