
International Journal of Informatics and Applied Mathematics
e-ISSN:2667-6990 Vol. 3, No. 2, 53-65

An Overview on the Mapping Techniques in
NoSQL Databases

Aicha AGGOUNE

LabSTIC Laboratory, University of 08th may 1945, Guelma, Algeria
aggoune.aicha@univ-guelma.dz

Abstract. In the last decade, the data mapping of NoSQL stores and
the ability to perform massively parallel data processing have drawn
much interest from researchers. The data mapping techniques have been
mainly developed for relational database systems in centralized environ-
ments. However, the NoSQL approach is not the same as relational one.
It aims to handle a large volume and high speed of data with various
structures in the distributed environment. Adapting the data mapping
techniques to various NoSQL types improves the performance and data
storage in the suitable NoSQL database. This paper investigates the
recent techniques of mapping between NoSQL databases and discusses
their advantages as well as their disadvantages.

Keywords: Data Conversion · Data Mapping · NoSQL Approach ·
NoSQL Models.



54 A. Aggoune

1 Introduction

The usage of NoSQL databases becomes more and more increased in different
Internet applications for example, social networking sites, cloud computing, com-
mercial sites such as Amazon, Fnac, etc. These databases enable massive data
volumes, so-called big data to be stored and processed. The storage and pro-
cessing of these huge amounts of data can be done by data partitioning across
various nodes in the distributed environment [19]. The distributed relational
databases provide a high consistency in which the data values are the same for
all nodes [28]. However, many issues have appeared, including the complexity of
handling distributed queries over a huge amount of data, the availability of these
data volumes on the network cannot be ensured, and the scalability of adding
nodes is not easy [43]. The relational database management system (RDBMS)
is unable to store and process a large amount of data in a distributed environ-
ment [28]. In this context, a new approach for big data modeling has emerged,
so-called NoSQL (Not Only SQL).

NoSQL approach was introduced to deal with the problems of big data,
for providing highly scalable systems that are also high performance and highly
available [29]. Unlike to relational database, the data stored in NoSQL are mostly
unstructured or semi-structured [34]. There is no fixed schema of the NoSQL
database, which must be followed like in the relational databases. The storage of
NoSQL data is made in a very exible way without any constraints or any designed
data schema. Hence, the NoSQL system allows the modification of data structure
during database usage whenever required due to the schema-free nature of data,
so-called schema-less [34]. Also, the NoSQL data can be modeled in different data
models including key-value model, columnar-oriented model, document-oriented
model, and graph-oriented model [38]. Therefore we can build four different
NoSQL databases with the same data, for instance document-oriented database
using MongoDB system and columnar-oriented database by using Cassandra
system. Some NoSQL databases may be more fitting than others for the rep-
resentation and management of the data that needs to be used. The need to
use the suitable NoSQL database was in fact, motivated by the need to map
between different NoSQL databases. The main goal of this paper is to review
current approaches and frameworks for mapping between NoSQL databases.

The rest of the paper is organized as follows. In Section 2 , we present an
overview of NoSQL data. In Section 3, we illustrate the features of the principal
models of NoSQL databases. In Section 4, we review related work on mapping
between NoSQL databases with a comparison study between frameworks in sec-
tion 5. Finally, a conclusion and perspectives are given in Section 6.

2 Overview of NoSQL Data

Due to the important development in computer Hardware, intelligent systems,
sensors, and internet-connected devices, the data become more widely used any-
time. Hence, the data sources become so large and contain various data types,



An Overview on the Mapping Techniques in NoSQL Databases 55

which are continuously, and rapidly developed. NoSQL data represent today an
emerging concept in the data science domain for collecting, storing, organiz-
ing, analyzing, and processing large amounts of data, so-called big data [20].
NoSQL data referred to as Not Only SQL, tended to store and maintain massive
data that could not be managed by relational database management systems
(RDBMS) [46]. The term not only SQL means that the large scale of data can
accommodate a wide variety of data models, not only the relational model which
uses SQL as a query language, but also other models, such as key-value, docu-
ment, column, and graph formats [21].

In particular there are significantly more studies on the comparison between
SQL and NoSQL databases features [31, 35]. In Table 1, we briefly give the
principal differences in features between NoSQL and SQL databases.

