

Generalized R-contraction by using triangular α -orbital admissible

Ferhan Şola Erduran¹

Abstract – *This* study presents Ciric type generalization of R-contraction and generalized Rcontraction by using an α-orbital admissible function in metric spaces using the definition of Rcontraction introduced by Roldan-Lopez-de-Hierro and Shahzad [New fixed-point theorem under R-contractions, Fixed Point Theory and Applications, 98(2015): 18 pages, 2015] and prove some fixed-point theorems for this type contractions. Thanks to these theorems, we generalize some known results.

Subject Classification (2020): 54H25, 47H10.

1. Introduction

Keywords: α-admissible, R-contraction, Ciric generalization,

Fixed point

This section provides some of basic notions. The concept of fixed point appeared in 1922 with the Banach contraction principle (BCP) [1]. So far, many studies [2-5] has been conducted on this concept applied in many areas, such as differential equations theory and economics. The most striking of the results obtained by generalizing BCP is the Meir-Keeler contraction (MKC) provided in [6]:

Let T be a self-mapping on a complete metric space (X, d) . Given $\varepsilon > 0$, there exist $\delta > 0$ such that

 $\varepsilon \leq d(x, y) \leq \varepsilon + \delta$ implies that $d(Tx, Ty) \leq \varepsilon$

After that, many authors studied extensions of MKC. In [7], the authors presented the notion of simulation function (SF), an auxiliary function for improving BCP, and generalized MKC:

A simulation function ξ is a mapping from $[0, \infty) \times [0, \infty)$ to $\mathbb R$ such that

ξ₁) ξ(0,0) = 0

ξ₂) ξ(t, s) < s – t, for all s, t $\in \mathbb{N}$

 ξ_3) If $\{t_n\}$, $\{s_n\}$ are sequences in $(0, \infty)$ such that $\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n > 0$ then $\limsup_{n \to \infty} \xi(t_n, s_n) < 0$

Afterwards, [8] modified the condition ξ₃ of SF to expand the family of SFs:

 ξ_3) If $\{t_n\}$, $\{s_n\}$ are sequences in $(0, \infty)$ such that $\lim_{n\to\infty} t_n = \lim_{n\to\infty} s_n > 0$ and $t_n < s_n$, for all $n \in \mathbb{N}$, then limsup $\xi(t_n, s_n) < 0$. n→∞

¹ferhansola@gazi.edu.tr (Corresponding Author)

¹Department of Mathematics, Faculty of Science, Gazi University, Ankara, Turkey

Article History: Received: 09 Nov 2020 — Accepted: 01 Mar 2021 — Published: 30 Apr 2021

In [7], the researchers then put forward the Z-contraction mapping as follows:

Let (X, d) be a metric space and T be a self-mapping on X. If there exists $\xi \in Z$ (Z is the family of SFs), for all $x, y \in X$ with $x \neq y$,

$$
\xi(d(Tx, Ty), d(x, y)) \ge 0
$$

then T is Z-contraction concerning ξ. So, they generalized the Banach fixed point theorem in metric space using the auxiliary function ξ. Furthermore, the concept of manageable function (MF) provided by [2] to work multivalued contraction mappings is as follows:

A function η: ℝ \times ℝ → ℝ is manageable if

 η_1) $\eta(t, s) < s - t$, for all $s, t > 0$

 $η_2$) For a bounded sequence {t_n} ⊂ (0,∞), a non-increasing sequence {s_n} ⊂ (0,∞), η provides limsup $t_n + \eta(t_n, s_n)$ $\frac{1}{s_n} < 1.$

Besides, [7] defined $\widehat{\text{Man}(R)}$ -contraction for single-valued mapping as follows:

n→∞

Let (X, d) be a metric space and T be self-mapping on X. If there exists $\eta \in \text{Man}(\overline{R})$ such that

 $\eta(d(T_X, T^2X), d(x, Tx)) \ge 0$

for all $x \in X$, then T is $\widehat{Man(R)}$ -contraction.

