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Abstract

In this paper, we introduce a new class
called (a, B) —convex of Fg' and give some basic
properties for this class. We proved a variant of
Hermite-Hadamard inequality for this class also we
give some relations of (a, ) — convex functions with
known two functionals F and H.
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1. Introduction
Let f:IcR—>R be a convex function and

a,b el with a<b. Then the following double
inequality:

b
a+b 1 f(a) + f(b)
f( 2 )Sb—ajﬂx)dxS 2 (1.1)

is known as Hadamard’s inequality for convex
mappings. For particular choice of the function f in
(1.1) yields some classical inequalities of means.
Both inequalities hold in reversed direction if f is
concave. For further information see (S. S. Dragomir,
2002), (M. Avcy, 2011), (M.E. Ozdemir M. A., 2011)
and (M.E. Ozdemir M. A., 2010). In (Orlicz, 1961),
Orlicz introduced the definition of s-convexity of real
valued functions:
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Definition 1. Let s € (0,1] be fixed real number. A
function f: (0,00] - R is said to be s — convex (in
the first sense), or that f belongs to the class K3, if
flax+ By) < a°f(x) + B°f(¥)
holds for all x,y € (0,00] with a+ B° =1,
a,fB =0.

In (H. Hudzik, 1994), Hudzik and Maligranda
give the definiton of a new s-convex class:

Definition 2. Let s € (0,1] be fixed real number. A

function f: (0,00] - R is said to be s — convex (in

the second sense), or that f belongs to the class K2, if
flax+ (1 -a)y) < a*f() + (1 — )°f(¥)
holds for all x, y € (0, ] and « € [0,1].

It is clear that convexity mean just the convexity
when s=1 . In (S.S. Dragomir, 1999), Dragomir
and Fitzpatrick proved the following variant of
Hadamard’s inequality which hold for convex
functions in the second sense:

Theorem 1. Suppose that f: [0, ) — [0, %) is a s-
convex function in the second sense, where s € (0,1)
and let a,b € [0,00),a < b. If f € L,([a, b]), then
the following inequalities hold.

SCL B

_f@+f®)
- s+1

1.2)

The constant k = i is the best possible in the
second inequality in (1.2).
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Again in (S.S. Dragomir, 1999), Dragomir and
Fitzpatrick also proved the following Hadamard-type
inequality for s-convex functions in the first sense:

Theorem 2. Suppose that f: [0, ) — [0, ) isa s-
convex function in the first sense, where s € (0,1)
and let a,b € [0,), a < b. If f € L,([a, b]), then
the following inequalities hold.

f(a+b) Sﬁff(x)dx

2

_ (@ +sf(b)
- s+1

(1.3)

The above inequalities are sharp.

2. Main Results
First we introduce a new convex function class
called (@, B) —convex function:

Definition 3. Let (a,B) € (0,1] be fixed real

numbers. A function f:(0,00) -» R is said to be
(a, B) —convex, if

flex+ A -0y) <t“f(0) + (1 -Ff»)

Holds for all x,y € (0,0] and t € [0,1]. We denote
thisby f € Fg'.

It’s easy to see that an (a,8) —convex function is
s —convex function in the second sense for a = g =

s and ordinary convex function fora = g = 1.

Proposition 1. If £ is (&, 8} —convex then f is non-
negative on [0, ).

Proof. We have foru € R,

u

F = £ (5+3) < (354 57) Fa.
Since (Ziu+2iﬁ— 1) f(w) = 0then f(u) = 0.

Now we give a Hadamard type inequality fort his
class of function.

Theorem 3. Suppose that f:R, - R, is an
(a, B) —convex function, a,8 € (0,1) and a,b € R,
with a <b. If f€L;([a b]), then one has the
inequalities:

H@.2) (2= 2 afbf(x)dx

2
< f(a) N f(b). 2.1)
a+1 f+1

Where H(x,y) is the harmonic mean of x and y.

Proof. As f is (@, 8) —convex, we have for all t €
[0,1]:

f(ta+ (1 —=t)b) < t*f(a) + (1 — )Pf (D).
Integrating this inequality on [0,1] we get:

Jlf(ta + (1 —-t)b)dt
0

< f(a) Jlt“dt +f(b)f1tﬁdt
0 0

_f@ | f()
T a+1 p+1

As the change of variable x = ta + (1 — t)b gives us
that:

b b
J f(ta+ (1 —t)b)dt = Lf f(x)dx,
a b—a a
the second inequality in (2.1) is proved.
To prove the first inequality in (2.1), we observe thet
for all x,y € I we have
x+yy _f  fO)
f ( 2 > = 2% + 28

Now let x =ta+ (1 —t)b and y=th+ (1 —t)a
with t € [0,1] then we obtain

f(a + b) < f(ta+ (1 —1t)b) N fb+ (1-1t)a)
2 2% 28

For all t € [0,1]. Integrating this inequality on [0,1],

we get the first part of (2.1).