Table 1. NoSQL versus SQL databases.

Features NoSQL database SQL database

Data size Large-scale data Size 6 128 terabytes
Data structure Unstructured or semi-structured data Structured data (tables)
Data type Various data type Homogeneous data type
Scalability Horizontal scalable Vertical scalable
Availability High available Available with high cost
Consistency Difficult to achieve High consistent
Partition tolerance High tolerant Less partition tolerant
Query complexity Simple queries More complex
Query language No standard language SQL language
Data schema Schema less Rigid schema
Data model Different data models Relational model
Data security Difcult to achieve Easy to achieve

NoSQL systems manage their data over a distributed architecture in a cluster
of servers or over a grid in different geographical locations or the cloud computing
environment [38]. They ensure high performance in which the data are horizontal
scaled by adding new machines and high availability due to the simpler data
model but they do not guarantee data consistency at all times. Thus, the NoSQL
database works well despite network and node failures [22]. The data stored in
the NoSQL databases can be represented in different structures without requiring
a fixed schema for tables, unlike in the RDBMS. In contrast to the SQL database
that is based on the relational model, NoSQL data can be modeled in different
data models such as Key-value, Document, Columnar, and Graph [34].

3 Description of NoSQL Data Models

NoSQL system reveals high exibility and availability of a huge amount of data,
thereby, it results in high performance. NoSQL data have received recently a
high level of attention, and their usage is still growing. The important large



56 A. Aggoune

companies are taking on NoSQL-based data stores such as Google, Facebook,
Twitter, Amazon, eBay and many other. With the heterogeneity of the large
amount of data, the NoSQL systems organize their data according to dierent
data models, which are classified into four types, namely [22,30,34]:

– Key-value model: it represents the data in the simplest form by using a
key for uniquely identifying the diverse data. Each key is linked with its
data that may be either a simple value, such as a number, or a complex
value, for instance, a document. The querying of key-value databases can
achieve low latency as well as high performance. However, if a system claims
more complex operations, this data model is not powerful enough. The key-
value model is extremely useful for log files management and caching in web
applications, storing and processing session data, which include a unique key
for each user session and a value that represents the user profile information,
messages, etc. An example of key-value systems: Redis, Riak, OracleNoSQL,
and Memcached [12,14–16].

– Document-oriented model: it is a special case of the key-value model, in
which the value is limited to documents in various formats (JSON, BSON,
XML, etc.). It supports efcient querying compared to the key-value model,
and it provides more efficient data access to aggregates. The document-
oriented model is used to represent the documents on the web, content
management, and mobile application data processing. It is widely employed
to store data by using the popular NoSQL DBMS, namely MongoDB [13].
Other document-oriented systems are CouchDB, MarkLogic, DocumentDB,
etc. [5, 7, 11].

– Wide columnar-oriented model: in this model, the data are represented
by a row key as an identifier, along with a series of columns representing the
same subject that forms the column family. The different column families
can be distributed over various nodes. This model is commonly used to store
and process a large number of tables with high partition data over several
nodes. It is more suitable for accounting, averaging, and stock management.
The wide columnar databases do not aggregate all data from each row, but
instead values of the same column family and from the same row. The most
used wide columnar-oriented systems are Cassandra, HBASE, and Azure
Table [3, 4, 8].

– Graph-oriented model: The data represented by a graph, where the
nodes represent values and the edges describe relationships between differ-
ent nodes. The graph-oriented stores are widely used in social, biological
network, electr- onic system data, and services to establish relationships and
properties betw- een multiple values. HypergraphDB, AllegroGraph, IBM
Graph, and Neo4J are four examples of a graph-oriented system [1,9,10,44].
The Neo4j is the popular graph-oriented system because it offers so-called
ACID transaction properties (atomic, consistency, isolation, and durabil-
ity). [44].

Figure 1, illustrates the difference categories of NoSQL databases.



An Overview on the Mapping Techniques in NoSQL Databases 57

Fig. 1. Some NoSQL databases of each data model.

