Advances in the Theory of Nonlinear Analysis and its Applications 5 (2021) No. 4, 507
https://doi.org/10.31197 /atnaa.822150
Available online at www.atnaa.org

Research Article

v Advances in the Theory of Nonlinear Analysis

and its Applications -

ISSN: 2587-2648 Peer-Reviewed Scientific Journal

Inertial Hybrid Self-adaptive subgradient extragradient
method for Fixed Point of Quasi—@—nonexpansive
multivalued mappings and Equilibrium problem

Murtala H. Harbau?®

?Department of Science and Technology Education, Bayero University, Kano, Nigeria.

Abstract

In this paper, we propose a new inertial self-adaptive subgradient extragradient algorithm for approximating
common solution in the set of pseudomonotone equilibrium problems and the set of fixed point of finite family
of quasi—¢—nonexpansive multivalued mappings in real uniformly convex Banach spaces and uniformly
smooth Banach spaces. Strong convergence of the iterative scheme is established. Our results generalizes
and improves several recent results annouced in the literature.
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1. Introduction

Let F be a real Banach space and E* be the dual of E. Let C' be a nonempty closed and convex subset
of E. The equilibrium problem is to find Z € C such that

g(z,y) >0 VvV yeC, (1)

where g : C' x C' — R is a bifunction with property g(z,z) = 0V x € C. The equilibrium problem was
introduced by Blum and Oettli [5]. We denote by EP(g,C) to be the set solutions of equilibrium problem

@, i.e.
EP(9,C)={2€C:9(z,y) >0 V yeC}.
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Equilibrium problem generalizes many important problems such as variational inequality problem, opti-
mization problem, complementarity problem, fixed point problem, see, for example, [5] 2§].

Amap T : E — E issaid to be nonexpansive if | Tz—Ty|| < ||z—y|| Vz,y € E. A point z € FE is said to be
a fixed point of T if x = T'z. The set of fixed points of T is denoted by F(T),i.e F(T) ={z € E: x =Tx}.
T is called quasi nonexpansive ||[Tx —z|| < ||z —z|| V2 € E, z€ F(T) .

Let CB(F) be a family of nonempty closed and bounded subsets of E and T': E — C'B(E) be a multivalued
mapping. A point z € E is called a fixed point of T'if z € T'z. We denote by F(T') the set of all fixed points
of Tie F(T)={z€ E:z¢eTz}. Apoint z € F(T) is called an asymptotic fixed point of 7" if there exists
a sequence {z,} in E such that z, — z and nll)ngo d(xy,Txy) = 0. The set of all asymptotic fixed points of

T is denoted by F(T).

A multi-valued mapping T : E — CB(FE) is called relatively nonezpansive if F(T) # 0, F(T) = F(T') and
o(z,p) < ¢d(z,z) Yr e E, peTz, ze€ F(T).

T is said to be quasi-¢-nonezpansive if F(T) # 0 and ¢(z,p) < ¢p(z,2) Ve € E, pe Tz, z¢e F(T).

T is said to be closed if for any sequence {x,} in E with x,, — x and {w,} C T(z,) with w, — y, then
y €T (z).

Remark 1.1. Observe that from the above definitions, the class of quasi-¢p-nonexpansive multi-valued map-
pings contains the class of relatively nonerpansive multi-valued mappings which require a strong restriction
F(T) = F(T). Furthermore if E is a real Hilbert space H, the class of quasi-¢-nonezpansive mappings
coincides with the class of quasi nonerpansive mappings which inturn contains the class of nonexpansive
mappings.

Due to their importance, various methods have been imployed to approximate solutions of equilibrium
and fixed point problems (see, for example, [3, 18] 19],35], [36] and the references contained therein). One of the
common methods use is the proximal point method in which the convergence analysis has been considered
when the bifunction g is monotone see [26]. However the proximal point method is not valid when the
underlying bifunction g is pseudomonone see Wen, [41].

Another method use is the extragradient-like method [II, 17, 22| 23] 25 B4, [39] which involved two strongly
convex optimization problem defined over the constrained set C and the Lipschitz-type condition imposed
on the bifunction g. Moreover to solve the two strongly convex problem over the constrained set C' in each
iteration can be complicated especially if C' is not simple. Motivated by this, Censor et al. [7] introduced
a method called subgradient extragradient for approximating solutions of variational inequality problem in
a real Hilbert space H, in which one projection was taken over constructed subpace which can easily be
computed. Hieu [2I] extended the subgradient extragradient method equilibrium problems in a real Hilbert
spaces H, the author proposed the following algorithm;

g € H

yn = argmin{ A f(zn,y) + [z —ylI* 1 y € C}, @)
zn, = argmin{ A f(yn, y) + 5llzn — y|? 1 y € T0},

Tp41 = QpZo + (1 - Oén)Zn, n >0,

where T, = {v € H : ((xn,—Awp) —Yn, v —1yn) < 0}, w02 f (zn, yn) and A, a, satisty the following conditions;

1. 0 <A <min {5, 5=}

2. 0<ap <1, nlir&an =0, Zzo:l Oy, = +00.
The author proved strong convergence of the iterative sequence to the solution of the equilibrium problem.

