

MANAS Journal of Engineering
ISSN 1694-7398 | e-ISSN 1694-7398

 MJEN Volume 9, Issue 1, (2021) Pages 15-21

https://doi.org/10.51354/mjen.822630

 MJEN MANAS Journal of Engineering, Volume 9 (Issue 1) © 2021 www.journals.manas.edu.kg

A TensorFlow implementation of Local Binary Patterns

Transform

Devrim Akgun

Sakarya University, Software Engineering Department, 54187, Sakarya, Turkey, dakgun@sakarya.edu.tr, ORCID: 0000-0002-

0770-599X

A B S T R A C T A R T I C L E I N F O

Feature extraction layers like Local Binary Patterns (LBP) transform can be very useful for

improving the accuracy of machine learning and deep learning models depending on the

problem type. Direct implementations of such layers in Python may result in long running times,

and training a computer vision model may be delayed significantly. For this purpose,

TensorFlow framework enables developing accelerated custom operations based on the existing

operations which already have support for accelerated hardware such as multicore CPU and

GPU. In this study, LBP transform which is used for feature extraction in various applications,

was implemented based on TensorFlow operations. The evaluations were done using both

standard Python operations and TensorFlow library for performance comparisons. The

experiments were realized using images in various dimensions and various batch sizes.

Numerical results show that algorithm based on TensorFlow operations provides good

acceleration rates over Python runs. The implementation of LBP can be used for the accelerated

computing for various feature extraction purposes including machine learning as well as in deep

learning applications.

Research article

Received: 6.11.2020

Accepted: 28.06.2021

Keywords:
tensorflow,

local binary patterns,

deep learning,

feature extraction

1. Introduction

Intense computations in Python may take considerably longer

time when compared with the programming languages such as

C/C++. This is because Python is an interpreter based

language where the input script is interpreted line by line. On

the other hand Python provides a high level abstraction which

makes most of the scientific computations and especially

machine learning and deep learning applications simple to

implement. Although Python realization of these algorithms

usually take long running times, C/C++ compiled Python

functions accelerates the computations significantly. For this

purpose TensorFlow provides an open source framework for

machine learning applications [1], [2]. TensorFlow also

enables programmers to run their codes on GPU (Graphics

Processing Unit) and TPU (Tensor processing Unit) as well as

on CPU. Hence utilization of GPU resources and hardware

accelerators in addition to CPU provides significant

accelerations [3]. TensorFlow library includes most of the

functions and layers for developing and training deep learning

models. In addition, it has the flexibility of custom layers

which enable programmers to design their own layers [4].

Users may describe custom functions based on the existing

operations as well as writing the functions from scratch.

In deep learning applications, determining the layers of deep

neural networks have importance in developing a successful

model. Deep learning layers have the ability to extract features

from the dataset automatically, and different layers may

provide the potential to extract better features. Feature

extraction layers such as convolutions and pooling in deep

learning enable to automatic extraction of desired features.

Although TensorFlow and Keras cover most of the frequently

used layers, additional layers may increase the accuracy

depending on the problem's nature. Various authors use

custom layers as a combination of existing layers or their own

developed layers for specific purposes such as new activation

function definitions for medical diagnostic [5], wavelet-based

pooling [6], solution of inverse partial differential equation

[7], radial basis functions for adaptive routing problems [8].

One of the feature extraction methods is LBP transform which

is widely used in machine learning and deep learning

applications in addition to image processing [9], [10]. In

literature there are numerous utilizations of LBP in various

computer vision applications such as handwritten text

recognition [11], facial expression recognition for smart

applications [12], ear recognition for identity verification

[13], Retrieval of histopathological image retrieval [14],

http://www.journals.manas.edu.kg/
http://journals.manas.edu.kg/mjen/index.php
http://www.manas.edu.kg/
mailto:dakgun@sakarya.edu.tr

D. Akgun / MANAS Journal of Engineering 9(Hata! Bilinmeyen belge özelliği adı.) (2021)15-21 16

 MJEN MANAS Journal of Engineering, Volume 9 (Issue 1) © 2021 www.journals.manas.edu.kg

gender recognition [15], edge detection for noisy images [16],

breast tumor diagnosis [17], texture image retrieval [18], face

similarity comparison [19], color texture recognition [20].

Most deep learning or machine learning models for computer

vision applications like image LBP demand intense

computational power. In this study, a general-purpose LBP

operation is written using basic TensorFlow operations.