Recently, [9] have introduced R-function for considering a true extension of MKC as follows:

Let $A \subset \mathbb{R}$, $A \neq \emptyset$, and $\varrho: A \times A \to \mathbb{R}$ be a function. Then, ϱ is called an *R*-function:

 (ϱ_1) If a sequence $\{a_n\} \subset (0,\infty) \cap A$ and $\varrho(a_{n+1},a_n) > 0$ for all $n \in \mathbb{N}$, then $\{a_n\} \to 0$.

 (ϱ_2) If two sequence $\{a_n\}$, $\{b_n\} \subset (0,\infty) \cap A$ converges to $L \ge 0$ such that $L < a_n$ and $\varrho(a_n, b_n) > 0$ for all $n \in \mathbb{N}$, then $L = 0$.

 (Q_3) If $\{a_n\}$, $\{b_n\} \subset (0, \infty)$ \cap A are two sequences such that $\{b_n\} \to 0$ and $\varrho(a_n, b_n) > 0$ for all $n \in \mathbb{N}$, then ${a_n} \rightarrow 0.$

Let R_A denote the family of all *R*-functions, (X, d) be a metric space, and T be a mapping on X. T is Rcontraction concerning ϱ if there exist $\varrho \in R_A$ such that ran(d) $\subset A$ and

$$
\varrho\big(d(Tx,Ty),d(x,y)\big)>0
$$

for all $x, y \in X$ with $x \neq y$

$$
\operatorname{ran}(d) = \{d(x, y) : x, y \in X\} \subset [0, \infty)
$$

[9] also gave R-contraction concerning ρ and showed a relationship between the class of some known functions and R-function and between some known contractions and R-contraction relating to ρ as follows:

i. A SF is an R-function and verifies (ϱ_3) ,

ii. Any MF is an R-function and confirms (ϱ_3) ,

iii. A Geraghty function (GF) ϕ : [0, ∞) \to [0,1) holds if { t_n } \subset [0, ∞) and { $\phi(t_n)$ } \to 1, then { t_n } \to 0 [10] If ϕ : $[0, \infty) \rightarrow [0, 1)$ is a GF, then ϱ' $\phi_{\phi} \colon [0,\infty) \times [0,\infty) \to \mathbb{R}$, defined with

$$
\varrho'_{\phi}(t,s) = \phi(s)s - t
$$

for all $t, s \in [0, \infty)$, is an R-function on $[0, \infty)$ satisfying condition (ϱ_3) ,

iv. Any MKC is R-contraction in respect of ϱ ,

v. A Geraghty contraction (GC) is a self-mapping T on X such that for every $x, y \in X$ and ϕ is a GF $d(Tx, Ty) \leq \phi(d(x, y))d(x, y)$ [10].

Every GC is R-contraction in respect of ρ .

In [9], it is claimed that if $\varrho(t, s) \leq s - t$ for all $t, s \in A \cap (0, \infty)$, then (ϱ_3) is held.

[11] presented the concept of weakly Picard operator as follows:

Let (X, d) be a metric space and T be a self-mapping on X . Given a point $x_0 \in X$, the Picard sequence $\{x_n\}$ of T started with x_0 is given by $x_{n+1} = Tx_n$ for all $n \in \mathbb{N}$. T defined as a weakly Picard operator if, for all $x_0 \in X$, the Picard sequence of T converges to a fixed point of T. Also, T is a Picard operator if it is a weakly Picard operator, and T has a unique fixed point.

2. Main Result

This section proves the Ciric type generalization of R-contraction concerning ρ , and presents a generalization of known results and illustrates them.