There are several NoSQL database management systems (NoSQL DBMS)
of each NoSQL data model, which differ in their features and properties, for
example API operations, query languages and programming language (PL),
etc. [33]. Some NoSQL DBMS have multi-model databases, including Apache’s
ArangoDB, which can manage each of the Key-value, Document, and graph
stores. It combines the flexibility of JSON with semantic search and graph tech-
nology for next-generation feature extraction even for large datasets [2].Table 2
shows the important features of each NoSQL data models.

Table 2. Description of NoSQL data models.

Data model Performance Querying Utility Usability

Key-value Simplest structure Access data by key More efficient to Restrictive for a
Data share value only represent simple simpler data with

data sets a large volume

Document Data persistance Content-based More efficient to Store large scale
More flexible with querying manage big data documents
sharding applications

Wide Data persistance Consistent data Avoids Input/ Store very large
columnar Data compression access to big table output overhead tables

Graph Highly connected Querying multiple More suitable Store the wide
data with low relationships inside managing the linked data
latency large data sets linked data

Data mapping from one database to another is very important with the
heterogeneity of the NoSQL data model as well as the variety of NoSQL DBMS.



58 A. Aggoune

4 NoSQL Data Mapping Approaches

The diversity of NoSQL data models has allowed us to ask two important re-
search questions:

i What is the appropriate NoSQL data model for the storage and management
of data in a given field?

ii How to map the existing NoSQL database to the best NoSQL category?

The answers to these questions open up a new opportunity to explore the dif-
ferent NoSQL databases and suggest mapping solutions between them. Due to
the presence of more than 225 NoSQL databases [41], we present at the first
stage comparison between two widely used databases, which are: MongoDB and
Cassandra NoSQL databases.

4.1 Comparison between MongoDB and Cassandra

We review the different characteristics and features of the two most popular
NoSQL databases for storing and managing large amounts of data: MongoDB
as a document-oriented database and Cassandra as a wide columnar database.

MongoDB is a document-oriented database management system that was ini-
tially released in 2009 [13]. It was developed by MongoDB, Inc (formerly 10gen)
using C++ as a programming language. MongoDB stores the data as a docu-
ment in binary encoded JSON format (BSON). The BSON document contains
an ordered list of pairs (field name, value) where the value may be simple or com-
plex, such as an embedded document, a referenced document, a list, or array.
MongoDB is currently being used by MTV networks, GitHub, and Foursquare.

Data querying is accomplished by Mongo shell commands that are repre-
sented in JSON syntax and sent to MongoDB as BSON objects via the database
driver. In addition, MongoDB is based on the MapReduce paradigm to more
express complex queries.

There are several important features for the high performance and efficient
MongoDB database, namely: complex aggregation with the use of MapReduce
for statistical analysis, indexing over embedded objects, replication to improve
data readability, and the automatic sharding into shards (partitions or chinks)
to ensure the high scalability of a distributed data [27].

The data in MongoDB database can be managed under Master-Slave archite-
cture with high availability by the support for replication [27]. The replica pair
architecture provides a high partition tolerance when a slave or current master
of the replica pair fails.

Cassandra is an open source, wide columnar database, which was originally
developed at Facebook in 2008 and it has been an Apache Software Founda-
tion, Top level project (TLP) since 2009 [4]. Cassandra is written in JAVA and
uses the Thrift API for data access. Cassandra is a leading transactio- nal dis-
tributed database used by Facebook for handling a large amount of data across
many commodity servers. Cassandra was used by other major companies such



An Overview on the Mapping Techniques in NoSQL Databases 59

as IBM, Twitter, Rackspace, etc. Cassandra data storage is very similar to re-
lational databases, generated tables, columns, and rows, but does not support
inter-table joint operations. Unlike the relational model, Cassandra data are ar-
ranged in columns rather than rows, where these columns do not have to be the
same in every row. Cassandra maps a tuple consisting of a row key, a column
name, and a timestamp to a value. Columns are organized into column families,
which are similar to the relational model tables.

Cassandras data model is based on two NoSQL models, the wide columnar
model of Google Big Table and the key-value model of Amazon Dynamo [32].
Further, unlike the MongoDB, the Cassandra database uses peer-to-peer replica-
tion, ensuring high availability, scalability with high partition tolerance and per-
sistence. The data are distributed and replicated across nodes, and all clusters
have equal permissions [32]. Cassandra provides two replication strategies: a sim-
ple strategy used when the cluster is deployed across one datacenter (a group
of related nodes), and the network topology strategy, which is used when the
cluster is deployed across multiple datacenters.

