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Abstract: The time of concentration, that is the time it takes for a single "drop of water" to move 

superficially from the most distant point of the watershed to the exit point, is a fundamental 

parameter of the hydrological analysis. Many studies have been conducted to propose empirical 

formulas to calculate the time of concentration. One of the best known is the Temez formula 

based on time series data collected in accounts in Spain with areas of less than 3,000 km2. This 

expression uses the main channel length as a parameter as in many works, for small slopes is 

approximated by the distance between the geographic coordinates between the starting and ending 

points, leading for larger catchments and slopes to approaches with a high error. In this work, 

using a proper discretization of the curve, by using polynomial interpolation methods, we improve 

the calculation of the length of the main channel and therefore, we provide a more reliable method 

for calculating the time of concentration using the Temez expression. We illustrate the proposed 

scheme with different numerical examples comparing the results with those provided by other 

methods. 
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1. INTRODUCTION 

In hydrological analyses, data and parameters are needed to quantify the variables studied by different 

methods and models. An important and difficult parameter to study due to its variability is the 

concentration time (i.e. 𝑇𝑐) [1,2]. According to some authors, the time of concentration can be defined 

as the time that a single drop of water takes to travel from the most distant point in the basins to the 

point of exit [3-8]. Following [3], this parameter is related to the lines of equal time of flow to the outlet, 

called isochrones representing the grown of contributing area to the streamflow outlet after certain time. 

The time at which all of the watershed begins to contribute is 𝑇𝑐  (see in Fig. 1).  Johnstone and Cross 

[4] present three main problems of stream flow: Mean annual flow, drought flow and flood flow. To 

solve the problem, they present the main principles involved as the parameter 𝑇𝑐  applied to specific 

areas in America (see Eq. (4)). In [5], the accuracy of three popular flood routing models are evaluated 

in Canada. They also extend the routing formulations developed by other authors (Kesking and 

Agiralioglu). Following Ref. [6], it is checked experimentally that this parameter is characteristic of 

each basin and, therefore, regardless of the configuration and magnitudes of the downpour. It is proposed 

to calculate by following the expression: 

𝑇𝑐 = 0.3 (
1.5 𝐿𝑐

0.8√𝐻
)

0.76

 (1) 

 

where 𝐿𝑐 and H denote the length and the average slope of the river main course respectively. The 

Bransby Williams formula for the time of concentration dates from 1922, when Williams published the 

work [7]. In this paper, Williams provides the formula (2) for a parameter (nowadays known as time of 

concentration) that describes the time taken for the water to reach the point of discharge from the most 

distance point of the watershed. This measure is considered after the maximum flood produced by the 

greatest possible rainfall. Other works, (see [8]) put forward the hydrological data quality method based 

on data-driven methods as an alternative to determine the hydrological data more efficiently and to 

provide an accurately reference for the hydrological workstations. 𝑇𝑐 functionality is also defined as the 

design of rainwater systems, hydraulic structures using rational methods and operations in hydraulic 

infrastructures [9]. There are a variety of empirical equations to calculate this parameter, some of which 

are: 

Bransby-Williams’s Model [5]: 

𝑇𝑐 = 0.2426 𝐿𝑐𝐴−0.1𝑆𝑐
−0.2  (2) 

Where 𝐿𝑐  denotes the length of main watercourse channel (km); 𝑆𝑐 the average main watercourse slope 

and A refers to the catchment area (𝑘𝑚2). The expression Eq. (2) is derived from observations of floods 

in rural catchments in the region of India, for areas smaller than 129.50 𝑘𝑚2. 

Giandotti’s Model [10]: 

𝑇𝑐 = 4√𝐴 +
1.5 𝐿𝑐

0.8√𝐻
  (3) 

where H is difference between the average elevation of the whole catchment area and the outlet section. 

This expression developed through the study of twelve large catchment areas in northern and central 

Italy, for areas between 170 and 70,000  𝑘𝑚2. 

