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Abstract – This study presents Ciric type generalization of R-contraction and generalized R-

contraction by using an α-orbital admissible function in metric spaces using the definition of R-

contraction introduced by Roldan-Lopez-de-Hierro and Shahzad [New fixed-point theorem 

under R-contractions, Fixed Point Theory and Applications, 98(2015): 18 pages, 2015] and prove 

some fixed-point theorems for this type contractions. Thanks to these theorems, we generalize 

some known results. 

Subject Classification (2020): 54H25, 47H10. 

1. Introduction 

This section provides some of basic notions. The concept of fixed point appeared in 1922 with the 

Banach contraction principle (BCP) [1]. So far, many studies [2-5] has been conducted on this concept 

applied in many areas, such as differential equations theory and economics. The most striking of the 

results obtained by generalizing BCP is the Meir-Keeler contraction (MKC) provided in [6]: 

Let T be a self-mapping on a complete metric space (X, d). Given ε > 0, there exist δ > 0 such that  

𝜀 ≤ 𝑑(𝑥, 𝑦) < 𝜀 + 𝛿 implies that 𝑑(𝑇𝑥, 𝑇𝑦) < 𝜀 

After that, many authors studied extensions of MKC. In [7], the authors presented the notion of 

simulation function (SF), an auxiliary function for improving BCP, and generalized MKC:  

A simulation function ξ is a mapping from [0, ∞) × [0, ∞) to ℝ such that 

ξ1) ξ(0,0) = 0 

ξ2) ξ(t, s) < s − t, for all s, t ∈ ℕ 

ξ3) If {tn}, {sn} are sequences in (0, ∞) such that lim
n→∞

tn = lim
n→∞

sn > 0 then limsup
n→∞

ξ(tn, sn) < 0 

Afterwards, [8] modified the condition ξ3 of SF to expand the family of SFs: 

ξ3) If {tn}, {sn} are sequences in (0, ∞) such that lim
n→∞

tn = lim
n→∞

sn > 0 and tn < sn, for all n ∈ ℕ, then 

limsup
n→∞

ξ(tn, sn) < 0. 
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In [7], the researchers then put forward the Z-contraction mapping as follows: 

Let (X, d) be a metric space and T be a self-mapping on X. If there exists ξ ∈ Z (Z is the family of SFs), for 

all x, y ∈ X with x ≠ y, 

ξ(d(Tx, Ty), d(x, y)) ≥ 0 

then T is Z-contraction concerning ξ. So, they generalized the Banach fixed point theorem in metric space 

using the auxiliary function ξ. Furthermore, the concept of manageable function (MF) provided by [2] to 

work multivalued contraction mappings is as follows: 

A function η: ℝ × ℝ → ℝ is manageable if 

η1) η(t, s) < s − t, for all s, t > 0 

η2) For a bounded sequence {tn} ⊂ (0, ∞), a non-increasing sequence {sn} ⊂ (0, ∞), η provides 

limsup
n→∞

tn + η(tn, sn)

sn
< 1. 

Besides, [7] defined Man(R)̂ -contraction for single-valued mapping as follows: 

Let (X, d) be a metric space and T be self-mapping on X. If there exists η ∈ Man(R)̂  such that 

η(d(Tx, T2x), d(x, Tx)) ≥ 0 

for all x ∈ X, then T is Man(R)̂ -contraction.  

Recently, [9] have introduced R-function for considering a true extension of MKC as follows: 

Let 𝐴 ⊂ ℝ, 𝐴 ≠ ∅, and 𝜚: 𝐴 × 𝐴 → ℝ be a function. Then, 𝜚 is called an R-function:  

(𝜚1) If a sequence {𝑎𝑛} ⊂ (0, ∞) ∩ 𝐴 and 𝜚(𝑎𝑛+1, 𝑎𝑛) > 0 for all 𝑛 ∈ ℕ, then {𝑎𝑛} → 0. 

(𝜚2) If two sequence {𝑎𝑛}, {𝑏𝑛} ⊂ (0, ∞) ∩ 𝐴 converges to 𝐿 ≥ 0 such that 𝐿 < 𝑎𝑛 and 𝜚(𝑎𝑛, 𝑏𝑛) > 0 for 

all 𝑛 ∈ ℕ, then 𝐿 = 0. 