Apache Cassandra has its own query language called Cassandra Query Lang-
uage (CQL), which is similar to SQL. CQLSH is a command line shell for in-
teracting with Cassandra through CQL. DataStax entreprise (DSE), a software
publisher that provides Apache Cassandra with additional tools and functional-
ity for analysis, research, security, monitoring and graphical administration, as
well as the ability to work in memory.

Much work has been done on a comparative study of the most important
NoSQL databases [27,32] and according to the details given by DB-engines.com
website [6], we summarize in Table 3 the main differences between MongoDB
and Cassandra databases.

Table 3. Main differences between MongoDB and Cassandra.

Criteria MongoDB Cassandra

Data model Document Wide Columnar

Implementation language C++ Java

Developer MongoDB, Inc Originally developed by
Facebook then Apache TLP

Query language Mongo shell CQL

Cloud database service MongoDB Atlas, Cassandra datastax
ScaleGrid for MongoDB

Data access API Proprietary protocol Thrift
using JSON

Replication Master-Slave Peer to Peer

Data storage Multiple data storage both Data storage on disk only
in memory and on disk



60 A. Aggoune

4.2 Mapping Approaches

There are several reasons for mapping between NoSQL databases, which we list
six good reasons:

1. Some NoSQL databases can be better suited than others to represent the
data to be used.

2. The appropriate NoSQL database can enhance the executing low-latency
queries and reduce the cost against other databases.

3. Displeasure in terms of data querying and query optimization in the old
database.

4. The need to provide data portability between different NoSQL databases.
5. The need for a better solution to use business or technology strategy in a

good case means thinking about mapping data rather than building a new
database from scratch.

6. Data mapping is more convenient for incorporating heterogeneous NoSQL
databases into data integration systems such as the mediator system and
Datawarehouse.

Shirazi et al. [39] have proposed a design pattern-based approach for bidirectional
mapping between column-oriented database and graph-oriented database. The
design pattern is a solution to common problems in software design. This data
mapping approach offers cloud data portability, which enables data and applicat-
ions to be moved from one cloud provider to another. The principle idea of this
approach is to define two design patterns. The first one aims to ensure the map-
ping of column-oriented to graph-oriented database. The second one provides
data mapping in the other direction.

The approach has been applied in the healthcare domain, and the results
show that the graph-oriented database is more suitable for representing the com-
plexity data than the column-oriented database, which is more convenient for
maintaining the large amount of data. This approach provides a better result
if the graph-oriented database has to be transformed into a column-oriented
database. The mapping in the other direction however poses some problems
with the data quantity.

Scavuzzo et al [36] have proposed a meta-model approach for mapping betwe-
en two specific columnar databases, which are Google App Engine Datastore,
and Microsoft Windows Azure Tables. The meta-model is an intermediate model
between the source and the target models. This approach used BigTable data
model as a support for columnar databases. The proposed approach is focused
on a number of extractors, translators and reverse translators, by extracting
data from the source database and transmitting them to translators that in turn
translate it into a meta-model format. The reverse translators use the trans-
formed data as input and provide data as output in a target format.

This approach has evaluated using data from meeting in the cloud and the
results show that the extraction and conversion time is less than 0.1% of the
time needed for the complete mapping. Despite this approach allows adding new
data, but it requires significant mapping time and does not guarantee that all



An Overview on the Mapping Techniques in NoSQL Databases 61

parts of the data have been translated.
In 2016, Scavuzzo et al [37] have enhanced their previous work, by supporting

fault tolerance in the mapping of huge amounts of columnar databases. The ex-
tended approach offers a virtual data partitions (VDPs) of the source database to
provide a set of parallel mappings of VDP instead mapping the entire database.
This approach is more efficient than the previous one with a speedup of 25 times
without losing data.

Thalheim and Wang [42] proposed an approach derived from the data wareho-
use technique, well known by ETL (Extract, Transform and Load), and applied
general refinement theory for data mapping. Data sources move from legacy
systems into new system in which data sources have different structures. The re-
finement theory specified two sub-classes of transformations: property-preservi-
ng and property-enhancing transformations.

