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An Adaptive Ant Colony System Memorizing Better Solutions (aACS-MBS) For 

Traveling Salesman Problem 

 

Dursun EKMEKCİ*1 

 

 

Abstract 

Choosing the optimal one among the many alternatives that meet the criteria is one of the 

problems that occupy life. This kind of problem frequently encountered by commercial 

companies in daily life is one of the issues that operators focus on with care. Many techniques 

have been developed that can provide acceptable solutions in a reasonable time. However, one 

of the biggest problems with these techniques is that the appropriate values can be assigned to 

the algorithm parameters. Because one of the most important issues determining algorithm 

performance is the values to be assigned to its parameters. The Ant Colony System (ACS) is a 

metaheuristic method that produces successful solutions, especially in combinatorial 

optimization problems (COP). The Ant Colony System Memorizing Better Solutions (ACS-

MBS) algorithm is an ACS version developed to associate the pheromone value more with the 

solution success. In this study, an Adaptive ACS-MBS (aACS-MBS) method is presented that 

updates the q0 parameter dynamically, which balances the exploitation and exploration 

activities of the ACS-MBS. The method has been tested on the traveling salesman problem 

(TSP) of different sizes, and the obtained results are evaluated together with the change in the 

q0 parameter, and the solution search strategy of the algorithm is analyzed. With the pheromone 

maps formed as a result of the search, the effect of transfer functions was evaluated. Results 

obtained with aACS-MBS were compared with different ant colony optimization (ACO) 

algorithms. The aACS-MBS fell behind the most successful solution found in the literature, by 

up to 3.83%, in large-scale TSP benchmarks. As a result, it has been seen that the method can 

be successfully applied to the COP. 

Keywords: ant colony optimization, ant colony system, ant colony system memorizing better 

solutions, adaptive ant colony system memorizing better solutions 
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1. INTRODUCTION 

One of the main factors that determine the 

performance of swarm intelligence-based 

optimization algorithms, which are generally 

designed inspired by nature, is the model that the 

algorithm imitates. In this context, the most 

similar simulation of the problem characteristic 

should be preferred in the selection of the 

algorithm. While the model in nature is designed 

as a computer algorithm, the behaviors of the 

model are determined as procedures, and the 

components that affect these behaviors are 

determined as algorithm parameters. If the model 

whose algorithm is designed is a swarm that living 

as a colony, in general, the individual activities of 

the colony members determine the exploration 

ability of the algorithm, while collective activities 

affect the exploitation ability [1]. Another factor 

affecting the success of the algorithm is the 

appropriateness of the values assigned for the 

algorithm parameters. Researchers focusing on 

metaheuristic methods in the field of operational 

research have recently developed online and 

offline techniques that determine the appropriate 

values for the control parameters of these 

algorithms. 

Ant Colony Optimization (ACO) is a swarm 

intelligence-based metaheuristic method that 

imitates the adventure of an ant colony in foraging 

and determining the shortest path between the 

food and the nest [2]. In real life, when ants, who 

leave the nest in search of food, come across a 

food source, they try to find the shortest path to 

move the food from that source to their nest. Ants 

emit an evaporating secretion called pheromone 

in the process of carrying food between the source 

and the nest, and the other ants following them 

continue their journey by following the more 

intense secretion. In this way, the shortest path is 

determined after a few tours. Even if the path used 

is no longer the shortest path due to different 

factors, this approach makes it easy for ants to 

find the shortest path. The shortest path 

determination behavior of the colony members 

participating in the food collection is illustrated in 

Figure 1. 

 

Figure 1 The shortest path finding prototype of 

artificial ants 

The synergy, based on this collective behavior of 

the ant colony, inspired the development of ACO 

algorithms with strong exploitation ability, which 

is especially successful in solving the 

combinatorial optimization problem (COP) [3]. 

Although different ACO algorithms, versions, 

and extensions have been developed concerning 

this approach, the pheromone chemical is the 

basic component for all methods [4]. An effective 

metaheuristic algorithm should provide an 

appropriate balance between maximum 

utilization of the search experience so far, and the 

exploration of relatively unexplored search 

regions. The variation in ACO algorithms is based 

on differences in the approach in managing the 

pheromone trail to reach this targeted balance. 