Definition 2.1. Let (X, d) be a metric space T be a self-mapping on X and $\varrho \in R_A$. T is generalized Rcontraction in respect of ϱ the following case satisfying ran(d) $\subset A$ and

$$
\varrho(d(Tx,Ty),M(x,y)) > 0 \#(2.1)
$$

for all $x, y \in X$ and $x \neq y$, where

$$
M(x,y) = \max \Big\{ d(x,y), d(x,Tx), d(y,Ty), \frac{1}{2} [d(x,Ty) + d(y,Tx)] \Big\}.
$$

Theorem 2.2. Let (X, d) be a complete metric space and T be generalized R -contraction on X in respect of ρ . Suppose that one of the followings hold.

 i . T is continuous, *ii.* ϱ satisfies the condition (ϱ_3) ,

iii. $\rho(t, s) \leq s - t$ for all $t, s \in A \cap (0, \infty)$.

Then T is a Picard operator, and T has a unique fixed point.

Proof.

Let we take any $x_0 \in X$ and $\{x_n\}$ is a Picard sequence of T started with x_0 . If there exists some $n_0 \in \mathbb{N}$, $x_{n_0+1} = Tx_{n_0} = x_{n_0}$ then x_{n_0} is a fixed point of T. Assume that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N}$. Since T is generalized *-contraction in respect of* $*o*$ *.*

$$
\varrho(d(Tx_{n-1},Tx_n),M(x_{n-1},x_n)) > 0 \#(2.2)
$$

where

$$
M(x_{n-1}, x_n) = \max \left\{ d(x_{n-1}, x_n), d(x_{n-1}, Tx_{n-1}), d(x_n, Tx_n), \frac{d(x_{n-1}, Tx_n) + d(x_n, Tx_{n-1})}{2} \right\}
$$

=
$$
\max \left\{ d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_n, x_{n+1}), \frac{d(x_{n-1}, x_{n+1}) + d(x_n, x_n)}{2} \right\}
$$

=
$$
\max\{a_{n-1}, a_n\}.
$$

From (2.2), we get

 $\varrho(a_n, \max\{a_{n-1}, a_n\}) > 0 \# (2.3)$

If $a_{n-1} \le a_n$ for some $n \in \mathbb{N}$, then from (2.3)

$$
\varrho(a_n, a_n) > 0
$$

which is a contradiction. Therefore, $a_{n-1} > a_n$ for all $n \in \mathbb{N}$ and $\varrho(a_n, a_{n-1}) > 0$.

From (ϱ_1) , we have $\{a_n = d(x_n, x_{n+1})\} \to 0$.

Now, we show the sequence $\{x_n\}$ is Cauchy. Assume $\{x_n\}$ is not a Cauchy sequence. There exist $\varepsilon > 0$, for all $k \ge n_1$, there exist $m(k) > n(k) > k$ and $d(x_{n(k)}, x_{m(k)}) \ge \varepsilon$. Let $m(k)$ be the smallest number and satisfies the conditions above. Then $d(x_{n(k)-1}, x_{m(k)}) < \varepsilon$. Hence,

$$
\varepsilon \leq d(x_{n(k)}, x_{m(k)}) \leq d(x_{n(k)}, x_{m(k)-1}) + d(x_{m(k)-1}, x_{m(k)}) < \varepsilon + d(x_{m(k)-1}, x_{m(k)}).
$$

As $k \to \infty$, $\lim_{k \to \infty} d(x_{n(k)}, x_{m(k)}) = \varepsilon$. Since

$$
|d(x_{n(k)}, x_{m(k)-1}) - d(x_{n(k)}, x_{m(k)})| \leq d(x_{m(k)-1}, x_{m(k)})
$$

we get $\lim_{k\to\infty} d(x_{n(k)}, x_{m(k)-1}) = ε$. Similarly, we obtain

$$
\lim_{k\to\infty} d(x_{n(k)-1}, x_{m(k)}) = \varepsilon = \lim_{k\to\infty} d(x_{n(k)-1}, x_{m(k)-1}).
$$