Theorem 4. Let f be a nondecreasing

(a, B) —convex function and g be a non-negative
convex function on [0, o). Then the composition f o
g of f with g is an (a, B) —convex function.



On (a, B) —Convex Functions

EAJS, Vol. VI Issue Il

[11

Proof. Let h = f o g then we have for t € [0,1]

h(tx + (1= 0)y) = f(g(tx + (1 = D))
Since f is nondecreasing and g is convex we obtain
fg(tx + 1 = 0)y) < f(tg() + 1 - Dg))-
By using (a, ) —convexity of f and note that g is
non-negative, we have

f(tg) + (1 —t)g(»)
<tf(g) + (1 - f(9())
=t%h(x) + (1 — t)Ph(y).

That completes the proof.

Suppose that f is Lebesgue integrable on [a, b] and
consider the mapping H: [0,1] - R given by

1 (b a+b
H(t) = —— 1- —) :
©) b_afa foc+a-022)ax
(S. S. Dragomir, 2002) The following Theorem
involves some properties of this mapping associated
with (a, B) —convexity:

Theorem 5. Let f:I1 c R, » Rbean(a,B) —
convex functionon I, a, 8 € (0,1] and Lebesque
integrable on [a, b], a < b. Then:

i) His(a,B)— convexon [0,1]

ii)  We have the inequality:

H() = H(“;’ﬁ D¢ (a er b). 2.2)
iii)
H(t) < min{H,(t), H,(t)}. (2.3)
where
H(0) = t* 3 — ff(x)dx+ (1 -t)ff (a+b)
and
a+b
00 ()
f [tb +(1-1) (‘”b)]
B+1

iv)  If A(t) = max{H, (), H,(t)} then

@ F®
H(it)<t <a—+1+—>

B+1
+(1_t)ﬁf(a;rb)<a-1+1+ﬁi1)'

Proof. i) t;,t, € [0,1] and x, y € [a,b] with ¢ +d =
1. We have:
H(ct, + dt,)

b
= f f ((ct1 +dt,)x

a

a+b

sfabf< [t1x+(1—t1)a+b]

+d [tzx +(1-t,) —bD dx

S(bia)Lb[ af<t1x+(1—t1)Lb>

+dPff <t2x +(1- tz)T>] dx
= c®H(t,) + dPH(t,).

That completes proof.
ii) Suppose that t € (0,1]. Then a simple change of

. b .
variable u = tx + (1 — t) % gives us

a+b

th+(1— t)T
H(t) = —— u)du
O= =) oz [
1 b
=— (w)du
il
Where = t:b+(1—zt)ﬂ and gqg=ta+

a+b

1 —t)—. Applying the first Hermite-Hadamard
inequality, we get:

b H(2%2%) (p+q
—qfaf(u)duz = (229
H(2%2%) (a+b
==/ ( )
and the inequality (2.2) is obtained. For t = 0 it can
easily be seen that (2.2) is true.

N

iii) This time if we apply the second Hermite-
Hadamard inequality, we also have

f(p) v S f(@
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a+b

f(ta+1-0=2) b+ -0=2)
a+1 * g+1

= H,(t)

For all t € [0,1]. Furthermore, we know that

f(tx+(1—t)a—+b)
<t*f(x)+(1 —t)ﬁf( +b>

fort € [0,1] and x € [a, b].
Integrating this inequality on [a, b] we get (2.3) for
H, (t) and the Theorem is proved.

iv) We have

t*f (@) + (1 — ) f (22)
a+1
tf(b) + (1 — ) f (22
* B+1

_ o f@  f)
=t (a+1+ﬁ+1>

- 0)F (a+b)( 1 + 1 )
f 2 a+1 B+1/
We know that

H,(t) <

1ot f@  f(b)
mfaf(x)dxsa“*m
and
! +L>1
p+1—
then we have
(@  f®)
ho =t (a+1 ﬁ+1>

+=07 () (g 4 )

and that completes the proof.

b b
1
FO =G af af Fltx+ (1 — )y)daxdy

where t € [0,1] (S. S. Dragomir, 2002). The
following Theorem contains results about this

mapping:

Theorem 6. Let f:I c R, > Rbean (a,B) —
convex functionon I, a, 8 € (0,1] and Lebesque
integrable on [a, b], a < b. Then:

i) Fis(a,B)— convex.

ii)  We have the inequality:

(a-zl— 1 +ﬁ%) F©

> H(2%,2F) f f dxdy, (2.4)

€ [0,1].

iii)  We have the inequality:

() = H(2% 2F)H(t) (2.5)

iv)  We have the inequality:
b
1
F(t) < min {(t“ + (—t)F) EJ f(x)dx,
a

f(a) + f(b)
(a+1)?
f(ta +(1-Ob)+fth+ (1 —-t)a)
(a+1D)(PB+1) }

(2.6)