The pheromone level induces a probability 

distribution in the search space and determines 

which regions of the field are sampled effectively, 

in other words, in which parts of the field the 

solutions constructed are concentrated. In this 

regard, the most successful performing ACO 

algorithms use strategies where the best solutions 

found during the search strongly contribute to 

pheromone updating [3]. In line with this 

understanding, the Ant Colony Optimization 

Memorizing Better Solutions  (ACO-MBS) which 

uses "Edge Matrix" to directly correlate the 

correlation between solution components with 

solution success, was developed [5]. In the 

literature, suggestions for pheromone control [6] 

focus more on determining the evaporation rate 

[7], assigning pheromone value [8], and limiting 

the pheromone level [9]. 
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After analyzing the correlations between solution 

components correctly, it can be said that the 

second important issue affecting the algorithm 

performance is the determination of the 

pheromone trail. Because ants will continue their 

journey by considering the pheromone density in 

the environment. Within the scope of the 

algorithm, turning to the components where the 

pheromone secretion is most intense increases the 

exploitation capability of the algorithm while 

decreasing the exploration capability. In Ant 

System (AS) [10], which is the first ACO 

algorithm, the roulette wheel approach based on 

pheromone concentrations is applied for the node 

selection, while in Ant Colony System (ACS) 

[11], the q0 parameter is added to the algorithm. 

(These methods are explained in detail in the next 

section.) Although many metaheuristic methods 

use different operators for exploitation and 

exploration conformance, the ACS combines this 

balance in only one parameter. In the study, the 

Adaptive Ant Colony System Memorizing Better 

Solutions (aACS-MBS) method, which 

dynamically controlled the q0 parameter of the 

ACS-MBS, which is improved to associate the 

pheromone value of the ACS with the solution 

success more, is proposed. The method has been 

tested on the traveling salesman problem (TSP), 

which is one of the popular examples of 

combinatorial optimization problems (COP), and 

the results obtained proved that the proposed 

method increases the exploratory ability of the 

ACS. 

The remainder of the article is designed as 

follows: Section 2 describes ACO with its general 

features, the AS and the ACS. Next, the ACS-

MBS, an improved version of ACS, is explained. 

In the section, finally, the proposed method is 

introduced. In Section 3, TSP, and selected TSP 

benchmarks are explained. In Section 4, the 

results obtained with the proposed method and 

different versions of the ACO are presented. In 

Section 5, the study has been concluded in all 

aspects. 

2. BACKGROUND OF THE PROPOSED 

METHOD 

In this section, the AS algorithm that applies the 

ACO approach in its basic form, and the ACS, 

developed with the updates in the algorithm, are 

explained in detail. Later, the ACS-MBS, which 

was developed to reflect the solution success 

directly to the correlation between the 

components, and the proposed aACS-MBS 

method is introduced to update the search 

orientation of the method in the study process. 

2.1. Ant System (AS) 

The first ACO algorithm developed inspired by 

the real ant colony is the AS algorithm. The main 

steps of the algorithm, the first versions of which 

are tested on TSP, are shown in Figure 2. 

 

Figure 2 General steps of ACO 

As seen in Figure 2, in the first step, values for the 

AS parameters, and the initial pheromone levels 

are determined. For the initial solutions, to 

equalizing the selection probabilities of all 

components, initial pheromone values should be 

kept as low as 0.1 as possible [7]. 

While solutions are constructing with m 

determined artificial ants, the first item of the next 

solution is the node selected randomly. The 

solution array is then expanded by adding a node 

from the set of possible neighbors. This process 

continues until the solution is constructed. The 

node to be added to the solution array is 

determined by a probability calculation. In a 

problem that has V nodes, for the ant k which 
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coming to node i, the selection probability (𝑝𝑖𝑗
𝑘 ) of 

node j is determined by (1). 