Recently, Dadashi et al. [14] used subgradient extragradient method to approximate solution of pseudomono-
tone equilibrium problem in real Hilbert spaces.
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One problem of the aforemention results was the computation of the Lipschitz constants ¢y, co of the bifunc-
tion f which sometimes is difficult to estimate. Motivated by this, very recently, Yang and Liu [42] introduced
a new step size, in the subgradient extragradient method for pseudomonotone equilibrium problem and fixed
point of quasi nonexpansive mapping in a real Hilbert space. They proved strong convergence of the following
iterative sequence without the prior knowledge of the Lipschitz-type constants of the bifunction f.

o € H
o = argmin{n f (zn,y) + 3llen = yl*}
ye
T, ={veH: {(zn— MwWn) — Yn,v — yn) <0},
zn, = argmin{ A, f (yn,y) + %Hxn —ylI*},
yETn
t, = anxo + (1 — Oén)zm
Tn+1 = Bpzn + (1= Bn)Stn, n >0

where S is quasi nonexpansive map, wy, € Oaf (Tn,yn), Ao, 1 € (0,1) and {«a,}, {B,} are real sequences
satisfying some conditions and

: Tn—Yn 2 Zn—Yn 2
Ani1 = min{ Q(félx(llzn)gf‘(‘ngn)_}/(;L;n)) sAnts f(@nszn) = f(@n,yn) — f(Yns 20) >0,
ns Otherwise.

They proved strong convergence of to common point in the set of fixed point of quasi nonexpansive
mapping and set of pseudomonotone equilibrium problems.

Recently, inertial method which was introduced by Polyak [30] to speed up the rate of convergence of the
iteration methods has been considerably attracting interest of reseachers, (see, for example, [4] 8 9] 11} 12,
13| [16], 27, 29, 31, 37, 0] and the references contained therein).

Motivated by the above results, the purpose of this paper is to propose an inertial self-adaptive subgradi-
ent extragradient algorithm for approximating common solution in the set of pseudomonotone equilibrium
problem and the set of fixed point of finite family of quasi—¢@—nonexpansive multivalued mappings in real
uniformly convex Banach spaces and uniformly smooth Banach spaces. The step size 7, is chosen self
adaptively and estimates of Lipschizt-type constants are dispensed with.

2. Preliminaries

Let E be a real Banach space and E* be the dual of E. Let C' be a nonempty closed and convex subset
of E. We denote by J : E — 2F the normalized duality mapping defined by

J() = {f* € B : (z, f*) = ||z|I* = | f*II”},

where (.,.) denotes the duality pairing between the element of E and that of E*. It is well known that J(z)
is nonempty for each x € E, see [36]. We denote weak and strong convergence by — and — respectively.

Let S(E) be a unit sphere centered at the origin. A Banach space is said to be strictly convex if || 25| < 1,
whenever x, y € S(E) and = # y. The modulus of convexity of E is defined by

: 1
() = inf {1 = Sz +yl: ol = 1=y, 2=yl > e}, ¥t €[0,2].

E is called uniformly convex if dg(t) > 0V ¢ € [0, 2] and p-uniformly convex if there exists a constant ¢, > 0

such that dg(t) > ¢pt? V t € [0,2]. Note that every p-uniformly convex Banach space is uniformly convex and

every uniformly convex is strictly convex and reflexive. The modulus of smoothness pg(7) : [0,00) — [0, 00)

is defined by

[z + 7yl + [l — 7yl
2

pi(r) = sup { Lol =yl =1}.
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F is said to be uniformly smooth if p%m — 0 as 7 — 0 and F is g—uniformly smooth if there exists d, > 0

such that pp(7) < dg7?. Tt is well known that if £ is g—uniformly smooth, then ¢ < 2 and E uniformly
smooth. Furthermore every uniformly smooth Banach space is smooth. We know that (see, for example,
[10]) if E is smooth, strictly convex and reflexive, then J is single-valued, one-to-one and onto respectively
and J~! is also single-valued, one-to-one, onto and it is the duality mapping from E* into E. In addition
if F is uniformly smooth, then the norm on F is fréchet differentiable and J is uniformly norm-to-norm
continuous on bounded subsets of £ and F is uniformly smooth if and only if E* is uniformly convex.