Experimental evaluations were realized using image batches

ranging from 1 to 1024 and images in various dimensions

ranging from 2828 to 448448. In order to show the

acceleration of the Tensorflow based algorithm, the results

were also obtained in Python. Proposed design can be used as

a layer of a deep learning model as well as general purpose

image processing applications. The rest of the paper was

organized as follows; a brief information about LBP was

given in Section 2, and the proposed design with TensorFlow

was explained in Section 3. Comparative evaluations with the

TensorFlow model were done in Section 4. Conclusions about

the evaluations were given in the final section.

2. Local binary patterns

Deep learning models are intended to automatically extract the

features required to make correct estimations. In computer

vision, deep learning models, 2D convolution layers, and

pooling layers are the key operators for automatic feature

extraction. There are also preprocessing layers such as

normalization, noise reduction, and histogram equalizations

for the elaboration of the training dataset to provide better

accuracy. One of the efficient feature extraction approaches is

LBP transform [21], which extracts the texture features

efficiently in pattern recognition studies. It can be used in deep

learning applications for preprocessing or a non-trainable

layer for increasing the model accuracy depending on the

problem type.

𝐿𝐵𝑃𝐾,𝑅(𝑖, 𝑗) = ∑ 𝑓(𝑝𝑘 , 𝑝𝑐)2𝑘𝐾−1

𝑘=0

𝑓(𝑝𝑐 , 𝑝𝑛) = {
1
0

𝑝𝑐 < 𝑝𝑛

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} (1)

The idea of LBP transform is shown by Eq. 1, where K is the

number of neighbor pixels, R is the radius, pk is one of the

selected neighbor pixels, and pc is the center pixel of the

selected window. An example application of this equation for

K=9 and R=3, which corresponds to a 3×3 window for the

computation of each pixel, is given in Figure 1. The first pixel

that is used for comparison is selected as the Least Significant

Bit (LSB), and it forms the first digit of the binary number,

which corresponds to 20. In this example, it is selected as

p0=187, and when compared with the pixel at the center

pc=191, p0 pc produces “0”. Similar operations are repeated

clockwise till all comparisons are made for the remaining

pixels. If all comparisons are written as a binary digit, it is

obtained as; (01011000)2=88, the corresponding LBP

transform value for the selected pixel. When the described

operations are repeated for all pixels, the LBP transform is

obtained in the form of a 33 matrix. Note that the input

dimensions can be maintained by using padding to the input

matrix. An example application of LBP for a complete image

is shown in Figure 2.

Figure 1. An example image input image on the left and its LBP transform output on the right

Figure 2. An example image input image on the left and its LBP transform output on the right

http://www.journals.manas.edu.kg/

D. Akgun / MANAS Journal of Engineering 9(Hata! Bilinmeyen belge özelliği adı.) (2021)15-21 17

 MJEN MANAS Journal of Engineering, Volume 9 (Issue 1) © 2021 www.journals.manas.edu.kg

3. TensorFlow implementation

TensorFlow is an open-source numerical computation library

for machine learning and deep learning applications. It has

support for various high-level programming languages such

as Python, C++, and Java. TensorFlow also has a low-level

API to communicate with various hardware, as shown by the

hierarchical block diagram given in Figure 3. There are

defined implementations such as layers, losses, metrics, and

various TensorFlow operations on the top of low-level API.

TensorFlow provides various operations for the execution of

algorithms on multicore CPU and GPU resources and makes

it practical for general-purpose computations as well as

training deep learning models. Data and variables in

TensorFlow are defined by tensors which are N-dimensional

arrays in Python. In TensorFlow 1, a session is started to

compute library operations for given tensor data and variables.

Recently it has been made more practical with the introduction

of TensorFlow 2, removing the need for a session by running

Eager execution by default.

Figure 3. Hierarchical structure of TensorFlow framework

L=np.zeros((rows,cols,1),np.float32)

for i in range(1,rows-1):

 for j in range(1,cols-1):

 L[i,j]=\

 (I[i-1,j] >= I[i,j])*1+\

 (I[i-1,j+1]>= I[i,j])*2+\

 (I[i,j+1] >= I[i,j])*4+\

 (I[i+1,j+1]>= I[i,j])*8+\

 (I[i+1,j] >= I[i,j])*16+\

 (I[i+1,j-1]>= I[i,j])*32+\

 (I[i,j-1] >= I[i,j])*64+\

 (I[i-1,j-1]>= I[i,j])*128;