𝑝𝑖𝑗
𝑘 =

(𝜏𝑖𝑗)
𝛼

(𝜂𝑖𝑗)𝛽

∑ (𝜏𝑖𝑢)𝛼(𝜂𝑖𝑢)𝛽
𝑢∊𝑉𝑖

𝑘  
                                        (1) 

In (1), τij represents the pheromone level between 

i-j, and 𝑉𝑖
𝑘 represents the possible nodes that ant k 

can visit after node i. δij is the distance between i-

j and ηij is the inverse of this distance (1/δij). α and 

β are the heuristic parameters of the algorithm. 

After solutions are constructed, some problem-

specific calculations may be required before 

pheromone updates. These operations, called 

"daemon actions" are operations that facilitate 

local search. In the pheromone updating process, 

firstly the pheromone levels between the 

components are evaporated at the set ratio, and 

then the pheromone is added between the 

components in proportion to the solution success 

the ants obtain [12]. For these operations, (2) is 

used. 

𝜏𝑖𝑗 ← (1 − 𝜌). 𝜏𝑖𝑗 + ∑ 𝛥𝜏𝑖𝑗
𝑘𝑚

𝑘=1                           (2) 

In (2), ρ is the evaporation rate assigned in the 

range of (0, 1], and 𝛥𝜏𝑖𝑗
𝑘  is the amount of 

pheromone to be added between i-j in proportion 

to the solution cost (Lk) of the ant k. The amount 

of this pheromone to be added is calculated by (3). 

𝛥𝜏𝑖𝑗
𝑘 = {

1

𝐿𝑘
 𝑖𝑓 𝑎𝑛𝑡 𝑘 𝑢𝑠𝑒𝑑 𝑒𝑑𝑔𝑒 (𝑖 − 𝑗)

0                                  otherwise
              (3) 

2.2. Ant Colony System (ACS) 

The ACS includes the updates made for the AS 

algorithm to be greedier in generating new 

solutions. In this context, the updates are based on 

increasing the amount of pheromone between the 

components that make up the more successful 

solution and taking more consideration of the 

pheromone level in constructing solutions. 

Two alternative methods are applied in deriving 

new solutions in ACS. If the value of q randomly 

selected in the range of [0,1] is bigger than q0, the 

node j after i is determined by (1). Otherwise, the 

node who has the highest pheromone 

concentration between node i is selected. 

Pheromone updating process in ACS is divided 

into two categories: The operations in (2) and (3) 

are defined as "local pheromone update" and are 

applied for all ants in each iteration. "Global 

pheromone update" is applied with (4) for the 

most successful ant route in the iteration. 

𝜏𝑖𝑗 ← (1 − 𝜌). 𝜏𝑖𝑗 + 𝜌. 𝛥𝜏𝑖𝑗
𝑏𝑒𝑠𝑡                         (4) 

2.3. Ant Colony System Memorizing Better 

Solutions (ACS-MBS) 

The ACS-MBS is one of the ACO versions that 

developed to reflect the solution success directly 

among the components that make up the relevant 

solution array and thus establish the correlation 

between the components more accurately. While 

the algorithm takes advantage of the ACS 

transition rules, it uses transfer functions in 

pheromone updating. Compared to other popular 

algorithms of ACO for TSP, the method produced 

more successful solutions than many of the 

algorithms [5]. 

In the ACS-MBS, apart from the pheromone 

matrix (PM), an edge matrix (EM) is used. In each 

cycle, after the solutions are constructed by 

artificial ants, the values in the cells 

corresponding to the solution components in the 

EM are compared with the cost of the new 

solution. If a lower cost solution (Sm) is 

constructed by using any edge, the cell (𝐸𝑀𝑆𝑚𝑖𝑆𝑚𝑗
) 

corresponding to this edge in EM is updated as the 

new solution cost. Then the relevant update is 

reflected in the PM. If the solution obtained is the 

best one so far "global update" is applied, if not 

"local update". In local updating, firstly, the 

normalization value in the range (0.1 - 1) of the 

solution cost is calculated with (5). 

𝑛𝑜𝑟𝑚𝑎𝑙𝑆𝑚
= 1 −  

[𝑐𝑜𝑠𝑡(𝑆𝑚)−min(𝐸𝑀)]∗0.9

[𝑚𝑎𝑥(𝐸𝑀)−min(𝐸𝑀)]
            (5) 

The pheromone level of the relevant edge is 

calculated with the specified transfer function for 

the normalization value obtained by (5). The 
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pheromone update process in the ACS-MBS is 

illustrated in Figure 3. 