Bansel et al. [26] proposed an approach based on an online compression
algorithm for mapping between document and graph databases in the cloud en-
vironment. This mapping can be achieved directly or indirectly through the in-
termediate model. Indirect mapping consists of transforming document databa-
ses to columnar and to transform them into the graph format. The experime-
ntal study is based on the use of two JSON data sets: Core US Fundamental for
nance and economic data, and Twitter tweets from November 2012. The results
show that the intermediate mapping enhances the read/write efciency.

Androec and Vrek [25] proposed a semantic web services-based approach for
the data mapping between different cloud storage systems. The authors focused
on dealing with the data lock-in problem causing high costs, time and effort to
map the data. Ontologies have set out to overcome not only the semantic issues
but also lock-in problem by allowing the system to roll out semantically inter-
operable [17,25]

These related works tend to focus on NoSQL databases that are distributed
in the cloud environment. The latter is suitable for NoSQLs characteristics like
large-scale data, availability, and scalability. However, the authors have not de-
ducted the principal criteria that lead us to select the best alternative data model
via the mapping from one NoSQL type to another.

As object relational databases play an important role in representing com-
plex data, Aggoune and Namoune [23] recently proposed a new approach for
data mapping from Oracle object-relational to MongoDB document-oriented
database. The proposed approach aims to improve the processing of large amounts
of complex data through a set of mapping rules applied between object relational
and document-oriented schemata. This approach allows the system to maintain
the integrity constraint of object-relational model against the schema-less of
NoSQL databases.

This work represents a good solution to migrate the existing object-relational
database to the new data format instead of creating data from scratch. Given
the complexity of the object-relational database, it may be necessary to adapt
this approach in the context of NoSQL data mapping.



62 A. Aggoune

5 A Study of the Recent Frameworks of NoSQL Data
Mapping

The need to map between different NoSQL databases involves building framewo-
rks, which are used extensively in practice. The available frameworks have been
developed to ensure the mapping between NoSQL databases in the cloud environ-
ment [18].

CDPort (Cloud Data Portability) framework [24] provides a unified common
API for ensuring the portability between different cloud-based NoSQL data. This
framework supports Amazon SimpleDBs key-value data, MongoDBs document-
oriented data, and Google Datastores columnar-oriented data. The NoSQL data
mapping is based on three wrappers one for each NoSQL system to ensure the
data transformation.

The SDCP (Service Delivery Cloud Platform) [40] represents a middleware
infrastructure that uses resources from multiple cloud columnar-oriented databa-
ses for mapping between them.

In [26] a NoSQL data mapping framework has been proposed, which is based
on a meta-model and a compression Algorithm.

Wijaya and Arman [45] have proposed a general framework, which combines
three existing frameworks [26, 36, 39] to solve the data mapping problem with
a different solution, characteristics, and properties. The developed framework
includes mapping algorithms, mapping models, and mapping schemes of four
NoSQL databases.

Table 4. Comparative study between NoSQL data mapping.

Criteria Framework of CDPort Framework of SDCP
Bansel et al. [26] Framework [24] Wijaya and Framework [40]

Arman [45]

NoSQL Document, Graph, Key-value, column, Four categories Columnar
Databases Columnar Document databases

NoSQL DBMS MongoDB, Azure Google Datastore, MongoDB, Redis, SimpleDB and
Table, Neo4j Amazon SimpleDB, Neo4j, Hbase Azure Table

MongoDB

Dataset Twitter Generic Twitter Generic

Algorithm MetaModel, Adapter, CPort ETL Service-based
Compression data model Transformation Algorithm
Algorithm

PL − Java − Java

Mapping Direct and Intermediate Direct Direct
strategies Intermediate

Interface − CDPorts API Nodejs API Java Persistence

Architecture Repository Record Record Service



An Overview on the Mapping Techniques in NoSQL Databases 63

We focus on these recent NoSQL mapping frameworks to establish a compara-
tive study between them. This comparison is based on essential criteria (see Table
4).

NoSQL databases mapping frameworks are commonly provide a uniform in-
terface and unified data model for various NoSQL databases. Each framework
concerns some NoSQL stores and uses different API and algorithm. The general
framework proposed in [45] is composed of existing frameworks in order to en-
sure the mapping between four NoSQL categories.