 

https://en.wikipedia.org/wiki/Time_of_concentration
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Kirpich’s Model [11]: 

𝑇𝑐 = 0.0663 𝐿𝑐
0.77𝑆𝑐

−0.385 (4) 

It is deduced from the multiple regression of rainfall time series in small agricultural basins in Tennessee 

and Pennsylvania, for areas between 0.004 and 0.453  𝑘𝑚2, and average slope between 3 % and 10 %. 

Johnstone and Cross’s Model [4]: 

𝑇𝑐 = 0.0543 𝐿𝑐
0.5𝑆𝑐

−0.5 

 

(5) 

This formula was developed from the study of 19 sub-basins, located in Scioto and Sandysky (Ohio) 

area. The area of the basin must be between 65 to 4,206 𝑘𝑚2. 

NRCS-SCS Method [2]: 

𝑇𝑐 = 0.057 (
1,000

𝐶𝑁
− 9) 𝐿𝐶

0.8𝑆𝐶
−0.5 (6) 

Where CN denotes the number of the run-off curve. This expression was developed by Soil Conservation 

Service (SCS) which later became Natural Resources Conservation Service (NRCS). It is based on was 

based on data collected from homogeneous agricultural catchments with areas of up to 8 𝑘𝑚2. 

Chow’s Model [12]: 

𝑇𝑐 = 0.1602 𝐿𝑐
0.64𝑆𝑐

−0.32 (7) 

This equation was deduced for twenty rural catchments in the U.S. whose area varies from 0.01 to 18.5 

𝑘𝑚2, and average slope from 0.0051 to 0.09. 

Temez’s Formula [6] 

𝑇𝑐 = 0.3 𝐿𝑐
0.76𝑆𝑐

−0.19 (8) 

This expression was born from time series data collected in basins in Spain with areas less than 3,000 

𝑘𝑚2. 

 
Figure 1. Isochrone line (dashed blue line) defining the area contribution to flow at the outlet for rainfall of 

duration t. Time of concentration is the time of flow from the farthest point in the watershed A to the outlet B [3] 
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Eqs. (2-8) have as a common parameter, the average slope of the main channel 𝑆𝑐 or the points of highest 

and lowest elevation of the basin area H. In all of them, it is calculated in the same way for small basins 

as for large basins [3, 10, 2, 4, 11, 13, 14, 5, 15, 9, 6, 16, 7]. 

It is currently possible to determine the characteristics of the basin with great precision thanks to the 

large number of data provided the new technologies [17]. Specifically, and mainly due to the systems 

of geographic information (GIS) and spatial data infrastructure (IDEE). The GISs are software that allow 

applying a multitude of algorithms to raster maps and vector, and IDEE is an infrastructure where data, 

metadata, services and information of a geographic type are produced. However, as far as these authors 

know, once the data that describe the basin, the calculation of the mean slope is usually carried out by 

the methods are not very precise and even depend on the area of the planet and its extension of the basin 

where it is applied. In fact, it is usual that in small basins the average slope is approximated through the 

geographic coordinates between the starting point and the end point [18]. However, the slope is very 

changeable along the riverbed for large basins, and thereby these methods and particularly Temez’s 

formula produces large errors in the calculations of large basins. Young rivers located at mountainous 

riverbeds with large slopes and a V-shaped cross section are irregular. Mature rivers have low slopes. 

Old rivers have very low slopes and no rapids or falls [1]. For all these different characteristics, the 

different methods developed to obtain the average slope are not precise. Better results can be found in 

[19], where an equivalent hydraulic profile is built from the conversion of parameters fluvial (altitude, 

longitude) to the unit. 

Therefore, new reliable method for calculating 𝑆𝑐 must be developed. In this sense, the main objective 

of this study is to propose another method to determine the mean slope with a greater accurate than the 

current ones. Using spatial data infrastructures and proposing a new mathematical model that is 

independent of the contour and the size of the basin one and of the area where it is located. We will 

illustrate its implementation by applying it to two real cases in the region of Cáceres in Spain. 