Proof. i) t;,t, € [0,1] and x,y € [a,b] withc + d =
1. We have:

F(ct, +dt;)
b

b
MCEnE —1a)2 j jf ((ct1 + dt,)x

+ (1= (cty + dtz))y) dxdy
b

b
-G | [ Flettx -

+d(tyx + (1 — t,)y))dxdy

b b
— [ [lesster+ a-em)

+dP f(t,x + (1 — t,)y)|dxdy
= c®F(t,) + dPF(t,).
That completes the proof.
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ii) Since f, (a, B) —convex on I then we have:

fex+ A -0)y) flty+ (A -0x)
a+1 g+1
+
> H (29, zﬁ)f( y)
for all t € [0,1] and x,y € [a, b]?. Integrating this
inequality on [a, b]? we obtain:

b b
flx+ A -ty) fley+ 1A -0)x)
ff( a+1 * p+1 )dxdy

> H(2¢, zﬁ)ff dxdy

With the fact that
b b

f ff(tx + (1 - t)y)dxdy

a a

b b
=fff(ty+(1—t)x)dxdy

we get the desired result in (2.4).

iii) We know that

b b
1 1
F(t) = mJ |:mj fltx+ (1 - t)y)dx] dy.

Now if we take for y fixed

b
1
H,(t) = mjf(tx + (1 —t)y)dx,

a
for te[01]] and p=th+(1—-t)y,q=ta+
(1 — t)y, we have the identity

P
1
H,(t) = Hff(u)du.

q
Applying the Hermite-Hadamard inequality for
(a, B) —convex functions, we obtain

H, (1) _—ff(u)du> H(2¢,26)f (p+q>
=H(2“,25)f(t%+(1—t)y)

forall t € [0,1],y € [a, b]. Integrating on [a, b] over
y we get

F(t) = H(2%,2F)H(1 - t)
forall t € (0,1). We can easily see that F(t) =
F(1 — t) then inequality (2.5) holds for t € (0,1) and
it also holds for t = 0 or t = 1. That completes proof.

iv) Since f is (a, B) —convex on [a, b], we have

fltx+ (1 —0)y) <tf(x) + 1 - Ff(y)

forall x,y € [a,b] and t € [0,1]. By integrating this
inequality on [a, b]? fot t we deduce

b

1
FO<(t*+(1- t)ﬁ)mff(x)dx

a

For the second part of the inequality (2.6) we note by
the second part of the Hermite-Hadamard inequality,
that

Hy () = —— jp fdu <
Y p—q .

q
fb+ @A —-t)a) f(ta+ (1 —-1t)b)
+
a+1 B+1
wherep =th+ (1 —t)yandg =ta+ (1 —t)y, t €
[0,1]. Integrating this inequality on [a, b] over y we
deduce

F(t) < b jf(tb + (1 -t)y)dy

b
1
—1f f(ta+ (1 —t)y)dy|.
a
Then with a simple calculation, we have:

b
1
— [ e+ @ -oyay

f(r) &
175+

l
_f) | fb+(A-Da)
T a+1 g+1
Wherer =bandl=tb+ (1 —t)a, t € (0,1);and
similarly,
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! b 1 d
— [ fta+a-oyay

f(@) +f(ta + (1 -0)b)

a+1 B+1 '
By addition, it gives the second part of (2.6)
Furthermore, for t = 0 and t = 1, the inequality also
holds.

For additional information about the mappings H and
F see [3].

Theorem 7. Let f:Ic R, » Rbean(a,B) —
convex functionon I, a, § € I’ witha < b, t € [0,1]
then we have the inequality:

b

b
Wf f|t“f(x) + (1 — 0)ff(y)|dxdy — F;(t)

a

b

1
<[ r@a =R

b
ff(tx + (1 —t)y)dxdy.

o
N
o~
—
I
QSG‘

Proof. Since f is (a0, 8) —convex on I and with
properties of modulus we have:

0<t*f)+ A -FfFO) — flex + (1 - )y)
= |t7f ) + (1= OFF() — ftx + (1 = D)y

> |e9f 00 + (1= 0FFO) = If (ex + (1 = O)y)|

forall t € [0,1] and x € [a, b].
Now integrating the above inequality over x,y on
[a, b]?, we get

b b
1
b-a2 f f |e9£ GO + (1 = DF O] dxdy - Fr(©)

b b
—ﬁfﬂt“f(xﬂ (1— P fF()|dxdy — F;(t)

For all t € [0,1]. On the other hand, we have

b b
G| [t r@ +a - 0pr0) dxay

@ —t)B
Mff(x)dx

and that completes the proof.

Conclusion

(a,B) —convex functions is a general form of
s —convex functions in the second sense so the results
in this work is consistent with earlier works for
convex and s-convex functions. Because of this class
is new, new inequalities, properties, and
generalizations can be found involving this class.
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