 

 

Figure 3 Pheromone updating process in ACS-MBS 

 

Within the scope of the algorithm, different types 

of transfer functions can be used for the 

pheromone update, depending on the problem's 

estimated solution space, problem complexity, 

and parameter characteristics. 

2.4. Proposed Method: Adaptive Ant Colony 

System Memorizing Better Solutions (aACS-

MBS) 

In AS and ACS, the amount of pheromone 

accumulated at the edges can reach values greater 

than 1, depending on the use of the relevant edge. 

In the ACS-MBS, the values in PM are limited to 

0-1. Therefore, the change in PM in each cycle 

contains more objective information about the 

searching of the algorithm. With the proposed 

method, exploitation/exploration mobility of 

ACS-MBS is followed over the change in PM, 

and the value of q0 is dynamically assigned for 

the balance between these two. 

Firstly, the total amount of change in pheromone 

levels retained in PM in each cycle is calculated 

with (6). 

𝑐ℎ𝑎𝑛𝑔𝑒 = ∑ ∑ |𝑜𝑙𝑑(𝑃𝑀𝑖,𝑗) − 𝑛𝑒𝑤(𝑃𝑀𝑖,𝑗)|

𝐷

𝑗=1

𝐷

𝑖=1

 

(6) 

Then (7) is used to determine the value to be 

assigned to the q0 parameter. 

𝑞0 = 0.8 +  𝑐ℎ𝑎𝑛𝑔𝑒 ∗ 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛                   (7) 

Equation (7) is formed by considering the results 

of the experiments obtained with different 

parameter values. Experiments have shown that 

when values less than 0.8 are assigned for the q0 

parameter, the algorithm fails to produce good 

results, and when bigger values are assigned, the 

algorithm loses its exploration ability. For the 

algorithm not to lose its exploitation ability, the 

minimum value assigns to q0 is set as 0.8. As seen 

in (7), the value to be assigned to q0 is calculated 

by considering the amount of change in PM. The 

value calculated by (6) is multiplied by the 

number of dimensions (nodes) in the problem and 

added to 0.8. 

In this context, the aABC-MBS algorithm is 

shown in Figure 4 with its main steps.
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Algorithm: aACS-MBS 

Set parameters {α, β, Transfer Function} 
// Initialization phase 
For i=1 To m 

 Construct solution Si randomly 

End For 

Set EMi,j=max(S) 

Set PMi,j=0 

// Update EM 
For i=1 To m 

 For j=1 To n 

  If (Si < EMSi,Sj) 

   EMSi,Sj=Si 

  End If 

 End For 

End For 

// Update PM 
For i=1 To n 

 normalSn=1-(cost(Sn)-min(EM))*0.9/(max(EM)-min(EM)) 

 For j=1 To n 

  // Calculate f(normalSn) according to the transfer function 

  If (f(normalSn) > PMi,j) 

   PMi,j=normalSn 

  End If 

 End For 

End For 

While termination conditions not met do 

 For k=1 To m 

  Select node i randomly   i={1, 2, 3, …, n} 

  While solution Sk not completed 

   Select q randomly 

   If (q ≤ q0) 

    Next node=max(τi,j) 

   Else 

    Select next node according to Eq. (1) 

   End If 

   // Update EM 

   For i=1 To m 

    For j=1 To n 

     If (Si<EMSi,Sj) 

      EMSi,Sj=Si 

     End If 

    End For 

   End For 

   // Update PM and calculate the change value 

   change=0 

   For i=1 To n 

    normalSn=1-(cost(Sn)-min(EM))*0.9/(max(EM)-min(EM)) 

    For j=1 To n 

     // Calculate f(normalSn) according to the transfer function 

     If (f(normalSn)>PMi,j) 

      change =abs(PMi,j - normalSn) 

      PMi,j=normalSn 

     End If 

    End For 

   End For 

   q0=0.8+change * n 

  End While 

End While 

Output: best(S) 

Figure 4 The aACS-MBS algorithm 
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3. TSP 