 

2. MATERIAL AND METHODOLOGY 

In order to determine the parameter 𝑆𝑐  and therefore the concentration time, different methods are 

proposed in the literature. In [20], authors estimate 𝑆𝑐  as follows: 

𝑆𝑐=
𝐻

𝐿
 (9) 

 
Figure 2. Approximation of the average slope parameter proposed in Ref. [9]. 

where L’ is approximated by the main channel length. Fig. 2 shows how in [9] the authors approaches 

the distance between any point of the main channel and the control point.  Indeed they assume that the 

slope is enough small to consider L’=L cos ~L which does not have to happen especially in large and 

irregular basins. Therefore, our aim in this section is to propose a more accurate method based on the 

approximation of L by using different interpolation methods. For this, in a first step, we need a discrete 

approximation of the terrain main channel orography using proper software.    
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2.1 GvSIG software 

The GvSIG software (v2.5.0.2930) is a geographic information system (GIS) based on free software, a 

project promoted by the Valencian Community (Spain). Firstly, the cartography was downloaded from 

the spatial data infrastructure (SDI), which was: National Plan of Aerial Orthophotography (PNOA) and 

Digital Terrain Model with a 25 meters mesh pitch (MDT25), of the study area. The layers were loaded 

in GvSIG and several geoprocesses were performed in the MDT25 layer. The first geoprocessing done 

to the layer was "depressions removal", followed by "flow accumulation", "drainage network". At this 

point, the PNOA layer was visualized to obtain the control point through a script called "coordinate 

capture". In the MDT25 layer, the geoprocess "catchment through the control point" was executed.  The 

PNOA layer was reloaded and with the mentioned script a new starting coordinate of the main river was 

obtained. In the MDT25 layer, the "contour according to flow line" geoprocess was executed to obtain 

a table with the coordinates of the points (x,y), the elevation (z), the horizontal distance between the 

points (dh) and the real distance between the points (dr). 

1.2 Numerical modelling of the channel 

GvSIG has provides a set of n+1 geographical Cartesian coordinates D = {(xi, yi, zi)}i=0
n  where zi 

represent the altitude or height in meters from the ground of a place located at  the position  (xi, yi),  

i=0,…n. Table 1 shows the values of orthogonal projection on the x-z plane of the set D. Considering 

it, the path of the main channel can be approximated by a polynomial P of degree n. 

Table 1. Channel riverbed contour values 

X 𝑥0 𝑥1 … 𝑥𝑛 

Z 𝑧0 𝑧1 … 𝑧𝑛 

In the following, we will approximate the mean slope as the mean of the channel slopes in each 

subinterval, i.e.: 

𝑆𝑐=
∑ 𝑃′(𝑐𝑖)𝑛

1

𝑛
   where 𝑐𝑖   =

𝑥𝑖 + 𝑥𝑖+1

2
,  i=0, 1, …., n (10) 

In what follows, for simplicity, we will rename the 𝑧𝑖 coordinates as 𝑦𝑖. 

The use in this work of polynomic expressions of the form, 

𝑃𝑛  (𝑥) = 𝑎𝑛 𝑥
𝑛 + 𝑎𝑛−1 𝑥𝑛−1  + ⋯ + 𝑎2  𝑥2 + 𝑎1𝑥 + 𝑎0, 

𝑎𝑖 ∈ 𝑅, 𝑖 = 0, ,1, … , 𝑛 

(11) 

for the approximation of the watershed, it is due to the simplicity of the calculation of the derivative in 

order to derive the mean of the slopes as is described in Eq. (10).  In this sense we have the following 

uniqueness and existence result. 

Theorem 2.1. Given a support of n + 1 different points 𝑆 = {𝑥0 , 𝑥1, … , 𝑥𝑛}  and the table of values  

given by Table 1, there exists a unique polynomial (given by Eq. (10)) of degree less or equal as n, 𝑃𝑛 ∈
𝑃[𝑅] such that 𝑃𝑛 (𝑥𝑖) = 𝑦𝑖  , 𝑖 = 0, 1, … , 𝑛, where  𝑃𝑛[𝑅] denotes the set of all the polynomial functions 

with degree less or equal to n. 