Let $L = \varepsilon > 0$, $\{t_k = d(x_{n(k)}, x_{m(k)})\} \to L$, $\{s_k = d(x_{n(k)-1}, x_{m(k)-1})\} \to L$ and

$$
d(x_{n(k)-1}, x_{m(k)-1}) \leq M(x_{n(k)-1}, x_{m(k)-1}) = \max \left\{ \begin{array}{c} d(x_{n(k)-1}, x_{m(k)-1}), d(x_{n(k)-1}, Tx_{n(k)-1}), d(x_{m(k)-1}, Tx_{m(k)-1}), \\ \frac{1}{2} \left[d(x_{n(k)-1}, Tx_{m(k)-1}) + d(x_{m(k)-1}, Tx_{n(k)-1}) \right] \end{array} \right\}
$$

Taking a limit $k \to \infty$, we have $\lim_{k \to \infty} M(x_{n(k)-1}, x_{m(k)-1}) = L$. Since $L = \varepsilon < d(x_{n(k)}, x_{m(k)}) = t_k$ and

$$
\varrho\left(d\big(x_{n(k)}, x_{m(k)}\big), M\big(x_{n(k)-1}, x_{m(k)-1}\big)\right) > 0
$$

for all $k \in \mathbb{N}$, then (ϱ_2) guarantees $L = \varepsilon = 0$. Consequently, $\{x_n\}$ is Cauchy. Since the metric space (X, d) is complete, there exist $z \in X$ such that $x_n \to z$. Let show that z fixed point.

Case 1: Suppose T is a continuous function. So $\{Tx_n = x_{n+1}\} \rightarrow Tx$, and $Tz = z$.

Case 2: In propositional logic, $p \Rightarrow q \equiv q' \Rightarrow p'$. Now we look at the proof of a fixed point of T concerning this point of view. Assume $d(z, Tz) > 0$.

$$
a_n = d(Tx_n, Tz) = d(x_{n+1}, Tz) \text{ and so } \lim_{n \to \infty} a_n = d(z, Tz) > 0 \text{ and}
$$

$$
b_n = M(x_n, z) = \max \Big\{ d(x_n, z), d(x_n, Tx_n), d(z, Tz), \frac{1}{2} [d(z, Tx_n) + d(x_n, Tz)] \Big\}
$$

Let $n \to \infty$, we get $\lim_{n \to \infty} b_n = M(x_n, z) = d(z, Tz) > 0$, but

$$
\varrho\big(\mathrm{d}(\mathrm{T} \mathrm{x}_n, \mathrm{T} \mathrm{z}), \mathrm{M}(\mathrm{x}_n, \mathrm{z})\big) > 0.
$$

It contradicts to (ϱ_3) . Consequently, $d(z, Tz) = 0$.

Case 3: Assume $\rho(t, s) < s - t$ for all $t, s \in A \cap (0, \infty)$. Proposition 1.2 means that Case 2 is applicable. z is a fixed point, so T is a weakly Picard operator.

Let $z \neq y$ and $z, y \in X$ be two fixed points. In this case, $a_n = d(z, y) > 0$ for all $n \in \mathbb{N}$.

$$
\varrho(a_{n+1}, a_n) = \varrho(d(z, y), d(z, y)) = \varrho(d(Tz, Ty), M(z, y)) > 0
$$

Applying $(\varrho_1), \{a_n\} \to 0$, which is a contradiction.

Example 2.3. Let $X = [0,1]$ and $d: X \times X \to \mathbb{R}$ be a usual metric. Let $T: X \to X$ as $Tx = \frac{x}{x+1}$ $\frac{x}{x+1}$ for all $x \in X$. We define $\varrho: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $\varrho(t, s) = \frac{s}{s}$ $\frac{s}{s+1}$ – t. From Theorem 2.2, $x = 0$ is a fixed point of T.

We have the following corollaries by using Theorem 2.2. In this case, we generalized Corollary 28-33 in [9] by using similar $M(x, y)$.

Corollary 2.4. Any continuous generalized R -contraction has a unique fixed point.

Corollary 2.5. Any generalized Z -contraction has a unique fixed point.