As one of the most popular examples of COP, 

TSP is one of the first benchmarks in which the 

methods developed by operations researchers 

were tested. The basic principle in the problem, 

the first examples of which were put forward in 

the 1800s, is to try to obtain a closed graph with 

the shortest length. In a network model with n 

nodes to visit, the salesman starts its travel from 

any node and returns to the starting node, 

provided they visit all nodes [13]. Solution cost is 

directly dependent on route distance. Since the 

shortest Hamilton tour is searched in G(V, E) 

closed graph, where V is the set of nodes, and E is 

the set of edges between these nodes, the problem 

is in the NP-hard class [14]. The distance matrix 

(D) is associated with V, and in many instances of 

TSP the distances between nodes are symmetrical 

(dij=dji). The Euclidean formula is usually used to 

calculate distances. In this context, the total route 

cost is calculated with equation (8). 

𝑓(𝑥) = (∑ 𝑑𝑖𝑗
𝑛−1
𝑖=1 ) + 𝑑𝑛1                                  (8) 

4. EXPERIMENTAL STUDY 

The proposed method was run on the .net 

platform, coded with C # programming language, 

and on a machine with i7-5600U CPU 2.60 

processor, 8 GB RAM, and 64-bit Windows 8 

Operating System. The performance of the aACS-

MBS algorithm and its searching strategy has 

been tested on different sizes of TSP benchmarks. 

In this section, the results obtained with the 

algorithm are presented, and the analyzes are 

discussed. 

4.1. TSP Benchmarks 

The application has been tested on TSP samples 

taken from the TSPLIB library 

(http://elib.zib.de/pub/mp-

testdata/tsp/tsplib/tsp/index.html). Selected 

benchmarks are eil51, kroA100, kroA150, 

kroA200, pr299 and pr439. The numbers of nodes 

in the problems and the best results known to date 

[15] [16] are presented in Table 1. 

 

Table 1 

Selected TSP benchmarks 

Name Number of Nodes Best Result 

eil51 51 417 

kroA100 100 21282 

kroA150 150 26524 

kroA200 200 29368 

pr299 299 48191 

pr439 439 107217 

4.2. Parameter Settings 

The AS, ACS, ACS-MBS, and aACS-MBS 

algorithms have been run independently 30 times 

with a maximum cycle number (MCN) is 1000 for 

the selected test problems. For parameter settings, 

parameter analysis for the ACS-MBS was 

considered. In this context, the values in [5] have 

been assigned to the algorithm parameters. The 

parameter values assigned for the algorithms are 

shown in Table 2. 

Table 2 

Algorithm parameters 

  AS ACS ACS-MBS aACS-MBS 

Colony Size 20 20 20 20 

α 1 1 1 1 

β 5 5 5 5 

ρ 0.1 0.1 - - 

q0 0.95 0.95 0.95 - 

Transfer 

Function 
- - linear linear 

In order to analyze the searching strategy and 

convergence performance of the aACS-MBS in 

detail, the algorithm was also run by using the 

“linear”, “sigmoid” (9), and “v-shaped” (10) 

transfer functions. Transfer functions are drawn in 

Figure 5. Algorithm was run independently 30 

times with these transfer functions, and MCN was 

1000 in all experiments. 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 = 𝑓(𝑥) =
1

1+𝑒
−10∗(𝑛𝑜𝑟𝑚𝑎𝑙𝑆𝑖

−0.5)            (9) 

𝑣 − 𝑠ℎ𝑎𝑝𝑒𝑑 = 𝑓(𝑥) = {
1   𝑖𝑓(𝑥 ≤ 0.1)

𝑥3   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          (10) 
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Figure 5 Transfer Functions 

4.3. Results 

The results obtained by the algorithm are 

presented in two categories. In the first category, 

the effect of transfer functions on the algorithm is 

analyzed. In the second category, aACS-MBS 

results are compared with solutions obtained with 

other ACO versions. 

4.3.1. Searching Strategy Analysis of aACS-

MBS 

For the best solutions obtained by aACS-MBS 

with different transfer functions, the results in 

each iteration and the current q0 values are shared 

in graphics (Figures 6-23). The figures also show 

the pheromone map that was obtained at the end 

of the searching process. 