(𝜚3) If {𝑎𝑛}, {𝑏𝑛} ⊂ (0, ∞) ∩ 𝐴 are two sequences such that {𝑏𝑛} → 0 and 𝜚(𝑎𝑛, 𝑏𝑛) > 0 for all 𝑛 ∈ ℕ, then 

{𝑎𝑛} → 0. 

Let RA denote the family of all R-functions, (𝑋, 𝑑) be a metric space, and 𝑇 be a mapping on 𝑋. 𝑇 is 𝑅-

contraction concerning 𝜚 if there exist 𝜚 ∈ 𝑅𝐴 such that ran(𝑑) ⊂ 𝐴 and  

𝜚(𝑑(𝑇𝑥, 𝑇𝑦), 𝑑(𝑥, 𝑦)) >  0 

for all x, y ∈ 𝑋 with 𝑥 ≠ 𝑦  

ran(𝑑) = {𝑑(𝑥, 𝑦): 𝑥, 𝑦 ∈ 𝑋} ⊂ [0, ∞) 

[9] also gave R-contraction concerning 𝜚 and showed a relationship between the class of some known 

functions and R-function and between some known contractions and R-contraction relating to 𝜚 as 

follows: 

i. A SF is an R-function and verifies (𝜚3), 

ii. Any MF is an R-function and confirms (𝜚3), 

iii. A Geraghty function (GF) 𝜙: [0, ∞) → [0,1) holds if {𝑡𝑛} ⊂ [0, ∞) and {𝜙(𝑡𝑛)} → 1, then {𝑡𝑛} → 0 [10] 

If 𝜙: [0, ∞) → [0,1) is a GF, then 𝜚′
𝜙: [0, ∞) × [0, ∞) → ℝ, defined with 

𝜚′
𝜙

(𝑡, 𝑠) = 𝜙(𝑠)𝑠 − 𝑡 

for all 𝑡, 𝑠 ∈ [0, ∞), is an R-function on [0, ∞) satisfying condition (𝜚3), 
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iv. Any MKC is R-contraction in respect of 𝜚, 

v. A Geraghty contraction (GC) is a self-mapping 𝑇 on 𝑋 such that for every 𝑥, 𝑦 ∈ 𝑋 and 𝜙 is a GF 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜙(𝑑(𝑥, 𝑦))𝑑(𝑥, 𝑦) [10]. 

Every GC is R-contraction in respect of 𝜚. 

In [9], it is claimed that if 𝜚(𝑡, 𝑠) ≤ 𝑠 − 𝑡 for all 𝑡, 𝑠 ∈ 𝐴 ∩ (0, ∞), then (𝜚3) is held.  

[11] presented the concept of weakly Picard operator as follows: 

Let (𝑋, 𝑑) be a metric space and 𝑇 be a self-mapping on 𝑋. Given a point 𝑥0 ∈ 𝑋, the Picard sequence {𝑥𝑛} 

of 𝑇 started with 𝑥0 is given by 𝑥𝑛+1 = 𝑇𝑥𝑛 for all 𝑛 ∈ ℕ. 𝑇 defined as a weakly Picard operator if, for all 

𝑥0 ∈ 𝑋, the Picard sequence of 𝑇 converges to a fixed point of 𝑇. Also, 𝑇 is a Picard operator if it is a 

weakly Picard operator, and 𝑇 has a unique fixed point. 

2. Main Result 

This section proves the Ciric type generalization of R-contraction concerning 𝜚, and presents a 

generalization of known results and illustrates them. 

Definition 2.1. Let (X, d) be a metric space T be a self-mapping on X and 𝜚 ∈ 𝑅𝐴. 𝑇 is generalized R-

contraction in respect of 𝜚 the following case satisfying ran(𝑑) ⊂ 𝐴 and 

𝜚(𝑑(𝑇𝑥, 𝑇𝑦), 𝑀(𝑥, 𝑦)) > 0#(2.1) 

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑥 ≠ 𝑦, where 

M(x, y) = max {d(x, y), d(x, Tx), d(y, Ty),
1

2
[d(x, Ty) + d(y, Tx)]} . 