Contrary to what might be though, these kinds of approximations do not improve the accurate by taking 

large number of points in a same interval. The well - known Runge phenomenon occurs: The 

interpolation error is less in the central zone of the interval and greater in the extremes. From the 

numerical point of view, it is preferable, instead of generating a single interpolating polynomial based 
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on many points of an interval, to divide the interval into others so that by means of several polynomials 

we will improve the precision in the interpolation. It is a classic problem that was solved by Chebychev 

in terms of a family of polynomials known as polynomials by Chebychev. However, it will not be 

considered in this work because support nodes are already given by GvSIG. Instead, we will use the 

interpolation piecewise polynomial. The piecewise polynomial interpolation consists of dividing the 

interval of starting in subintervals and using in each of them polynomials of degree relatively low, trying 

that the constructed function defined in pieces approximates the phenomenon we are considering. The 

simplest examples are the pieces constant functions and the polygonal (join the points by segments to 

get a polygonal) that interpolate only values associated with the nodes. But for the piecewise constants 

we cannot demand continuity and for polygonal we cannot demand derivability at the ends of the 

subintervals (the interpolating function is not "smooth"). However, in our case the physical conditions 

of the problem require smoothness, so that the function that approximates must be differentiable with 

continuity. For all these reasons, the more common piecewise polynomial approximation uses 

polynomials of degree three and is called interpolation by cubic splines. 

In general, piecewise polynomial interpolation can be defined as follows. 

Definition 2.2. Let   𝑃 =  {a =  x0  <  x1  …  <  xn  =  b}  be a partition of the interval [𝑎, 𝑏] , where 

we denote  𝐼𝑖 = [𝑥𝑖 , 𝑥𝑖+1], 𝑖 = 0, … , 𝑛 − 1. A spline is a polynomial function piece in each of the 𝐼𝑖 

intervals of the partition. We will denote by 𝑆𝑚(𝑃) the set of functions of class 𝑚 − 1 that are piecewise 

polynomials of degree 𝑚 in each of the intervals of the partition: 

𝑆𝑚(𝑃) = {𝑠𝑖 ∈ 𝐶𝑚−1([𝑎, 𝑏]):        𝑠𝑖|𝐼𝑖
∈ 𝑃𝑚[𝑅]} (12) 

For example, a spline of degree 3 is a function 𝑆3(𝑥) ∈ 𝐶2([𝑎, 𝑏]) satisfying the following conditions  

• 𝑆3|𝐼𝑖
= 𝑡𝑖 ∈ 𝑃3[𝑅], 𝑖 = 0, … , 𝑛 − 1.  

• 𝑆3(𝑥𝑖) = 𝑦𝑖, 𝑖 = 0, … , 𝑛.  

• 𝑆3 verifies the following conditions in the interval [𝑎, 𝑏]. 

 ⋄   𝑆3′(𝑎) = 𝑓′(𝑎), 𝑆3′(𝑏) = 𝑓′(𝑏)  (𝑓𝑖𝑥𝑒𝑑  𝑠𝑝𝑙𝑖𝑛𝑒).

 ⋄   𝑆3′′(𝑎) = 𝑆3′′(𝑏) = 0  (𝑛𝑎𝑡𝑢𝑟𝑎𝑙  𝑠𝑝𝑙𝑖𝑛𝑒) 

 ⋄   𝑆3′(𝑎) = 𝑆3′(𝑏) = 0  𝑎𝑛𝑑  𝑆3′′(𝑎) = 𝑆3′′(𝑏)  (𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐  𝑠𝑝𝑙𝑖𝑛𝑒).

 (13) 

In order to obtain 𝑆3(𝑥) observe that ∀𝑖 = 0, … , 𝑛 − 1, 𝑆3 ∈ 𝑃3[𝑅] and therefore it is given by 4 

coefficients. 