Let E be a smooth Banach space and C be a closed convex subset of . The function ¢ : E x E — R defined
by
$(x,y) = l|zl|” — 2(z, Jy) + ly|?, ¥V 2,y € E, (4)

is called Lyapunov bifunction introduced by Alber [2], where J is the normalized duality mapping. Observe
from the definition of ¢ in above, we have that,

o(z,y) = ¢(v,2) + d(2,y) +2(x — 2, Jz — Jy), Vo, y, z€ E, and (5)

2 2
(2l = lyll)” < é(e.y) < (Il +1lyl) ", Vo, y€ B (6)
Follwing Alber [2], the generalized projection Il¢ : E — C'is a mapping defined by
[Io(x) = arg ming(y,z) Vo € E.
yeC
Remark 2.1. (1) If E is a Hilbert space, then ¢(y,x) = ||y — x||?, and the generalized projection reduces
to metric projection Po of E onto C.

(2) If E is smooth and strictly convex, then ¢(x,y) = 0 if and only if v = y Va,y € E, see, for example,
[36]
Definition 2.2. (sce [6, [2]]]) The subdifferential of f, Of is the mapping Of : E — 2F" defined by
of(x)={a* € E*: fly)— f(z) > (y—z,2%) Vy € E} for all z € E.

Remark 2.3. It is known that if the function f is proper, lower semicontinuous and convez, then for each
x € D(f) the subdifferential Of (x) is a nonempty closed convex set, where D(f) is the domain of f.

Definition 2.4. A bifunction g : C x C — R is said to be;

1. vy-strongly monotone on C if there exists v > 0 such that
9(z,y) +9(y,2) < Az =yl ¥ 2,y €,

2. Monotone if
9(@,y) +9(y,z) <0 V z,y € C,

3. Pseudomonotone if
9(z,y) 20 = g(y,z)<0Var,yel,

It is clear from Definition that (1) = (2) = (3). To solve the equilibrium problem, we assume the
bifunction g : C' x C' — R satisfies the following conditions;

(D1) g(z,z) =0 for every z € C;
(D2) g(z,.) is convex, lower semicontinuous and subdifferentiable on FE;

(D3) g is pseudomonotone on C}
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(D4) g is jointly continuous on E x C in the sense that if x € E y € C and {z,}, {yn} are two sequences
such that z, — z, y, — vy, then g(xn,yn) — g(z,v);

(D5) g(z,y) +9(y,2) > g(z,2) — c10(y, x) — cad(z,y) V x,y,z € C and some ¢y, cg > 0.
In the sequel we will need the following lemmas:

Lemma 2.5. /3] Let E be a real uniformly smooth and uniformly convex Banach space. Let T : E — 2F
be a closed quasi-¢-nonexpansive multivalued mapping, then F(T) is closed and convex.

Lemma 2.6. [39] Assume the bifunction g satisties (D1)-(D4), then the set EP(g,C) of solutions of the
equilibrium problems is closed and conver.

Lemma 2.7. [38] Let C be a nonempty subset of E and f : C — R be a convezr and subdifferentiable function,
then f is minimized at x € C if and only if

0€ 0f(x)+ Nc(z),
where No(x) is the normal cone to C at x € C, i.e.
No(z) ={C€ E": (y—x,() <0V yecC}

Lemma 2.8. [1()] Let E be a reflexive Banach space and f : E — R, g: E — R are two convezx functions
such that dom fNdom g # 0 and f is continuous, then

If+g) =0f(x)+dg(x), VaeE.

Lemma 2.9. [2] Let E be a strictly convex, smooth and reflexive Banach space and let K be a nonempty
closed and conver subset of E. Let x € E, then

oy, cx) + ¢(Uox,x) < ¢(y,x) Yy e C.