Theorem 2.2. Let (X, d) be a complete metric space and T be generalized R-contraction on X in respect 

of 𝜚. Suppose that one of the followings hold. 

i. T is continuous, 

ii. 𝜚 satisfies the condition (𝜚3), 

iii. 𝜚(𝑡, 𝑠) ≤ 𝑠 − 𝑡 for all 𝑡, 𝑠 ∈ 𝐴 ∩ (0, ∞). 

Then 𝑇 is a Picard operator, and 𝑇 has a unique fixed point. 

Proof. 

 Let we take any 𝑥0 ∈ 𝑋 and {𝑥𝑛} is a Picard sequence of 𝑇 started with 𝑥0. If there exists some 𝑛0 ∈ ℕ, 

𝑥𝑛0+1 = 𝑇𝑥𝑛0
= 𝑥𝑛0

 then 𝑥𝑛0
 is a fixed point of 𝑇. Assume that 𝑥𝑛 ≠ 𝑥𝑛+1 for all 𝑛 ∈ ℕ. Since 𝑇 is 

generalized 𝑅-contraction in respect of 𝜚,  

𝜚(𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛), 𝑀(𝑥𝑛−1, 𝑥𝑛)) > 0#(2.2) 

where 

M(𝑥𝑛−1, 𝑥𝑛) = max {d(𝑥𝑛−1, 𝑥𝑛), d(𝑥𝑛−1, T𝑥𝑛−1), d(𝑥𝑛, T𝑥𝑛),
d(𝑥𝑛−1, T𝑥𝑛) + d(𝑥𝑛, T𝑥𝑛−1)

2
} 

= max {d(𝑥𝑛−1, 𝑥𝑛), d(𝑥𝑛−1, 𝑥𝑛), d(𝑥𝑛, 𝑥𝑛+1),
d(𝑥𝑛−1, 𝑥𝑛+1) + d(𝑥𝑛, 𝑥𝑛)

2
} 

= max{an−1, an}. 

From (2.2), we get 
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𝜚(𝑎𝑛, max{an−1, an}) > 0#(2.3) 

If an−1 ≤ an for some 𝑛 ∈ ℕ, then from (2.3) 

𝜚(𝑎𝑛, an) > 0 

which is a contradiction. Therefore, an−1 > an for all 𝑛 ∈ ℕ and 𝜚(𝑎𝑛, an−1) > 0. 

From (𝜚1), we have {𝑎𝑛 = 𝑑(𝑥𝑛, xn+1)} → 0.  

Now, we show the sequence {𝑥𝑛} is Cauchy. Assume {𝑥𝑛} is not a Cauchy sequence. There exist 𝜀 > 0, 

for all 𝑘 ≥ 𝑛1, there exist 𝑚(𝑘) > 𝑛(𝑘) > 𝑘 and 𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)) ≥ 𝜀. Let 𝑚(𝑘) be the smallest number 

and satisfies the conditions above. Then 𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)) < 𝜀. Hence,  

 ε ≤ 𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)) ≤ 𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)−1) + 𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)) < 𝜀 + 𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)). 

As 𝑘 → ∞, lim
𝑘→∞

𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)) = 𝜀. Since  

|𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)−1) − 𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘))| ≤ 𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)) 

we get lim
𝑘→∞

𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)−1) = 𝜀. Similarly, we obtain 

lim
𝑘→∞

𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)) = 𝜀 = lim
𝑘→∞

𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1). 

Let 𝐿 = 𝜀 > 0, {𝑡𝑘 = 𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘))} → 𝐿, {𝑠𝑘 = 𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1)} → 𝐿 and  

𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1) ≤ 𝑀(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1) = max {
𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1), 𝑑(𝑥𝑛(𝑘)−1, 𝑇𝑥𝑛(𝑘)−1), 𝑑(𝑥𝑚(𝑘)−1, 𝑇𝑥𝑚(𝑘)−1),

1

2
[𝑑(𝑥𝑛(𝑘)−1, 𝑇𝑥𝑚(𝑘)−1) + 𝑑(𝑥𝑚(𝑘)−1, 𝑇𝑥𝑛(𝑘)−1)]

} 

Taking a limit k → ∞, we have lim
k→∞

𝑀(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1) = 𝐿. Since L = ε < 𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)) = 𝑡𝑘 and  

𝜚 (𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)), 𝑀(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1)) > 0 

for all 𝑘 ∈ ℕ, then (𝜚2) guarantees L = ε = 0. Consequently, {xn} is Cauchy. Since the metric space (X, d) 

is complete, there exist z ∈ X such that xn → z. Let show that z fixed point. 