𝑠𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)2 + 𝑑𝑖(𝑥 − 𝑥𝑖)3. (14) 

As there are 𝑛 subintervals, it is necessary to determine 4𝑛 constants. On the other hand, we have  

• 𝑛 + 1 interpolation conditions: 

𝑠𝑖(𝑥𝑖) = 𝑦𝑖 ,    𝑖 = 0, … , 𝑛 − 1,    𝑠𝑛−1(𝑥𝑛) = 𝑦𝑛. (15) 

• 3(𝑛 − 1) conditions by imposing 𝑆3(𝑥) ∈ 𝐶2([𝑎, 𝑏]). 

𝑠𝑖(𝑥𝑖+1) = 𝑠𝑖+1(𝑥𝑖+1),    𝑖 = 0, … , 𝑛 − 2.

𝑠′𝑖(𝑥𝑖+1) = 𝑠′𝑖+1(𝑥𝑖+1),    𝑖 = 0, … , 𝑛 − 2.

𝑠′′𝑖(𝑥𝑖+1) = 𝑠′′𝑖+1(𝑥𝑖+1),    𝑖 = 0, … , 𝑛 − 2.

 (16) 
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Shortly, we have (𝑛 + 1) + 3(𝑛 − 1) = 4𝑛 − 2 equations to determine 4𝑛 unknowns. So, we need to 

consider two additional conditions in order to verify the spline uniqueness. These conditions are 

followed from Eqs. (12-13). 

For a detailed idea of the effective calculation of cubic splines we refer to Theorem 3.11 in Ref. [12]. 

Analogously, splines of degree 2 and 1 can be determine. 

 

3. RESULTS 

To illustrate the scheme proposed in Section 2, Figs. 3, 4, 5 and 6 show how GvSIG software allows to 

describe the "Regato Celadilla" river basin in Cáceres (Spain) through 79 Cartesian coordinates. The 

watershed has been approximated to a control point with coordinates (𝑥, 𝑦) =
(720950.39, 4368600.07) in ETRS89/UTM zone 29 code 25829. In the GvSIG software the plans 

corresponding to the basin were made, showing in Fig. 2 the drainage network of the basin where the 

thickness of the flow line corresponds to the order of each line.  

 
Figure 3. Drainage plane of the basin where the thickness of the flow line corresponds to the order to each line 

Fig. 4 represents the table-based colour on dimensions and Fig. 4 the contour lines within the watershed. 
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Figure 4. Hypsometric map of “Regato Celadilla” watershed (Cáceres, Spain) 

 

 

 
Figure 5. Map of the “Regato Celadilla” watershed (Cáceres, Spain), contour lines with river drainage network 
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Fig. 6 (Fig. 7 (on the left) describes the selected points with coordinates (𝑥, 𝑦)  for calculating the 

average slope of the main riverbed. 

 
Figure 6. Map of the "Regato Celadilla" river basin (Cáceres, Spain), points for calculating the average slope of 

the main riverbed. 

Fig. 6 shows that the Lagrange polynomial interpolation constructs a 78 degree polynomial that does 

not provides a good approximation of the riverbed at the extreme points of the interval. 

           𝑃 = 418.831  − 2.699784037494087 × 1016𝑥 + 5.642748677181165 × 1015𝑥2

− 5.408136737963023 × 1014𝑥3 + 3.194622101925719 × 1013𝑥4

− 8.665166556017677 × 10−199𝑥76

− 2.047792108557352 × 10−203𝑥77

+ 2.376944085604347 × 10−208𝑥78 

(17) 

 

 
Figure 6. Lagrange interpolation polynomial approximates the 79 data obtained with GvSIG given by Eq. (17) 
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As consequence, it is necessary to provide better approximations of the set of data. In this sense we 

construct P by using pieces polynomial interpolation, of first, second and third degree (𝑆𝑘, 𝑘 = 1, 2 ,3).  