Corollary 2.6. Every generalized $\text{Man}(\overline{R})$ -contraction has a unique fixed point.

Corollary 2.7. Let (X, d) be a complete metric space and $T: X \to X$. Assume that there exist $\varphi, \psi: [0, \infty) \to$ $[0, \infty)$ such that

$$
\psi(d(Tx,Ty)) \le \psi\big(M(x,y)\big) - \varphi\big(M(x,y)\big)
$$

for all $x, y \in X$. If φ is lower semi-continuous, ψ is nondecreasing, ψ continuous from right and $\varphi^{-1}(\{0\}) = \{0\}$, then Thas a unique fixed point.

Proof.

It is obvious Theorem 2.2 and Theorem 22 in [9].

Corollary 2.5. Every generalized GC has a unique fixed point.

Proof.

It is obvious Theorem 2.2 and Corollary 26 in [9].

Corollary 2.6. Every generalized MKC has a unique fixed point.

Proof.

It is obvious from Theorem 2.2 and Theorem 25 in [9].

3. Admissible Functions

[12] gave α -admissible concept as follows: let $T: X \to X$, $\alpha: X \times X \to \mathbb{R}$. T is said to be α -admissible if $\alpha(x, y) \ge 1$ implies $\alpha(Tx, Ty) \ge 1$. Then, [3] added the condition; $\alpha(x, z) \ge 1$, $\alpha(z, y) \ge 1$ imply $\alpha(x, y) \geq 1$, nearby the α -admissible condition and so they introduced triangular α -admissible notion. We understand from these definitions, triangular α -admissible implies α -admissible, but the converse is not valid. In 2014, Popescu [4] introduced α -orbital and triangular α -orbital admissible notions as follows:

Definition 3.1. [4] Let $T: X \to X$, $\alpha: X \times X \to \mathbb{R}$. T is said to be α -orbital admissible if $\alpha(x, Tx) \ge 1$ implies $\alpha(Tx, T^2x) \geq 1.$

Definition 3.2. [4] Let $T: X \to X$, $\alpha: X \times X \to \mathbb{R}$. T is said to be triangular α -orbital admissible if T is α orbital admissible, $\alpha(x, y) \ge 1$, if $\alpha(y, Ty) \ge 1$ implies $\alpha(x, Ty) \ge 1$.

Every α -admissible mapping is an α -orbital admissible and every triangular α -admissible mapping is a triangular α -orbital admissible mapping. So that a triangular α -orbital admissible mapping is a very wide function class in the literature.

Lemma 3.3. [9] Let $T: X \to X$ be a triangular α -orbital admissible mapping. Assume that there exist $x_1 \in$ X such that $\alpha(x_1, Tx_1) \ge 1$. Define a sequence $\{x_n\}$ by $x_{n+1} = Tx_n$. Then we have $\alpha(x_n, x_m) \ge 1$ for all $n, m \in \mathbb{N}$ with $n \leq m$.

Definition 3.4. Let (X, d) be a metric space, $T: X \to X$. T is an α -admissible R-contraction in respect of ϱ if there exist $\varrho: A \times A \to \mathbb{R}$ such that for all $x, y \in X$, $\alpha(x, y) d(Tx, Ty) \in A$, ran(d) $\subset A$, $\alpha: X \times X \to [0, \infty)$,

$$
\varrho(\alpha(x,y)d(Tx,Ty),d(x,y))>0
$$

for all $x, y \in X$ with $x \neq y$. If $\alpha(x, y) = 1$, then T is a R-contraction.

Theorem 3.5. Let (X, d) be a complete metric space, $\alpha: X \times X \to \mathbb{R}$, $T: X \to X$. If

T is an α -admissible R-contraction type mapping in respect of ρ ,

T is a triangular α -orbital admissible mapping, there exist $x_0 \in X$ and $\alpha(x_0, Tx_0) \geq 1$,

 $\rho(t, s) < s - t$ for all $t, s \in A \cup (0, 1)$,

 T is a continuous function.