Case 1: Suppose T is a continuous function. So {Txn = xn+1} → Tz, and Tz = z. 

Case 2: In propositional logic, p ⇒ q ≡ q′ ⇒ p′. Now we look at the proof of a fixed point of T concerning 

this point of view. Assume 𝑑(𝑧, 𝑇𝑧) > 0. 

an = d(Txn, Tz) = d(xn+1, Tz) and so lim
n→∞

an = d(z, Tz) > 0 and 

 bn = M(xn, z) = max {d(xn, z), d(xn, Txn), d(z, Tz),
1

2
[d(z, Txn) + d(xn, Tz)]} 

Let n → ∞, we get lim
n→∞

bn = M(xn, z) = d(z, Tz) > 0, but 

𝜚(d(Txn, Tz), M(xn, z)) > 0. 

It contradicts to (𝜚3). Consequently, d(z, Tz) = 0. 

Case 3: Assume 𝜚(𝑡, 𝑠) < 𝑠 − 𝑡 for all 𝑡, 𝑠 ∈ 𝐴 ∩ (0, ∞). Proposition 1.2 means that Case 2 is applicable. 𝑧 

is a fixed point, so 𝑇 is a weakly Picard operator. 

Let z ≠ y and z, y ∈ X be two fixed points. In this case, an = d(z, y) > 0 for all n ∈ ℕ. 

𝜚(𝑎𝑛+1, 𝑎𝑛) = 𝜚(𝑑(𝑧, 𝑦), 𝑑(𝑧, 𝑦)) = 𝜚(𝑑(𝑇𝑧, 𝑇𝑦), 𝑀(𝑧, 𝑦)) > 0 
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Applying (𝜚1), {𝑎𝑛} → 0, which is a contradiction. 

Example 2.3. Let 𝑋 = [0,1] and 𝑑: 𝑋 × 𝑋 → ℝ be a usual metric. Let 𝑇: 𝑋 → 𝑋 as 𝑇𝑥 =
𝑥

𝑥+1
 for all 𝑥 ∈ 𝑋. 

We define 𝜚: ℝ × ℝ → ℝ, 𝜚(𝑡, 𝑠) =
𝑠

𝑠+1
− 𝑡. From Theorem 2.2, 𝑥 = 0 is a fixed point of 𝑇. 

We have the following corollaries by using Theorem 2.2. In this case, we generalized Corollary 28-33 in 

[9] by using similar 𝑀(𝑥, 𝑦). 

Corollary 2.4. Any continuous generalized 𝑅-contraction has a unique fixed point. 

Corollary 2.5. Any generalized 𝑍-contraction has a unique fixed point. 

Corollary 2.6. Every generalized Man(R)̂ -contraction has a unique fixed point. 

Corollary 2.7. Let (𝑋, 𝑑) be a complete metric space and 𝑇: 𝑋 → 𝑋. Assume that there exist 𝜑, 𝜓: [0, ∞) →

[0, ∞) such that 

𝜓(𝑑(𝑇𝑥, 𝑇𝑦)) ≤ 𝜓(𝑀(𝑥, 𝑦)) − 𝜑(𝑀(𝑥, 𝑦)) 

for all 𝑥, 𝑦 ∈ 𝑋. If 𝜑 is lower semi-continuous, 𝜓 is nondecreasing, 𝜓 continuous from right and 

𝜑−1({0}) = {0}, then T has a unique fixed point. 

Proof.  

It is obvious Theorem 2.2 and Theorem 22 in [9]. 

Corollary 2.5. Every generalized GC has a unique fixed point. 

Proof.  

It is obvious Theorem 2.2 and Corollary 26 in [9]. 

Corollary 2.6. Every generalized MKC has a unique fixed point. 

Proof.  

It is obvious from Theorem 2.2 and Theorem 25 in [9]. 