 

 

Figure 6 Results, change of q0, and pheromone map obtained in eil51 solution with linear transfer function 

 

 
Figure 7 Results, change of q0, and pheromone map obtained in eil51 solution with sigmoid transfer function 
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Figure 8 Results, change of q0, and pheromone map obtained in eil51 solution with v-shaped transfer function 

 

 
Figure 9 Results, change of q0, and pheromone map obtained in kroA100 solution with linear transfer function 

 

 
Figure 10 Results, change of q0, and pheromone map obtained in kroA100 solution with sigmoid transfer function 
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Figure 11 Results, change of q0, and pheromone map obtained in kroA100 solution with v-shaped transfer function 

 

 
Figure 12 Results, change of q0, and pheromone map obtained in kroA150 solution with linear transfer function 

 

 
Figure 13 Results, change of q0, and pheromone map obtained in kroA150 solution with sigmoid transfer function 
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Figure 14 Results, change of q0, and pheromone map obtained in kroA150 solution with v-shaped transfer function 

 

 
Figure 15 Results, change of q0, and pheromone map obtained in kroA200 solution with linear transfer function 

 

 
Figure 16 Results, change of q0, and pheromone map obtained in kroA200 solution with sigmoid transfer function 
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Figure 17 Results, change of q0, and pheromone map obtained in kroA200 solution with v-shaped transfer function 

 

 
Figure 18 Results, change of q0, and pheromone map obtained in pr299 solution with linear transfer function 

 

 
Figure 19 Results, change of q0, and pheromone map obtained in pr299 solution with sigmoid transfer function 
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Figure 20 Results, change of q0, and pheromone map obtained in pr299 solution with v-shaped transfer function 

 

 
Figure 21 Results, change of q0, and pheromone map obtained in pr439 solution with v-shaped transfer function 

 

 
Figure 22 Results, change of q0, and pheromone map obtained in pr439 solution with v-shaped transfer function 
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Figure 23 Results, change of q0, and pheromone map obtained in pr439 solution with v-shaped transfer function 

4.3.2. Comparisons 

The best and worst results obtained by the 

algorithms for test problems, the means and 

standard deviation (SD) values of the results 

obtained in 30 trials are presented in Table 3. 

Table 3 also includes the average CPU time as 

second, and the ratio of the best results to the best-

known (GAP) calculated by (11). 

𝐺𝐴𝑃 =
100∗𝑡ℎ𝑒 𝑏𝑒𝑠𝑡−𝑘𝑛𝑜𝑤𝑛

𝑡ℎ𝑒 𝑏𝑒𝑠𝑡(𝑆)
                               (11) 

The results produced by the algorithms were 

evaluated with statistical analysis. In this context, 

the Wilcoxon signed-rank method was selected to 

determine whether the difference is statistically 

significant. The value used is 0.05. The symbols 

''+'', ''='' and ''-'' indicate that the aACS-MBS 

performance is significantly “better”, “equal”, or 

“worse” than the compared algorithm, 

respectively. Notice that aACS-MBS is the 

control algorithm. 
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Table 3 

Results of the algorithms for TSP benchmarks 
    AS ACS ACS-MBS aACS-MBS 

eil51 

Best 457 444 431  426 

GAP (%) 91.25 93.92 96.75 97.89 

Worst 499 475 452 434 

Mean 477.1 461.05 440.65 430.68 

SD 13.56 9.36 6.35 2.4 

p 0.0034(+) 0.0066(+) 0.0087(+)  

Time 6.90 7.2 7.38 7.23 

kroA100 

Best 23055 21846 21282 21282 

GAP (%) 92.31 97.42 100 100 

Worst 25275 23251 21287 21695 

Mean 24313.18 22634.46 21773.73 21492.69 

SD 686.98 422.34 302.46 140.82 

p 0.16354(=) 0.05155(=) 0.03836(+)  

Time 26.02 26.47 26.27 27.56 

kroA150 

Best 30222 28936 26530 27212 

GAP (%) 87.76 91.66 99.98 97.47 

Worst 33088 30842 27798 27746 

Mean 31610.54 29736.15 27044.14 27486.39 

SD 816.96 544.06 394.9 172.42 

p 0.00001(+) 0.00084(+) 0.22363(=)  