Lemma 2.10. [4J] Let E be a uniformly convex Banach space and v > 0, then there exists a strictly
increasing, continuous and convex function f:[0,2r] — [0,400) such that f(0) =0 and

N
| >,
i=1

where o € (0,1), SN a; =1 and z; € B.(0), Vi € {1,2,...,N},

) N
< Z%‘H%‘HQ — oo f(|lzs — x4),
i=1

Lemma 2.11. [26] Let E be a smooth and uniformly convexr Banach space and let {x,} and {y,} be two
sequences in E. If either {x,} or {yn} is bounded and ¢(xn,yn) — 0 as n — oo, then x, — y, — 0 as
n— 00,

3. Main Results

In this section we propose the following inertial hybrid self adaptive subgradient extragradient algorithm
in a real uniformly convex Banach space E which is also uniformly smooth;

m >07 NG(O71)7 Zo, x1€C1:E7
Hn:xn‘kan(xn_xnfl)a

yn = argmin{n,g(0n, y) + 50(y, 0n)},
yeC

zp = arg?in{??ng(ym y) + 56(y.0n)},
yeln

Up = Jﬁl(ﬁnjzn + (1 - Bn)[’)/n,ojen + Zi\il '}’n,thn,i])a
C'n—i—l - {Z €Cy: ¢(Zuun) < ¢(Z79n)}a
Tny1 = e, 120, n2>1
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where wy, € 029(0n,Yn), tni € Tibp, T;, 1 =1,2,3,..., N are quasi—¢—nonexpansive multivalued mappings

and

: nyen Zn,Yn
Mgl = { mm{g(g(eigfig_g(e):;bn()_3(;372”))777n}7 9(On; 2n) — 9(On, Yn) — 9(Yn, 2n) > 0.

Mns Otherwise

Observe, it is obvious from that C C T',,. Also using algorithm (7)), we have the following Lemmas:
Lemma 3.1. The sequence {n,} is a monotone nonincreasing and has a lower bound min {m,m},

Proof. 1t is clear that {7,} is a monotone nonincreasing sequence. By condition (D5), we get

(D (Yn, On) + (20, Yn)) (D (Yn, On) + (20, yn)) > K
2(9(9717 Zn) - g(ena yn) - g(yna ZTL)) 2(Cl¢(yn7 an) + C2¢(zn7 yn)) T2 maX{Cla 02} .

>

Hence {n,} has a lower bound min {m, m}. Consequently the nlg)go N exists. O
Lemma 3.2. Let y, be defined as in algorithm (7). Then ¥V n > 1 and y € C we have

an(ena y) - Ung(en, yn) > <y — Yn, JOn — Jyn>‘

Proof. Let n > 0 and y € C, then by Lemma and Lemma [2.8] we get

1
0 € 17,0290, yn) + §V1¢>(yn, 0n) + Nc(Yn)-
Therefore there exists w € 029(0n,yn) and w € Ne(yp) such that
0 =npw + Jy, — JO, + w. (8)

Since w € 929(0n, yn), then
900, y) = 9(0n,yn) + (Y — yn, w). (9)
Using and Definition of N¢(yy), we get

<y—yna_77nw_Jyn+J0n> <0,

so that
(Y = Yns W) = (Y — Yn» SO — Jyn). (10)

Hence by @ and , we obtain
Mg (Ons y) = Mg (On,yn) 2 (Y = Yn, JOn — Jyn).
O

Lemma 3.3. Let C be a nonempty closed convex subset of real uniformly conver and uniformly smooth
Banach space E. Let Ty : E — 2P i =1,2,3,..., N be finite family of quasi—d—nonexpansive multivalued
mappings. Assume g satisfies (D1)-(D5) and F = EP(g,C)N (N, F(T})) # 0. Let {0,}, {yn} and {2} be
defined as in algorithm , then

32", 20) < (2%, 00) — (1= = 1) b (Y, O) — (1 — —2 1) (21, Y-
Tn+1 Mn+1
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Proof. Let z* € F, then from Definition of z,, Lemma [2.7] and Lemma [2.8] we get
1
0 € 7929(Yn, 2n) + §V1¢(zn, On) + Nr,, (2n)-
Hence 0 = nyw, + Jz, — JO, + @ for some w,, € 029(yn, zn) and w € Nr, (z,), i.e.
W= —Jzp — iy + JOp. (11)
From Definition of normal cone N, (z,), we have
(Y —2zn,w) S0V yel,. (12)
By and , we obtain
My — 2n, Wn) > (Y — 2n, JOp — J2p) Yy € Ty
Since z* € F C EP(g,C) c C CcT,, C E, we have
M — 2n, Wn) > (2% — 25, JO, — T 21). (13)
On the other hand since w,, € 929(yn, 2n), we have
9 Wn>Y) = 9Wns 2n) = (Y — 2n,wn) YV y € E. (14)
Therefore, combining and , we obtain
nn(g(yna»r*) _g(ynazn)) > <$* — Zn, JO, — Jzn>- (15)
As g is pseudomonotone, we have g(y,,z*) < 0. Thus,
_277719(3/717 Zn)) > 2<$* — Zn, JOp — JZn) - 277n9<yn7 1'*)
> 2(z" — 2z, JO, — Jzp). (16)
Since wy, € 029(0n,yn), then
9(On,y) = 9(On,yn) = (y — yn,wn) Vy € E.
Letting y = 2, we obtain
20n(9(Ons 2n) — 9(OnsYn)) > 200 {20 — Yn, Wn). (17)
Observe as z, € 'y, we get
2<Zn — Yn, JO, — Jyn> < 27771(271 — Yn, wn>' (18)
Combining , , and , we obtain
20 (96 0) = 900, yn) — (s 20))
> 2zn = Yn, SO — Jyn) + 2(x™ — 2z, JO, — T 2p)
= —2(zn — Yn, JYn — JOp) — 2{x* — 2z, Jzp, — JOp)
= —(¢(zn,0n) — &(2n,Yn) — &(Yn,n))
—(¢($*7 971) - ¢(m*) Zn) - ¢(zn7 Hn))
= (20, Yn) + ¢(Yn, On) — d(2™,00) + (27, 21). (19)