3. Admissible Functions 

[12] gave 𝛼-admissible concept as follows: let 𝑇: 𝑋 → 𝑋, 𝛼: 𝑋 × 𝑋 → ℝ. 𝑇 is said to be 𝛼-admissible if 

𝛼(𝑥, 𝑦) ≥ 1 implies 𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1. Then, [3] added the condition; 𝛼(𝑥, 𝑧) ≥ 1, 𝛼(𝑧, 𝑦) ≥ 1 imply 

𝛼(𝑥, 𝑦) ≥ 1, nearby the 𝛼-admissible condition and so they introduced triangular 𝛼-admissible notion. 

We understand from these definitions, triangular 𝛼-admissible implies 𝛼-admissible, but the converse 

is not valid. In 2014, Popescu [4] introduced 𝛼-orbital and triangular 𝛼-orbital admissible notions as 

follows: 

Definition 3.1. [4] Let 𝑇: 𝑋 → 𝑋, 𝛼: 𝑋 × 𝑋 → ℝ. 𝑇 is said to be 𝛼-orbital admissible if 𝛼(𝑥, 𝑇𝑥) ≥ 1 implies 

𝛼(𝑇𝑥, 𝑇2𝑥) ≥ 1. 

Definition 3.2. [4] Let 𝑇: 𝑋 → 𝑋, 𝛼: 𝑋 × 𝑋 → ℝ. 𝑇 is said to be triangular 𝛼-orbital admissible if T is α-

orbital admissible, 𝛼(𝑥, 𝑦) ≥ 1, if 𝛼(𝑦, 𝑇𝑦) ≥ 1 implies 𝛼(𝑥, 𝑇𝑦) ≥ 1. 

Every 𝛼-admissible mapping is an 𝛼-orbital admissible and every triangular  

𝛼-admissible mapping is a triangular 𝛼-orbital admissible mapping. So that a triangular  

𝛼-orbital admissible mapping is a very wide function class in the literature. 
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Lemma 3.3. [9] Let 𝑇: 𝑋 → 𝑋 be a triangular 𝛼-orbital admissible mapping. Assume that there exist 𝑥1 ∈

𝑋 such that 𝛼(𝑥1, 𝑇𝑥1) ≥ 1. Define a sequence {𝑥𝑛} by 𝑥𝑛+1 = 𝑇𝑥𝑛. Then we have 𝛼(𝑥𝑛, 𝑥𝑚) ≥ 1 for all 

𝑛, 𝑚 ∈ ℕ with 𝑛 < 𝑚. 

Definition 3.4. Let (𝑋, 𝑑) be a metric space, 𝑇: 𝑋 → 𝑋. 𝑇 is an 𝛼-admissible 𝑅-contraction in respect of 𝜚 

if there exist 𝜚: 𝐴 × 𝐴 → ℝ such that for all 𝑥, 𝑦 ∈ 𝑋, 𝛼(𝑥, 𝑦)𝑑(𝑇𝑥, 𝑇𝑦) ∈ 𝐴, ran(𝑑) ⊂ 𝐴, 𝛼: 𝑋 × 𝑋 → [0, ∞), 

𝜚(𝛼(𝑥, 𝑦)𝑑(𝑇𝑥, 𝑇𝑦), 𝑑(𝑥, 𝑦)) > 0 

 for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦. If 𝛼(𝑥, 𝑦) = 1, then 𝑇 is a 𝑅-contraction. 

Theorem 3.5. Let (𝑋, 𝑑) be a complete metric space, 𝛼: 𝑋 × 𝑋 → ℝ, 𝑇: 𝑋 → 𝑋. If 

𝑇 is an 𝛼-admissible 𝑅-contraction type mapping in respect of 𝜚, 

𝑇 is a triangular 𝛼-orbital admissible mapping, there exist 𝑥0 ∈ 𝑋 and 𝛼(𝑥0, 𝑇𝑥0) ≥ 1, 

𝜚(𝑡, 𝑠) < 𝑠 − 𝑡 for all 𝑡, 𝑠 ∈ 𝐴 ∪ (0,1), 

𝑇 is a continuous function. 

Then, 𝑇 is a Picard operator and has a fixed point in 𝑋. 

Proof.  