Following Definition 2.2, we will denote 𝑆𝑘 by the set of all the k-differentiable functions that are k-

degree pieces polynomials 𝑠𝑖  given by Eq. (14) in each of the partition intervals. 

By imposing the interpolation and differentiability conditions Eqs. (15-16) at the ends of the 

subintervals, some 78 polynomials of degree 1, 2 and 3 are obtained. 

𝑆1 = {𝑠1 = 418.831 − 0.0239079𝑥, 𝑠2 = 418.229,
 𝑠3 = 418.229 − 0.0281714(−27.063 + 𝑥), … , 𝑠78 = 383.633 − 0.00548643(−2279.14 + 𝑥)},

 

𝑆2 = {𝑠1 = 418.831 − 0.0009494782916457017𝑥2,

𝑠2 = 435.53322304832756 − 1.32662613568924𝑥 + 0.025393375872159698𝑥2,

𝑠3 = 415.36083122632107 + 0.1641466405740309𝑥 − 0.0021492612387162377𝑥2,

… , 𝑠78 = 35243.59637185137 − 30.35137681332042𝑥 + 0.006606066297746681𝑥2},

 (18) 

 

𝑆3 = {𝑠1 = 418.831 − 0.0027525639608865877𝑥2 + 0.00007160785024784927𝑥3,

𝑠2 = 431.6293852364462,

𝑠3 = −1.5248274705853295𝑥 + 0.05780452383042911𝑥2 − 0.0007300480643843417𝑥3,
… 𝑠78 = −22670.92377768599 + 30.401744113190002𝑥

−0.013359675974951895𝑥2 + 0.000001956363805974555𝑥3}.

 (19) 

In Fig. 7, one can observe the approximation 𝑆𝑘 obtained by using first and second order splines. 

 

 
Figure 8. On the left, polygonal connecting the 79 points of the sample. On the right, quadratic splines that 

interpolate the sample 

In Fig. 9, as we expected, the cubic spline approximation is smoother and accurate than the polygonal 

(Fig. 8 on the left) and second order (Fig. 8 on the right) approximations. Figs.  9, 11 and 12 can also be 

seen for the detail of the basin contour. Specifically, Fig. 9 represents only 29 points of the sample (on 

the left) and their approximation by using a polygonal (on the right). Fig.11 shows the approximation 

by using second and third order polynomial splines as well as the tangent lines in several points, showing 

how the latter (see also Fig. 12) provides better approximation of the slopes. 
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Figure 9. Cubic splines that approximate the points. Note that the curve described by the cubic splines provides 

better approximations to the data. 

In Table 2, applying expression Eq. (10) to the expressions obtained in Eq. (18) and Eq. (19), once 𝑐𝑖 

(midpoints of each interval) have been calculated. The following approximation of the average slope 𝑆𝑐 

parameter are found. 

Table 2. Values of 𝑆𝑐 using different method. 

Splines-order 1 -0.0217733 Splines-order 3   -0.225804 

Splines-order 2 -0.0225509 Temez’s method  -0.0215457 

 

 
Figure 10. On the left, plot of a subset of the sample (29 points) where positive slopes can be observed in the 

interval [𝑥21,𝑥22]. On the right, approximation through the polygonal curve that joins them. 

 

 
Figure 11. On the left, approach using quadratic splines. On the right, interpolation using cubic splines. Tangent 

lines have been drawn at the midpoints of the subintervals [𝑥7 , 𝑥8], [𝑥11,𝑥12] and [𝑥21,𝑥22] in magenta and black. 
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Figure 12. Tangent lines in the quadratic approximation for different subintervals. Note that cubic splines offer 

better approximations of the data and therefore of the slopes (positives and negatives). 

Although the results in Table 2 are similar, it should be noted that when there are pronounced values of 

the slope, notable differences between the different methods are derived. For example, analogously to 

our previous study, we can approximate a larger basin by means of 399 points (see Figs. 13, 14, 15, 16 

and 17). Namely, in Fig. 13 we observe the hypsometric plane of the large basin with colour table based 

on dimensions. In Fig. 14 contour points of the main riverbed of the large watershed basin are 

represented in blue. 