Thus, from we have
¢(x*> Zn) < ¢(1‘*, On) — ¢(zm yn> — &(Yn, On)
+ 2n, (9(9717 2n) = 9(On, Yn) — 9(Yn, zn)).
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From the Definition of 7,, we obtain

P(x*,2n) < A", 00) — A(2n, Yn) — ¢(Yn, On)

+ 21n Nn+1 (Q(Hn, Zn) - g(‘gna yn) - g(yna Zn))
n+1
< gf)(fk, 971) - ¢(Zna yn) - Qb(yna en)
n
+ — (u(cb(yn, On) + ¢(zn,yn)))
_ * In In
= ¢(z",0,) — <1 - Tt N) ¢ (Yn, On) — (1 - Tt M) (2, Yn)-

O

Theorem 3.4. Let C be a nonempty closed convexr subset of real uniformly convex and uniformly smooth
Banach space E. Let T; : E — 2P i = 1,2,3,...,N be finite family of closed quasi—d—mnonezpansive
multivalued mappings. Assume g satisfies (D1)-(D5) and F = EP(g,C) N (N, F(T;)) # 0. Let {an}, {6n}
and {7y} be real sequences such that o, By, € (0,1), Yn,i € (e, 1—¢€) for some e € (0,1) and ’Yn,0+25\;1 Yng =
1. Then the sequence {x,} generatled by converges strongly to p* = llrxg.

Proof. The proof is divided in to steps;

Step 1: We show F = EP(g,C) N (NY,F(T;)) is closed and convex. By Lemma NN F(T;) is closed and
convex and by Lemma , EP(g,C) is closed and convex, therefore F = EP(g,C) N (NN, F(T})) is closed

and convex.

Step 2: Here we show C},, ¥n > 1 is closed and convex;
Observe (7 = C'is closed and convex. Assume C}, is closed and convex for some n > 1, then

(z)(zvun) S d)(zvgn)
is equivalent to
2(z, JOp — Jun> < ||9n”2 - ”unHQ

Thus, we obtain C), 1 is closed and convex and therefore C), is closed and convex Vn > 1. This shows that
the iterative sequence generated by is well defined.

Step 3: We show F C C,, Vn > 1.
It is clear that F C C' = C;. Suppose F C C,, for some n > 1. Then for any z* € F C C),, we have

N
$a*un) = 6@, T Budzn + (1= Bu)moT0n + > YniTtnl))

=1
N
- ”$*H2 - 2<$*7ﬁn<]zn + (1 - 5n)'7n,0<]9n + (1 - ﬁn) Z’Yn,ijtn,i>
=1

N

+||Bn=]zn + (1 - Bn)[’yn,OJen + Z'Yn,thn,i]HQ
i=1

||l‘*||2 - 2ﬁn< * Jzn> - 2(1 - ﬁn)'yn,0<x*a J9n>

IN

1_ﬁn Z’Vnz Jtnz +ﬁn”!]2n”2

N
(1= B[ ¥n0 O + D AniTtni|?

i=1
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< ||33*H2 — 2B (2", Jzn) — 2(1 — Bn)')’n@(x*a JOn)
N

_2(1 - 6n) Z'Yn,i(x*a Jtn,i> + Bn”JZn”z

i=1

N
+(1 = B) ol J0nl1> + (1= B2) D nill Ttnill®
=1

N
= Bnd(@*,2n) + (1= Bo)yn0d(x",0n) + (1= Bn) > Ynid(a* ).
=1

Since t,,; € T30, and T;, i = 1,2,3,..., N are quasi—¢—nonexpansive multivalued mappings, we obtain