Let 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0, 𝑇𝑥0) ≥ 1 and let {𝑥𝑛} be a Picard sequence of 𝑇 started with 𝑥0 such that 

𝑥𝑛+1 = 𝑇𝑥𝑛 for all 𝑛 ∈ ℕ. If there exist 𝑛0 ∈ ℕ, 𝑥𝑛0+1 = 𝑥𝑛0
, then 𝑥𝑛0

 is a fixed point of 𝑇. In this case, 

suppose that 𝑥𝑛+1 ≠ 𝑥𝑛 or all 𝑛 ∈ ℕ. Because of (ii) and (iii), we obtain 

𝛼(𝑥0, 𝑥1) = 𝛼(𝑥0, 𝑇𝑥0) ≥ 1 ⇒ 𝛼(𝑇𝑥0, 𝑇𝑥1) ≥ 1 

similarly, 

𝛼(𝑥1, 𝑥2) = 𝛼(𝑥1, 𝑇𝑥1) ≥ 1 ⇒ 𝛼(𝑇𝑥1, 𝑇𝑥2) ≥ 1 

continuing this process, we derive 𝛼(𝑥𝑛, 𝑥𝑛+1) ≥ 1 for all 𝑛 ∈ ℕ. 𝑇 is an 𝛼-admissible 𝑅-contraction, then 

0 < 𝜚(𝛼(𝑥𝑛, 𝑥𝑛−1)𝑑(𝑇𝑥𝑛, 𝑇𝑥𝑛−1), 𝑑(𝑥𝑛, 𝑥𝑛−1)) < 𝑑(𝑥𝑛, 𝑥𝑛−1) − 𝛼(𝑥𝑛, 𝑥𝑛−1)𝑑(𝑥𝑛+1, 𝑥𝑛) 

as a result, we get for all 𝑛 ∈ ℕ 

𝑑(𝑥𝑛+1, 𝑥𝑛) < 𝛼(𝑥𝑛, 𝑥𝑛−1)𝑑(𝑥𝑛+1, 𝑥𝑛) < 𝑑(𝑥𝑛, 𝑥𝑛−1)#(3.1)  

Hence, the sequence {𝑥𝑛} is decreasing, bounded from below. Consequently, there exists 𝐿 ≥ 0 such that 

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥𝑛−1) = 𝐿. From equation (3.1), we get 

lim
𝑛→∞

𝛼(𝑥𝑛, 𝑥𝑛−1)𝑑(𝑥𝑛+1, 𝑥𝑛) = 𝐿. 

Let 𝑠𝑛 = 𝛼(𝑥𝑛, 𝑥𝑛−1)𝑑(𝑥𝑛+1, 𝑥𝑛), 𝑡𝑛 = 𝑑(𝑥𝑛, 𝑥𝑛−1) and we can easily see that 𝐿 < 𝑠𝑛 for 𝑛 ∈ ℕ. In this 

case, from the (𝜚2) property, we have 𝐿 = 0. 

The sequence {𝑥𝑛} is Cauchy in 𝑋. Assume the sequence {𝑥𝑛} is not Cauchy. There exist 𝜀 > 0, for all 𝑘 ≥

𝑛1, there exist 𝑚(𝑘) > 𝑛(𝑘) > 𝑘 and 𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)) ≥ 𝜀. Let 𝑚(𝑘) be the smallest and satisfies the above 

conditions. So 𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)) < 𝜀. Then 

ε ≤ 𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)) ≤ 𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)−1) + 𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)) < 𝜀 + 𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)) 

As 𝑘 → ∞, we get lim
𝑘→∞

𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)) = 𝜀. Since  

|𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)−1) − 𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘))| ≤ 𝑑(𝑥𝑚(𝑘)−1, 𝑥𝑚(𝑘)), 
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we get lim
𝑘→∞

𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)−1) = 𝜀. Similarly, we obtain 

lim
𝑘→∞

𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)) = 𝜀 = lim
𝑘→∞

𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1). 