Then, T is a Picard operator and has a fixed point in X .

Proof.

Let $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$ and let $\{x_n\}$ be a Picard sequence of T started with x_0 such that $x_{n+1} = Tx_n$ for all $n \in \mathbb{N}$. If there exist $n_0 \in \mathbb{N}$, $x_{n_0+1} = x_{n_0}$, then x_{n_0} is a fixed point of T. In this case, suppose that $x_{n+1} \neq x_n$ or all $n \in \mathbb{N}$. Because of *(ii)* and *(iii)*, we obtain

$$
\alpha(x_0, x_1) = \alpha(x_0, Tx_0) \ge 1 \Rightarrow \alpha(Tx_0, Tx_1) \ge 1
$$

similarly,

$$
\alpha(x_1, x_2) = \alpha(x_1, Tx_1) \ge 1 \Rightarrow \alpha(Tx_1, Tx_2) \ge 1
$$

continuing this process, we derive $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$. T is an α -admissible R-contraction, then

$$
0 < \varrho\big(\alpha(x_n, x_{n-1})d(Tx_n, Tx_{n-1}), d(x_n, x_{n-1})\big) < d(x_n, x_{n-1}) - \alpha(x_n, x_{n-1})d(x_{n+1}, x_n)
$$

as a result, we get for all $n \in \mathbb{N}$

$$
d(x_{n+1}, x_n) < \alpha(x_n, x_{n-1})d(x_{n+1}, x_n) < d(x_n, x_{n-1})\#(3.1)
$$

Hence, the sequence $\{x_n\}$ is decreasing, bounded from below. Consequently, there exists $L \geq 0$ such that $\lim_{n\to\infty} d(x_n, x_{n-1}) = L$. From equation (3.1), we get

$$
\lim_{n \to \infty} \alpha(x_n, x_{n-1}) d(x_{n+1}, x_n) = L.
$$

Let $s_n = \alpha(x_n, x_{n-1})d(x_{n+1}, x_n)$, $t_n = d(x_n, x_{n-1})$ and we can easily see that $L < s_n$ for $n \in \mathbb{N}$. In this case, from the (ϱ_2) property, we have $L = 0$.

The sequence $\{x_n\}$ is Cauchy in X. Assume the sequence $\{x_n\}$ is not Cauchy. There exist $\varepsilon > 0$, for all $k \geq 0$ n_1 , there exist $m(k) > n(k) > k$ and $d(x_{n(k)}, x_{m(k)}) \ge \varepsilon$. Let $m(k)$ be the smallest and satisfies the above conditions. So $d(x_{n(k)-1}, x_{m(k)}) < \varepsilon$. Then

$$
\varepsilon \le d(x_{n(k)}, x_{m(k)}) \le d(x_{n(k)}, x_{m(k)-1}) + d(x_{m(k)-1}, x_{m(k)}) < \varepsilon + d(x_{m(k)-1}, x_{m(k)})
$$

As $k \to \infty$, we get $\lim_{k \to \infty} d(x_{n(k)}, x_{m(k)}) = \varepsilon$. Since

$$
|d(x_{n(k)}, x_{m(k)-1}) - d(x_{n(k)}, x_{m(k)})| \leq d(x_{m(k)-1}, x_{m(k)}),
$$

we get $\lim_{k \to ∞} d(x_{n(k)}, x_{m(k)-1}) = ε$. Similarly, we obtain

$$
\lim_{k\to\infty} d(x_{n(k)-1}, x_{m(k)}) = \varepsilon = \lim_{k\to\infty} d(x_{n(k)-1}, x_{m(k)-1}).
$$