Code snippet 1. Python implementation of LBP transform

The TensorFlow framework provides various operations that

can operate on tensors such as add(), matmul(), mean(), and

greater(), and combinations of these can be used to write new

operations. In the LBP algorithm that is straightforward to

implement, various comparison, multiplication, and adding

operations are used as shown by Code snippet 1. According to

the algorithm, all pixels are computed independently, and

these can be defined with tensor operations. A matrix based

implementation of this algorithm is given in Figure 4. Since

TensorFlow operations are mainly defined for vector-matrix

operations, most of the for-loops that can be defined in parallel

are eliminated. In this implementation, the input variables; P0,

P1, …, P7 define the neighbors in selected 33 mask in the

form of matrices. The pixels in the selected masks are

compared with the pixels at the center of masks one by one,

as previously described in Eq. 1. After a comparison is made,

false and true conditions are defined in the form of a matrix

and then the comparison is done. This is repeated for every

eight different pixels in a mask to form the LBP transform of

the image.

http://www.journals.manas.edu.kg/

D. Akgun / MANAS Journal of Engineering 9(Hata! Bilinmeyen belge özelliği adı.) (2021)15-21 18

 MJEN MANAS Journal of Engineering, Volume 9 (Issue 1) © 2021 www.journals.manas.edu.kg

Figure 4. TensorFlow based implementation approach

 g=tf.greater_equal(y01,y11)

 z=tf.multiply(tf.cast(g,dtype='uint8'), tf.constant(1,dtype='uint8'))

 g=tf.greater_equal(y02,y11)

 tmp=tf.multiply(tf.cast(g,dtype='uint8'), tf.constant(2,dtype='uint8'))

 z =tf.add(z,tmp)

 g=tf.greater_equal(y12,y11)

 tmp=tf.multiply(tf.cast(g,dtype='uint8'), tf.constant(4,dtype='uint8'))

 z =tf.add(z,tmp)

 g=tf.greater_equal(y22,y11)

 tmp=tf.multiply(tf.cast(g,dtype='uint8'), tf.constant(8,dtype='uint8'))

 z =tf.add(z,tmp)

 g=tf.greater_equal(y21,y11)

 tmp=tf.multiply(tf.cast(g,dtype='uint8'), tf.constant(16,dtype='uint8'))

 z =tf.add(z,tmp)

 g=tf.greater_equal(y20,y11)

 tmp=tf.multiply(tf.cast(g,dtype='uint8'), tf.constant(32,dtype='uint8'))

 z =tf.add(z,tmp)

 g=tf.greater_equal(y10,y11)

 tmp=tf.multiply(tf.cast(g,dtype='uint8'), tf.constant(64,dtype='uint8'))

 z =tf.add(z,tmp)

 g=tf.greater_equal(y00,y11)

 tmp=tf.multiply(tf.cast(g,dtype='uint8'), tf.constant(128,dtype='uint8'))

 z =tf.add(z,tmp)

Code snippet 2. TensorFlow implementation of LBP transform

http://www.journals.manas.edu.kg/

D. Akgun / MANAS Journal of Engineering 9(Hata! Bilinmeyen belge özelliği adı.) (2021)15-21 19

 MJEN MANAS Journal of Engineering, Volume 9 (Issue 1) © 2021 www.journals.manas.edu.kg

A TensorFlow implementation of this algorithm is given by

Code snippet 2. Since TensorFlow operations are mainly

defined for vector-matrix operations, most of the for-loops

defined in parallel are eliminated. The pixels in the selected

masks are compared with the pixels at the center of masks one

by one, as previously described in Eq. 1. After a comparison

is made, false and true conditions are defined in the form of a

matrix, and then the comparison is made. This is repeated for

every eight different pixels in a mask to form the LBP

transform of the image.

4. Experimental results

Experimental evaluations were realized using Python 3.7.9

and TensorFlow 2.3.1 on Ubuntu 18.04 operating system. Test

hardware has an AMD FX2700 eight-core CPU and GTX1080

GPU which has 8GB of memory and 2560 CUDA cores.

Time measurements for the test runs were realized with the

time library of the python as given by the example code shown

by Code snippet 3. All the measurements were repeated 30

times to and the average time is used to form experimental

results. Image batches were selected from the ImageNet data

set [22], and the sizes of the images were resized to test cases

which range from 2828 to 448448 for all evaluations.