N
Ga*un) < Bud(@*, 2n) + (1= Ba)yn0d (@, 0n) + (1= Ba) D i (x*, 6,)
i=1

= /Bn¢(x*7 Zn) + (1 - Bn)@b(x*a en)
By Lemma [3.3] we get

p(x™un) < Bn [¢(x*a9n) - (1_ T M)@b(ymen) - (1 — M>¢(zn7yn)]

Tin+1 Nn+1
+(1 = Bn)p(x", 0n)
= ¢(",0,) — Bn(l — M>¢(yn79n) - 571(1 — N>¢(Zn,yn)'

Mn+1 Tin+1

Since lim ="y = pand 0 < p < 1, then there exists a natural number Ny such that 0 < -2~y < 1Vn > Ny.
n—oo Mn+1 NMn+1

Thus, Vn > Ny, we have

(2", up) < (2™, 0p),
which implies z* € C),41, that is F C Cp+1. Hence F C C), Vn > 1.

Step 4: We prove {x,} is Cauchy sequence.

Since xpy1 =g, 0 € Chy1 C Cp Vn > 1, then

¢(2n, 20) = ¢(Ilg, w0, v0) < P(Tni1,20), YN >1 (20)

Also by Lemma [2.9] we obtain

d)(ﬂ?n,lj[]) = ¢(ch$07$0) ¢($*,$0) - ¢($*7$n)
o(z*, z9), Yn > 1. (21)
From and (21)), it follows that T}Lrgoqb(xn,xo) exists. This implies {¢(zn,z0)} is bounded and from ()

we have that {z,} is bounded. Observe from Lemma

<
<

H(Tny1, Tn) = G(Tni1, e, 20) < G(Tn11,20) — AT, o) (22)
Therefore
nlirgo¢(xn+1, xn) = 0.
By Lemma [2.11} we get
lim ||zp41 — zp]] = 0. (23)
n—oo

From and any m,n € N with m > n, we obtain

(T Tn) = (@, o, 20) < ¢(Tm, T0) — ¢(Tn, T0). (24)
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Since the lim ¢(zp, x0) exists, we get
n—oo

lim ¢(zpm,z,) = 0.

m,n— 00
Again by Lemma we get
lim ||z, — x| = 0. (25)
m,n— o0

It follows from that the sequence {z,} is Cauchy in C' C E.
Step 5: We prove lim ||6, —t5 ;|| =0, lm |z, —yy| =0, lim |y, —6,] =0.

Observe from the scheme ,

10, — 20|l = anllzn — zn-1].
Therefore from , we obtain
lim [|0,, — z,| = 0. (26)
n—oo
Also from and , we get
lim ||xp4+1 — 6,] = 0. (27)
n—oo
Now,
¢(Tnt1,0n) = ||~'13n+1H2 — 2(Tnt1, JOn) + ||9nH2

= ||5Un+1||2 — 2(znt1 — bp, JOn) — H‘QnH2

= ([#ns1ll = On D Uznrall + 10n]]) = 2(@ns1 — On, JO)
[#n41 = Onll(lzntr [l + [16nl]) + 2 (znt1 — On, JOn)]
[#n41 = Onll(lzngrll + 10nl]) + 2l|ns1 — Onll|J6n |-

Since {z,,}, {0,} are bounded and the duality mapping J is uniformly norm-norm continuous on bounded
subsets of F, it follows from that

VANVAN

Jim ¢(z41,6,) = 0. (28)

From the scheme , Tpy1 =g, ,z0 € Cphi1 C Cp. Hence

n+1

¢(xn+17 un) < (xn—i-l, en)

Therefore from , we obtain

Tim ¢(p41,wn) = 0

and consequently by Lemma we obtain

lim ||zp41 — upl| = 0. (29)
n—oo
From (27)) and (29), we get
lim |uy, —6,] = 0. (30)
n—oo

Observe that
O(x*,0n) — oz un) = [6n]? = unl® — 2(2*, JO, — Juy)
< O — un[|(10n + unll) + 2[z" ||| J0n — Jun].