 
Figure 13. Hypsometric plane of the watershed basin 

 



Journal of Energy Systems 

133 

 
Figure 14. Plane longitudinal contour points of the main riverbed of the large watershed basin. 

Fig. 15 represents the polynomial approximation of the large basin river thanks to the 399 points 

provided by GvSIG software by first order polynomial. On the right a detail of the approximation by 

selecting only 29 points where steep slope differences are observed.  

 
Figure 15. Piecewise polynomial interpolation using polynomials of degree 1 of the catchment area. On the right, 

detail of the approach in an area with large slope differences. 

Figs. 16 and 17 represent the approximation of the main slope by using second and third order 

polynomials respectively. On the right of each figure, we can see a detail of the approximation of a 

sample made of 29 points, observing that analogous as happen in the small basin, third order polynomial 

provides better approximations. 
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Figure 16. Piecewise polynomial interpolation using polynomials of degree 2 of the catchment area. On the right, 

detail of the approach in an area with large slope differences. 

 

 
Figure 17. Piecewise polynomial interpolation using polynomials of degree 3 of the catchment area. On the right, 

detail of the approach in an area with large slope differences. 

 

Although Table 3 shows that the overall results for the average slope in the basin are similar taking some 

points where the difference in slope is notable, Fig. 7 and Table 4 permit us to observe differences in 

the results, showing an imprecise approximation due to Temez's and classical methods. 

Table 3. Values of 𝑆𝑐 using different methods 

Splines-order 1 -0.018628 Splines-order 3 -0.0194971 

Splines-order 2 -0.0191315 Temez method -0.020116 

 

 
Figure 18. Comparison between Temez methods and those proposed in a watershed area with slope Differences 

 
Table 4. Values of 𝑆𝑐 using different methods 

Splines-order 1 -0.0736967 Modified Temez’s method -0.0749217 

L 181.567 
Temez’s method 

-0.0751328 

L’ 181.006  
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4. CONCLUSION 

Although there are different methods in the literature [20, 10, 18, 4, 13, 14, 5, 15, 6, 16, 7] for calculating 

the time of concentration and in particular the average slope of the catchment, in general they do not 

distinguish between small and large basins. Also, they do not take into account the irregularities of the 

slope. In this work we propose a mathematical model based on piecewise polynomial interpolation that 

is versatile since it can be used regardless of the size of the basin, the area under study or the variations 

in slope. To do it, first a sample of discrete information of the channel contour is obtained using 

geographic information system.  Using piecewise cubic, quadratic and linear interpolation the riverbed 

is approximated. The tangent lines to the splines at the midpoint in each of the subintervals, permit to 

obtain a more precise value for the mean slope 𝑆𝑐 than those commonly proposed in the literature. This 

allows to determine a more accurate estimation for the time of concentration that constitutes a 

fundamental parameter of the hydrological analysis. For small watersheds where there are no large 

variations in their slope, the proposed method provides results very similar to the classical models. 

However, for large catchment areas or where there are pronounced slope values, the precision of the 

method we propose is demonstrated in contrast to the imprecise values of the methods that are commonly 

used. In the future, the present work may be improved. For example, the numerical approximation could 

consider more hydrological data, such us slope, slope direction or the location of the basin exit point. 

For large catchment areas, it would be interesting to take account the local precipitations or regional 

seasonal periods. The numerical results would be compared with other predictive models such as other 

spatial interpolation methods or statistical control of the data.  In particular, the Kriging method would 

offer the optimal and unbiased interpolation estimator of spatial distribution values.    Also, statistical 

control process could help to stablish confidence control of the data according to time series.  The 

comparison of the conclusions drawn by these methods with the results presented in this work will 

provide a detailed estimation of the concentration time regardless of the temporal season, the size and 

the location of the watershed. 
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