However, it should be noted that the contents of the images

usually affect the extracted features but have ignorable effects

on the execution durations that are hard to measure.

get current time
start_time = time.time()

#Compute LBP using TensorFlow for given batch of images
result = tf_lbp(batch_of_images).numpy()

get current time and compute the elapsed time
elapsed_time = time.time() - start_time

Code snippet 3. TensorFlow implementation of LBP transform

Table 1. Python implementation running times (seconds) for LBP algorithm

Batch size
 Image size

2828 5656 112112 224224 448448

1 0.0187 0.0774 0.3172 1.2609 4.9940

2 0.0365 0.1533 0.6269 2.5125 10.107

4 0.0713 0.3009 1.2458 5.0312 20.010

8 0.1425 0.5987 2.4868 10.000 40.354

Table 1 shows the results for the Python implementation for

comparison with the TensorFlow results. Numerical results

show that CPU running time varies somewhat in proportion to

the image size, which is a usual case. As the image size is

increased, running time is increased in the same way. For

example, while a 224224 image is processed in 1.26 seconds,

a 448448 image is processed in 4.99 seconds. Because the

number of pixels is increased four times, the running time is

also increased approximately four times. Similar behavior is

observed when the number of images in the batch is increased,

as shown by Figure 5, where speed-up evaluations are given.

This is not the case for GPU running times when the numerical

results given in Table 2 given for TensorFlow are investigated.

This is due to the cost of initializing the GPU devices and the

management overhead of the CUDA cores.

http://www.journals.manas.edu.kg/

D. Akgun / MANAS Journal of Engineering 9(Hata! Bilinmeyen belge özelliği adı.) (2021)15-21 20

 MJEN MANAS Journal of Engineering, Volume 9 (Issue 1) © 2021 www.journals.manas.edu.kg

Table 2. TensorFlow running times (seconds) for LBP algorithm

Batch size
 Image size

2828 5656 112112 224224 448448

1 0.0017 0.0018 0.0019 0.0020 0.0023

2 0.0017 0.0018 0.0019 0.0021 0.0029

4 0.0017 0.0018 0.0020 0.0023 0.0039

8 0.0018 0.0018 0.0020 0.0027 0.0064

16 0.0018 0.0019 0.0022 0.0038 0.0116

32 0.0019 0.0020 0.0025 0.0063 0.0266

64 0.0019 0.0022 0.0036 0.0109 0.0787

128 0.0020 0.0027 0.0064 0.0211 0.1703

256 0.0020 0.0032 0.0082 0.0566 0.2341

512 0.0021 0.0033 0.0082 0.0563 0.2349

1024 0.0021 0.0033 0.0086 0.0577 0.2385

Figure 5. TensorFlow speed-up over Python implementation

5. Conclusions

In the presented study, a method for accelerating the LBP

transform computations using TensorFlow operators has been

proposed. The LBP algorithm has been defined in terms of

matrix operations so that TensorFlow operators can be

efficiently used. The acceleration provided by the Tensorflow

method has been illustrated by comparing it with baseline

Python implementation. The results show that TensorFlow

running times for the LBP algorithm are far better than the

direct Python runs. The significant difference between the

running times of Python and TensorFlow algorithms is mainly

due to the two factors. First, python codes are interpreted line

by line, and therefore, results are computed slower than

compiled codes. The other is GPU acceleration provided by

TensorFlow library in addition to using compiled functions.

Speed-up obtained by TensorFlow increases considerably as

the image size is increased. This is because initializations and

GPU device communications for small operations are usually

costly. As the image size increases, the overhead of managing

CPU and GPU device gets smaller, resulting in more

efficiency. Designed LBP algorithm can be used to accelerate

computer vision applications that involve LBP transform

since TensorFlow allows general-purpose computations.

References

[1] Abadi M. et al., “TensorFlow: Large-Scale Machine

Learning on Heterogeneous Distributed Systems,” arXiv

Prepr. arXiv1603.04467, (2016).

http://www.journals.manas.edu.kg/

D. Akgun / MANAS Journal of Engineering 9(Hata! Bilinmeyen belge özelliği adı.) (2021)15-21 21

 MJEN MANAS Journal of Engineering, Volume 9 (Issue 1) © 2021 www.journals.manas.edu.kg

[2] Abadi M.et al., “TensorFlow: A system for large-scale

machine learning,” in Proceedings of the 12th USENIX

Symposium on Operating Systems Design and

Implementation, OSDI 2016, (2016), 265–283.