By Lemma 4.3, we have $\alpha(x_{n(k)-1}, x_{m(k)-1}) \geq 1$. Thus, we deduce that

$$
0 < \varrho \left(\alpha \left(x_{n(k)-1}, x_{m(k)-1} \right) d \left(T x_{n(k)-1}, T x_{m(k)-1} \right), d \left(x_{n(k)-1}, x_{m(k)-1} \right) \right) \\
 < d \left(x_{n(k)-1}, x_{m(k)-1} \right) - \alpha \left(x_{n(k)-1}, x_{m(k)-1} \right) d \left(T x_{n(k)-1}, T x_{m(k)-1} \right)
$$

for all $k \geq n_1$. Consequently,

$$
0 < d(x_{n(k)}, x_{m(k)}) < a(x_{n(k)-1}, x_{m(k)-1})d(Tx_{n(k)-1}, Tx_{m(k)-1}) < d(x_{n(k)-1}, x_{m(k)-1})
$$

for all $k \geq n_1$. Let $k \to \infty$, we have

$$
\lim_{k \to \infty} \alpha(x_{n(k)-1}, x_{m(k)-1}) d(T x_{n(k)-1}, T x_{m(k)-1}) = \varepsilon.
$$

Let $a_k = \alpha(x_{n(k)-1}, x_{m(k)-1}) d(Tx_{n(k)-1}, Tx_{m(k)-1})$ and $b_k = d(x_{n(k)}, x_{m(k)})$. We show that $\varepsilon < a_k$ for all $k \ge n_1$. In this case, from the (Q_2) property, we have $\varepsilon = 0$, which is a contradiction. Hence, the sequence $\{x_n\}$ is Cauchy. From (X, d) is complete, there exist $z \in X$, $\{x_n\} \to z$.

Assume the condition (*v*) satisfied. In this case, $\{x_{n+1} = Tx_n\} \rightarrow Tz$, and so $Tz = z$. Therefore, T is a weakly Picard operator.

Theorem 3.6. Let (X, d) be complete, $\alpha: X \times X \to \mathbb{R}$ and $T: X \to X$. Assume the followings are satisfied:

T is a α - admissible R-contraction type mapping concerning ρ ;

T is a triangular α - orbital admissible mappings,

There exist $x_0 \in X$ and $\alpha(\alpha, Tx_0) \geq 1$;

 $\rho(t, s) < s - t$ for all $t, s \in A \cup (0, 1)$;

if $\{x_n\} \in X$, $\alpha(x_n, x_{n+1}) \ge 1$ for all $n, x_n \to x$ as $n \to \infty$, then there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and $\alpha(x_{n_k}, x) \geq 1$ for all $k \in \mathbb{N}$.

So, T is a Picard operator and has a fixed point in X .

Proof.

From the proof of the above theorem, the sequence $\{x_n\}$, $x_{n+1} = Tx_n$ for all $n \in \mathbb{N}$, converges to $z \in X$. By the condition (*v*), there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and $\alpha(x_{n_k}, x) \ge 1$ for all $k \in \mathbb{N}$. Applying (i) for all k , we get

$$
0 < \varrho\big(\alpha(x_{n_k}, z)d\big(Tx_{n_k-1}, T_z\big), d(x_{n_k}, z)\big) = \varrho\big(\alpha(x_{n_k}, z), d\big(x_{n_k}, T_z\big), d(x_{n_k}, z)\big) \\
&< d\big(x_{n_k}, z\big) - \alpha(x_{n_k}, z)d\big(x_{n_k}, T_z\big)
$$

which is equivalent to

$$
d(x_{n_k}, T_z) = d(Tx_{n_k-1}, T_z) \leq \alpha(x_{n_k}, z) d(x_{n_k}, T_z) < d(x_{n_k}, z).
$$

Let $k \to \infty$, we have $d(z, Tz) = 0$, i.e., $z = Tz$.

From the uniqueness of fixed point of α -admissible R-contraction type mapping,

(*H*) For all $x \neq y$, there exists $v \in X$ and $\alpha(x, v) \geq 1, \alpha(y, v) \geq 1, \alpha(v, Tv) \geq 1$.