From and norm-to-norm uniform continuity of J on bounded sets, we obtain

lim (¢(x*,0,) — ¢p(xz*,uy)) = 0. (31)

n—oo
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Again, from the scheme

N
ng(x*, Un) = ¢($*, J_I(BnJZn + (1 - Bn)[’Yn,DJ'gn + Z'Yn,ijtn,i]))

=1

N
= J&*)* = 202", Budzn + (1 = Ba)¥n0T0n + (1= Bn) D Ymidtnsi)
=1
N
+H/3njzn + (1 - /Bn)[’Yn,OJ(gn + ZVn,thn,i]|’2
=1
%1% = 2Bn (", Jzn) = 2(1 = Ba)yno(a, )

IN

N
_2(1 - Bn) Z ’771,1‘(:1:*7 Jtn,i> + Bn||t]zn”2

=1
N
(1 = B 7m0 0n + D i Ttnil* (32)
=1

Since {6, } is bounded, t,,; € T30, 1 =1,2,..., N and T} are quasi—¢—nonexpansive multivalued mappings,
it follows that {¢,;} is bounded for each i € {1,2,...,N}. Let r = 1r3a<)§vsup{\|0n]\, tnill}. Since E is
S1S0Nnp>1

uniformly smooth, then E* is unifromly convex, therefore, from and Lemma we have
Sz un) <l - 25n< "y Jzn) = 2(1 = Bn)ymo(e”, JOn)

1_671, Z’Ynz Jtnz +Bn”JZn”2

N
+(1 - Bn)'Yn,OHJHnHQ + (1= Bn) Z'Yn,iHJtn,iHQ

=1
—(1- Bn)'Yn,O'Yn,if(HJ‘gn - ) )
N
= ,3n¢($*, Zn) + (1 - Bn)'}/n,0¢($*7 Qn) + (1 - Bn) Z'Yn,iqs(x*a tn,i)
=1
_(1 - Bn)'Yn,O’Yn,zf(”Jen - Jtn,z”)

< /Bn¢(x*v Zn) + (1 - 5n)¢($*a en) - (1 - Bn)Vn,O’Yn,if(”Jen - Jtn,i||)~
By Lemma we obtain

P(x* un) < P(a”,0n) — Bn<1 - nnnlﬂ>¢(ym On) — 5n<1 — ﬂ>¢<zn7yn)

n+ Th+1
_(1 - 5n)’7n,0’)/n,zf(”t]9n - Jtn,z”) (33)

From (1), and condition v, ; € (¢,1 — €), we obtain

lim f(||J60, — Jtnsil) =0, Vie {1,2,...,N}.
n—oo
By the property of f, we get
lim ||J60,, — Jtn|| =0, Vie {1,2,...,N}.
n—oo

Since J~! uniformly norm-to-norm continuous on bounded subsets of E*, we have

lim (|6, — tail =0, ¥i € {1,2,..., N}, (34)
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Also form , we have
lim ¢(yn, 0n) =0, lim ¢(zp,yn) = 0.
n—o0 n—oo
By Lemma [2.11] we obtain
lim ||y, — 6,]| =0, lim ||z, —yn|| = 0. (35)
n—oo n—oo

Hence step 5 is proved.
Since {zy} is Cauchy and E is reflexive Banach space, there exists p* € E such that z,, — p* as n — oo.
As C' is closed, we have p* € C.

Step 6: We show p* € F = EP(g,C) N (NY, F(T;)).
Since x, — p* as n — oo, then from ,We have

lim [0, —p*|| = 0. (36)
From and , we obtain
li_>1n ltni —p*|| =0, Vie {1,2,...,N}. (37)

Since ty, ; € T;0,, for each i € {1,2,..., N}, then from (36]), and closedness of T;, we have p* € F(T;) Vi €
{1,2,...,N}, ie. p* € N, F(T;).
On the other hand

[9n = "Il < llyn = Onll + 16 — p"|-

Therefore, using and we obtain

Jim [y, —p*[| =0. (38)
From Lemma [3.2] we have
M9 (On,y) = 1G(On,Yn) = (Y — Yn, JOn — Jyn) ¥V y € C. (39)
Since nli_>n;onn > min {m,m} > 0, then from (39), (38), (36)), conditions (D1) and (D4), we obtain

g(p*,y) >0, VyeC, ie. p* € EP(g,C).

Step 7: Finally, we show p* = Il rxg.
Let y = Il rxq, then since p* € F, we have

o(9,z0) < d(p*, 20)- (40)
From the scheme , xn = ¢, zo. Since y € F C Cy, we have

¢(Tn, x0) < (Y, 20).
Also since ¢(.,y) is continuous and x,, — p* as n — oo, we obtain

o(p*, w0) < G(¥, o). (41)