As a result, we will propose a new framework for mapping between these
NoSQL stores without using any existing framework or tool. In addition, the
approach that will be proposed aims to handle bidirectional conversion.

6 Conclusion

In this paper, we have presented a literature review for mapping between NoSQL
databases with a comparison study of different recent frameworks. The utility to
integrate a mapping tool in applications as a means to use the best alternative
NoSQL database compared to the initial database.

According to this review, many parameters need to be taken into considerati-
on, for example the domain of the data set, the volume of the dataset, the data
type, and the degree of relationship between values. In comparison to related
work, we would like to suggest a new method for NoSQL data mapping to
ensure that the initial data have to be adapted to the format and structure of
the target database.

References

1. Allegrograph. https://allegrograph.com/products/allegrograph/, accessed:
2020-08-02

2. Arangodb. https://www.arangodb.com/, accessed: 2020-08-15
3. Azure table. https://azure.microsoft.com/en-us/services/storage/tables/,

accessed: 2020-08-02
4. Cassandra. https://cassandra.apache.org/, accessed: 2020-08-02
5. Couchdb. https://couchdb.apache.org/, accessed: 2020-08-02
6. Db-engine. https://db-engines.com/, accessed: 2020-08-15
7. Documentdb. https://aws.amazon.com/fr/documentdb/, accessed: 2020-08-02
8. Hbase. https://hbase.apache.org/, accessed: 2020-08-02
9. Hypergraphdb. https://allegrograph.com/products/allegrograph/, accessed:

2020-08-02
10. Ibm grap. https://www.ibm.com/uk-en/marketplace/graph, accessed: 2020-08-

02
11. Marklogic. https://www.marklogic.com/, accessed: 2020-08-02
12. Memcached. https://memcached.org/, accessed: 2020-07-30
13. Mongodb. https://mongodb.com/, accessed: 2020-08-02
14. Oraclenosql. https://www.oracle.com/database/technologies/related/

nosql.html, accessed: 2020-07-30



64 A. Aggoune

15. Redis. https://redis.io/, accessed: 2020-07-30

16. Riak. https://riak.com/, accessed: 2020-07-30

17. Aggoune, A.: Automatic ontology learning from heterogeneous relational
databases: Application in alimentation risks field. In: IFIP International Confer-
ence on Computational Intelligence and Its Applications. pp. 199–210. Springer
(2018)

18. Aggoune, A.: Switching between dierent nosql databases: Approaches and frame-
works. IAM (2020)

19. Aggoune, A., Bouramoul, A., Kholladi, M.K.: Personnalisation daccès aux sources
de données hétérogènes pour lorganisation des grands systèmes dinformation den-
treprise. IT4OD p. 109 (2014)

20. Aggoune, A., Bouramoul, A., Kholladi, M.K.: Big data integration: A semantic
mediation architecture using summary. In: 2016 2nd International Conference on
Advanced Technologies for Signal and Image Processing (ATSIP). pp. 21–25. IEEE
(2016)

21. Aggoune, A., Namoune, M.S.: From object-relational to nosql databases: A good
alternative to deal with large data. CITCS (2019)

22. Aggoune, A., Namoune, M.S.: Practical study for handling of nosql data on the
distributed environment systems. IAM (2019)

23. Aggoune, A., Namoune, M.S.: A method for transforming object-relational to
document-oriented databases. In: 2020 2nd International Conference on Mathe-
matics and Information Technology (ICMIT). pp. 154–158. IEEE (2020)

24. Alomari, E., Barnawi, A., Sakr, S.: Cdport: A framework of data portability in
cloud platforms. In: Proceedings of the 16th International Conference on Informa-
tion Integration and Web-based Applications & Services. pp. 126–133 (2014)

25. Andročec, D., Vrček, N.: Ontology-based resolution of cloud data lock-in problem.
Computing and Informatics 37(5), 1231–1257 (2018)

26. Bansel, A., González-Vélez, H., Chis, A.E.: Cloud-based nosql data migration.
In: 2016 24th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP). pp. 224–231. IEEE (2016)