[3] Chien S.W.D., Markidis S., Olshevsky V., Bulatov Y.,

Laure E., Vetter J., “TensorFlow Doing HPC,” in 2019

IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW), (2019), 509–518.

[4] Agrawal A.et al., “TensorFlow Eager: A Multi-Stage,

Python-Embedded DSL for Machine Learning,” arXiv

Prepr. arXiv1903.01855, (2019).

[5] Parisi L., Neagu D., Ma R., Campean F., “QReLU and

m-QReLU: Two novel quantum activation functions to

aid medical diagnostics,” arXiv Prepr.

arXiv2010.08031, (2020).

[6] Williams T., Li R., “Wavelet pooling for convolutional

neural networks,” in 6th International Conference on

Learning Representations, ICLR 2018 - Conference

Track Proceedings, (2018).

[7] Pakravan S., Mistani P.A., Aragon-Calvo M.A., Gibou

F., “Solving inverse-PDE problems with physics-aware

neural networks,” arXiv Prepr. arXiv2001.03608,

(2020).

[8] Perepelkin D., Ivanchikova M., “Research of Neural

Network Architectures for Solving Adaptive Routing

Problems in Multiprovider Networks of Distributed

Data Centers,” in 2020 9th Mediterranean Conference

on Embedded Computing, MECO 2020, (2020), 1–5.

[9] Pietikäinen M., Hadid A., Zhao G., Ahonen T.,

Computer Vision Using Local Binary Patterns, vol. 40.

Springer Science & Business Media, (2011).

[10] Pietikäinen M., “Local Binary Patterns,” Scholarpedia,

5, 3, (2010), 9775.

[11] Al-Shatnawi A., Al-Saqqar F., Alhusban S., “A holistic

model for recognition of handwritten arabic text based

on the local binary pattern technique,” Int. J. Interact.

Mob. Technol., 14, 16, (2020), 20–34.

[12] Nigam S., Singh R., Misra A. K., “Local Binary Patterns

Based Facial Expression Recognition for Efficient

Smart Applications,” in Security in Smart Cities:

Models, Applications, and Challenges, Springer, (2019),

297–322.

[13] Hassaballah M., Alshazly H.A., Ali A.A., “Ear

recognition using local binary patterns: A comparative

experimental study,” Expert Syst. Appl., vol. 118,

(2019), 182–200.

[14] Erfankhah H., Yazdi M., Babaie M., and Tizhoosh H.R.,

“Heterogeneity-Aware Local Binary Patterns for

Retrieval of Histopathology Images,” IEEE Access, vol.

7, (2019), 18354–18367.

[15] El-Alfy E.S.M., Binsaadoon A.G., “Automated gait-

based gender identification using fuzzy local binary

patterns with tuned parameters,” J. Ambient Intell.

Humaniz. Comput., 10, 7, (2019), 2495–2504.

[16] Shen T., Huang F., Jin L., “An improved edge detection

algorithm for noisy images,” ACM Int. Conf. Proceeding

Ser., 36, 3, (2019), 84–88.

[17] Touahri R., Azizi N., Hammami N.E., Aldwairi M.,

Benaida F., “Automated breast tumor diagnosis using

local binary patterns (LBP) based on deep learning

classification,” in 2019 International Conference on

Computer and Information Sciences, ICCIS 2019,

(2019), 1–5.

[18] Yang W., Krishnan S., “Combining Temporal Features

by Local Binary Pattern for Acoustic Scene

Classification,” IEEE/ACM Trans. Audio Speech Lang.

Process., 25, 6, (2017), 1315–1321.

[19] Gundogdu B., Bianco M. J., “Collaborative similarity

metric learning for face recognition in the wild,” IET

Image Process., 14, 9, (2020), 1733–1739.

[20] Hosny K.M., Magdy T., Lashin N.A., “Improved color

texture recognition using multi-channel orthogonal

moments and local binary pattern,” Multimed. Tools

Appl., (2021), 1–16.

[21] Ojala T., Pietikäinen M., Mäenpää T., “Multiresolution

gray-scale and rotation invariant texture classification

with local binary patterns,” IEEE Trans. Pattern Anal.

Mach. Intell., 24, 7, (2002), 971–987.

[22] Deng J., Dong W., Socher R., Li L.-J., Kai Li, Li Fei-

Fei, “ImageNet: A large-scale hierarchical image

database,” (2010), 248–255.

http://www.journals.manas.edu.kg/