Replacing (*iii*) with (H) in the hypothesis of Theorem 3.5 and Theorem 3.6, we get the uniqueness of the fixed point of T. Assume z, t are two fixed points of T and $z \neq t$. From the condition (H), there exists $v \in$ X and

$$
\alpha(z,v) \ge 1, \alpha(t,v) \ge 1, \alpha(v, Tv) \ge 1.
$$

Because T is triangular α -orbital admissible, we obtain $\alpha(z, T^n v) \ge 1$ and $\alpha(t, T^n v) \ge 1$ for all $n \in \mathbb{N}$, we get

$$
0 < \varrho\big(\alpha(z, T^n v)d(Tz, T^{n+1}v), d(z, T^n v)\big) \\
&< d(z, T^n v) - \alpha(z, T^n v)d(Tz, T^{n+1} v)
$$

and so

$$
d(z,T^nv)=d(Tz,T^nv)\leq \alpha(z,T^nv)d(Tz,T^{n+1}v)
$$

By the Theorem 3.5, we know that the sequence $\{T^n v\}$ converges to a fixed point t of T. As $n \to \infty$,

 $s_n = (z, T^n v) d(Tz, T^{n+1} v) \rightarrow d(z, t)$ and $t_n = d(z, T^n v) \rightarrow d(z, t)$

From (ϱ_2) , we $d(z,t) = 0$, which is a contradiction. Therefore, $z = t$.

Now, we can give some corollaries by using Theorem 3.5 and Theorem 3.6.

Corollary 3.7. Every α -admissible Z-contraction has a unique fixed point.

Corollary 3.8. Every α -admissible $\widehat{Man(R)}$ -contraction has a unique fixed point.

We prove the following corollary by using Theorem 3.5 and Theorem 2.2.

Corollary 3.9. Every α -admissible *Z*-contraction has a unique fixed point.

Corollary 3.10. Every α -MKC has a unique fixed point.

Conflicts of Interest

The author declares no conflict of interest.

References

- [1] S. Banach, Sur les operation dans les ensembles abstraits et leur application auxequeations integrales, Fundementa Matheaticae, 3, (1922) 133–181.
- [2] W-S Du, F. Khojasteh, New results and generalizations for approximate fixed-point property and their applications, Abstract and Applied Analysis, 2014, (2014) Article ID: 581267, 1-9.
- [3] E. Karapınar, E. Kumam, P. Salimi, *On* $\alpha \psi$ *-Meir Keeler contractive mappings*, Fixed Point Theory and Applications, 2013, (2013) Article Number: 323, 1–21.
- $[4]$ O. Popescu, *Some new fixed-point theorems for* α *-Geraghty contraction type maps in metric spaces*, Fixed Point Theory and Applications, 2014, (2014) Article Number: 190, 1–12.
- [5] H. Şahin, Best proximity point theory on vector metric spaces, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), (2021) 130–142.
- [6] A. Meir, E. Keeler, A theorem on contraction mappings, Journal of Mathematical Analysis and Applications, 28, (1969) 326–329.
- [7] F. Khojasteh, S. Shukla, S. Radenovic, A new approach to the study of fixed-point theory for simulation functions, Filomat, 29, (2015) 1189–1194.
- [8] A. F. Roldan Lopez de Hierro, E. Karapınar, C. Roldan Lopez de Hierro, J. Martinez-Moreno, Coincidence point theorems on metric space via simulation functions, Journal of Computational Applied Mathematics, 275, (2015) 345–355.
- [9] A. F. Roldan Lopez de Hierro, N. Shahzad, New fixed-point theorem under R-contractions, Fixed Point Theory and Applications, 2015, (2015) Article Number: 98, 1–18.
- [10] M. Geraghty, On contractive mappings, Proceedings of the American Mathematical Society, 40, (1973) 604–608.
- [11] I. A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58, (2003) 191-219.
- [12] B. Samet, C. Vetro, and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications, 75(4), (2012) 2154–2165.