From and (41)), we have ¢(p*, zo) = ¢(¥, x0). Thus, p* = § = Il ra.
This compeletes the proof. O
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Observe that if E is a real Hilbert space, then by Remark [2.1(1) algorithm reduces to the following

m >0, p€(0,1), zo, 1 €Cr=H
9n :xn+an($n_xn—l)7

Yn = argmin{n,g(0n, y) + 1[0, — v},
yeC

Fn:{ZGH<9n_nnwn_ynaz_yn>§0}7

. 42
Zp = argrl{un{nng(ymy) + 5116, — ylI*}, (42)
ye n
Up = Bnzn + (1 - Bn)h’n,oen + Zf\il 7n,it”7i],
Crnt1={2€Cp : [luy — ZH2 < (|6 — ZHQ}a
Tp4+1 = PCnJrl‘/'UO? n Z 1
where wy, € 029(0n,Yn), tni € Tibyn, Ti, 1 =1,2,3,..., N are quasi nonexpansive multivalued mappings and

3 n—0n 2 n—Yn 2
ooy | il Ll (0, 20) = g0 ) — g0s20) > 0
Mns Otherwise

Using , Theorem reduces to the following Corollary;

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let Ty : H — 21 i =
1,2,3,..., N be finite family of closed quasi nonerpansive multivalued mappings. Assume g satisfies (D1)-
(D5) and F = EP(g,C) N (NN, F(T;)) # 0. Let {an},{Bn} and {yn.} be real sequences such that au,, By €
(0,1), Vi € (6,1 —€) for some € € (0,1) and yno + o~ Yni = 1. Then the sequence {x,} generated by
converges strongly to p* = Prxg.

Remark 3.6. Theorem extends the results of Yang and Liu [{2] from Hilbert space to real uniformly
convex and uniformly smooth Banach spaces and from single valued quasi nonexrpansive mappings to finite
family of multivalued quas—p—nonezpansive mappings.

4. Numerical example

In this section, we demonstrate Theorem

Let E =R with ||.|| = |.| and (x,y) = xy. Let C = [~40,40] and for i = 1,2,3,4, let T; : R — 2% be defined
by Tix =[5, 7] Tt is clear that 0 € N F(T;). Let p € Tz, then p = ax for some a, 14%3 <a< % and
$(0,p) = [0 = 2(0,p) + [p|*
= |p* = |az* = a®[a?
1
< 72'1:’2
< zf?
= |0 = 2(0,z) + |z
(0, z).

Thus, T; is quasi—¢—nonexpansive multivalued mapping for each ¢ € {1,2,3,4}.

Define g(z,y) = y? + 6y — 722 It is easy to see 0 € EP(g,C). Also g satisfies (D1), (D2) with dag(z,y) =
2y + 6z, (D3) and (D4). If ¢(z,y) = (x — y)?, then
glz,y) +g(y,2) = 2%+ 62y + 6yz — T2 — 63>
= 22+ 6xy — 72 + 6yz — 67
= g(w,2) =3y —2)* = 3( —y)* +3(z — 2)°
= g(x,2) —3¢(y,z) — 3d(z,y) + 3¢(z, x)
> g(x,2) = 3¢(y, x) — 3¢(2,y)-
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Thus, g satisfies (D5) with ¢; = ¢o = 3. Furthermore if n,, = %, = %, o, = 1%, Bn = g5, €= %, Y0 =

Yol = Yn2 = Y3 = Ynd = %, then €, p, np, o, Bn and 7, satisfy all the conditions of Theorem .
Therefore scheme [7] takes the following form;

971 Tn + an(xn - C571—1)7
_ 1-6mn
Yn = 2 t+171

Fn :{zGR(J@n—nnwn—Jyn,Z—yn> SO}’

Zn — en_ﬁnnyn
) 2nn+1 97 . (43)
o <tpi<®,i=1234

Up = Bnzn + (1 - ﬂn)[%en + %Z?:l tnﬂ])?
Cpnt1=4{2€C,:2< 79"'5“"},
9n+un

2

Tn+1 = ch+1x0 =

Using the numerical results using MATLAB is given in Figure 1 and Figure 2.

Case 1
15 T T T T T

10

Value of the sequence:x(n)

101

15 L L L L L
0 10 20 30 40 50 60

Number of iterations:n

Figure 1: Convergence process of {(z,}
with initial points g = 15, 1 = —10
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Case 2
40 T T T T T
0+
Zuf
X
8
c 101
Q
3
o
% of
[]
]
B -0t
(]
3
®
> 20t
30F
a0 . . . . .
0 10 20 30 ) 50 60

Number of iterations:n

Figure 2: Convergence process of {(z,}
with initial points xg = —35, z1 =25

5. Conclusion

We studied an inertial hybrid self-adaptive subgradient extragradient algorithm in a real uniformly convex
Banach space which is also uniformly smooth. Strong convergence Theorem was proved to approximate
solutions of pseudomonotone equilibrium problems and fixed points of quasi—¢—nonexpansive multivalued
mappings. Numerical example was presented to show that our iteratative scheme is implementable.
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