Time 72.41 76.07 71.19 68.57 

kroA200 

Best 31844 30137 29377 29532 

GAP (%) 92.22 97.45 99.97 99.44 

Worst 34859 32060 30758 29967 

Mean 33543.95 31109.64 30108.25 29760.11 

SD 943.53 570.55 405.26 151.17 

p 0.02169(+) 0.11507(=) 0.30153(=)  

Time 121.56 125.41 120.53 119.17 

pr299 

Best 53761 54001 51242 50112 

GAP (%) 89.64 89.24 94.05 96.17 

Worst 58677 57359 53598 51073 

Mean 55639.12 55497.73 52481.16 50614.59 

SD 1552.51 1038.08 683.69 284.02 

p 0.41294(=) 0.08851(=) 0.05592(=)  

Time 361.86 365.79 357.11 353.91 

pr439 

Best 119388 121460 113690 110961 

GAP (%) 89.81 88.27 94.31 96.63 

Worst 130285 129728 119029 114112 

Mean 124467.36 125753.55 115943.09 113121.85 

SD 3163.9 2557 1732.17 669.84 

p 0.00001(+) 0.00001(+) 0.00006(+)  

Time 1051.44 1100.56 1035.79 1047.81 

 

4.4. Discussing 

When the results obtained by the aACS-MBS 

algorithm (Figures 6-23) are examined, it is seen 

that the fluctuation in the q0 value decreases as 

the problem size increases. For linear and sigmoid 

transfer functions, it can be said that the change in 

q0 has similar fluctuation as the results. When a 

better solution is constructed, the variation in PM 

increases and this is reflected in the q0 parameter. 

When the v-shaped transfer function is used, this 

fluctuation produces an impulse for q0. After 
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iterations obtaining a better solution, the q0 value 

can be reduced to its previous level. 

When pheromone maps are examined, it is seen 

that with the v-shaped transfer function, a more 

homogeneous pheromone distribution is formed 

compared to other transfer functions. When using 

the v-shaped transfer function, levels of 

pheromone trails at the edges are almost limited 

in the range of 0.8-1. Therefore, it can be 

considered that the algorithm constructs solutions 

using all edges in the searching process. 

Examining Table 3, aACS-MBS produced better 

solutions compared to other ACO variants in 4 out 

of 6 benchmarks. The algorithm has the best mean 

value in 5 out of 6 problems. aABC-MBS 

achieved a statistically significant difference in 4 

problems from AS, in 3 problems from ACS, and 

in 3 problems from ACS-MBS, however, it was 

not significantly behind in any problem. aACS-

MBS also reached the best solution in 2 problems. 

aACS-MBS has produced solutions closer to the 

best solutions in the literature, falling behind 

these results by up to 3.83%. 

Since TSP instances are NP-hard class problems, 

the larger the size of the problem, the more 

difficult it is to interpret the correlation between 

nodes. Given that the pheromone approach 

collects agents around good solutions, it can be 

more clearly understood that ACO algorithms are 

insufficient for exploration. Thus, the aACS-MBS 

is mostly failed to obtain the best solutions for 

large-scale problems. In this context, different 

transfer functions that make the exploitation-

exploration balance more effective, or different 

dynamic approaches that determine q0 can be 

developed. However, the fact that the algorithm 

results have lower mean and SD values prove that 

the algorithm can consistently generate successful 

solutions, not accidentally. 

5. CONCLUSION 

The pheromone approach, which can successfully 

analyze the correlations between solution 

components, provides an advantage to ACO 

algorithms, especially in COP solutions. 

Developing a more successful ACO version 

depends on a more accurate assignment of the 

pheromone trail and more accurate interpreting. 

Developed in parallel with this thought, ACS-

MBS makes use of transfer functions to determine 

the pheromone value. Thus, the amount of 

pheromone is limited to 0-1. In this study, a 

solution proposal that dynamically updates the 

exploitation exploration balance of ACS-MBS 

using the q0 parameter was introduced. The 

method has been tested on different sizes of TSP 

samples and has proven its applicability for COP 

solutions. 
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