27. Bathla, G., Rani, R., Aggarwal, H.: Comparative study of nosql databases for big
data storage. International Journal of Engineering & Technology 7(26), 83 (2018)

28. Cattell, R.: Scalable sql and nosql data stores. Acm Sigmod Record 39(4), 12–27
(2011)

29. Corbellini, A., Mateos, C., Zunino, A., Godoy, D., Schiaffino, S.: Persisting big-
data: The nosql landscape. Information Systems 63, 1–23 (2017)

30. Davoudian, A., Chen, L., Liu, M.: A survey on nosql stores. ACM Computing
Surveys (CSUR) 51(2), 1–43 (2018)

31. Gessert, F., Wingerath, W., Friedrich, S., Ritter, N.: Nosql database systems: a
survey and decision guidance. Computer Science-Research and Development 32(3-
4), 353–365 (2017)

32. Hajoui, O., Dehbi, R., Talea, M., Batouta, Z.I.: An advanced comparative study
of the most promising nosql and newsql databases with a multi-criteria analysis
method. Journal of Theoretical and Applied Information Technology 81(3), 579
(2015)

33. Horii, H.H.: Query processing with bounded staleness for transactional mutations
in nosql database (Jun 11 2019), uS Patent 10,318,521

34. Meier, A., Kaufmann, M.: Nosql databases. In: SQL & NoSQL Databases, pp.
201–218. Springer (2019)



An Overview on the Mapping Techniques in NoSQL Databases 65

35. Sahatqija, K., Ajdari, J., Zenuni, X., Raufi, B., Ismaili, F.: Comparison between
relational and nosql databases. In: 2018 41st international convention on informa-
tion and communication technology, electronics and microelectronics (MIPRO).
pp. 0216–0221. IEEE (2018)

36. Scavuzzo, M., Di Nitto, E., Ceri, S.: Interoperable data migration between nosql
columnar databases. In: 2014 IEEE 18th International Enterprise Distributed Ob-
ject Computing Conference Workshops and Demonstrations. pp. 154–162. IEEE
(2014)

37. Scavuzzo, M., Tamburri, D.A., Di Nitto, E.: Providing big data applications
with fault-tolerant data migration across heterogeneous nosql databases. In:
2016 IEEE/ACM 2nd International Workshop on Big Data Software Engineering
(BIGDSE). pp. 26–32. IEEE (2016)

38. Sharma, S., Tim, U.S., Gadia, S., Wong, J., Shandilya, R., Peddoju, S.K.: Clas-
sification and comparison of nosql big data models. International Journal of Big
Data Intelligence 2(3), 201–221 (2015)

39. Shirazi, M.N., Kuan, H.C., Dolatabadi, H.: Design patterns to enable data porta-
bility between clouds’ databases. In: 2012 12th International Conference on Com-
putational Science and Its Applications. pp. 117–120. IEEE (2012)

40. Silva, L.A.B., Costa, C., Oliveira, J.L.: A common api for delivering services over
multi-vendor cloud resources. Journal of Systems and Software 86(9), 2309–2317
(2013)

41. Tang, E., Fan, Y.: Performance comparison between five nosql databases. In: 2016
7th International Conference on Cloud Computing and Big Data (CCBD). pp.
105–109. IEEE (2016)

42. Thalheim, B., Wang, Q.: Data migration: A theoretical perspective. Data & Knowl-
edge Engineering 87, 260–278 (2013)

43. Van der Veen, J.S., Van der Waaij, B., Meijer, R.J.: Sensor data storage perfor-
mance: Sql or nosql, physical or virtual. In: 2012 IEEE fifth international conference
on cloud computing. pp. 431–438. IEEE (2012)

44. Vukotic, A., Watt, N., Abedrabbo, T., Fox, D., Partner, J.: Neo4j in action. Man-
ning Publications Co. (2014)

45. Wijaya, Y.S., AkhmadArman, A.: A framework for data migration between dif-
ferent datastore of nosql database. In: 2018 International Conference on ICT for
Smart Society (ICISS). pp. 1–6. IEEE (2018)

46. Xiang, P., Hou, R., Zhou, Z.: Cache and consistency in nosql. In: 2010 3rd Inter-
national Conference on Computer Science and Information Technology. vol. 6, pp.
117–120. IEEE (2010)