By Lemma 4.3, we have 𝛼(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1) ≥ 1. Thus, we deduce that 

0 < 𝜚 (𝛼(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1)𝑑(𝑇𝑥𝑛(𝑘)−1, 𝑇𝑥𝑚(𝑘)−1), 𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1)) 

 < 𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1) − 𝛼(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1)𝑑(𝑇𝑥𝑛(𝑘)−1, 𝑇𝑥𝑚(𝑘)−1) 

for all 𝑘 ≥ 𝑛1. Consequently, 

0 < 𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)) < 𝛼(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1)𝑑(𝑇𝑥𝑛(𝑘)−1, 𝑇𝑥𝑚(𝑘)−1) < 𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1) 

for all 𝑘 ≥ 𝑛1. Let 𝑘 → ∞, we have 

lim
𝑘→∞

𝛼(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1)𝑑(𝑇𝑥𝑛(𝑘)−1, 𝑇𝑥𝑚(𝑘)−1) = 𝜀. 

Let 𝑎𝑘 = 𝛼(𝑥𝑛(𝑘)−1, 𝑥𝑚(𝑘)−1)𝑑(𝑇𝑥𝑛(𝑘)−1, 𝑇𝑥𝑚(𝑘)−1) and 𝑏𝑘 = 𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)). We show that 𝜀 < 𝑎𝑘 for 

all 𝑘 ≥ 𝑛1. In this case, from the (𝜚2) property, we have 𝜀 = 0, which is a contradiction. Hence, the 

sequence {𝑥𝑛} is Cauchy. From (𝑋, 𝑑) is complete, there exist 𝑧 ∈ 𝑋, {𝑥𝑛} → 𝑧.  

Assume the condition (v) satisfied. In this case, {𝑥𝑛+1 = 𝑇𝑥𝑛} → 𝑇𝑧, and so 𝑇𝑧 = 𝑧. Therefore, 𝑇 is a 

weakly Picard operator. 

Theorem 3.6. Let (𝑋, 𝑑) be complete, 𝛼: 𝑋 × 𝑋 → ℝ and 𝑇: 𝑋 → 𝑋. Assume the followings are satisfied: 

𝑇 is a 𝛼- admissible 𝑅-contraction type mapping concerning 𝜚; 

𝑇 is a triangular 𝛼- orbital admissible mappings, 

There exist 𝑥0 ∈ 𝑋 and 𝛼(𝛼, 𝑇𝑥0) ≥ 1; 

𝜚(𝑡, 𝑠) < 𝑠 − 𝑡 for all 𝑡, 𝑠 ∈ 𝐴 ∪ (0,1); 

if {𝑥𝑛} ∈ 𝑋, 𝛼(𝑥𝑛, 𝑥𝑛+1) ≥ 1 for all 𝑛, 𝑥𝑛 → 𝑥 as 𝑛 → ∞, then there exists a subsequence {𝑥𝑛𝑘
} of {𝑥𝑛} and 

𝛼(𝑥𝑛𝑘
, 𝑥) ≥ 1 for all 𝑘 ∈ ℕ. 

So, 𝑇 is a Picard operator and has a fixed point in 𝑋. 

Proof.  

From the proof of the above theorem, the sequence {𝑥𝑛}, 𝑥𝑛+1 = 𝑇𝑥𝑛 for all 𝑛 ∈ ℕ, converges to 𝑧 ∈ 𝑋. 

By the condition (v), there exists a subsequence {𝑥𝑛𝑘
} of {𝑥𝑛} and 𝛼(𝑥𝑛𝑘

, 𝑥) ≥ 1 for all 𝑘 ∈ ℕ. Applying 

(i) for all 𝑘, we get 

0 < 𝜚(𝛼(𝑥𝑛𝑘
, 𝑧)𝑑(𝑇𝑥𝑛𝑘−1, 𝑇𝑧), 𝑑(𝑥𝑛𝑘

, 𝑧))  = 𝜚(𝛼(𝑥𝑛𝑘
, 𝑧), 𝑑(𝑥𝑛𝑘

, 𝑇𝑧), 𝑑(𝑥𝑛𝑘
, 𝑧)) 

 < 𝑑(𝑥𝑛𝑘
, 𝑧) − 𝛼(𝑥𝑛𝑘

, 𝑧)𝑑(𝑥𝑛𝑘
, 𝑇𝑧) 

which is equivalent to 

𝑑(𝑥𝑛𝑘
, 𝑇𝑧) = 𝑑(𝑇𝑥𝑛𝑘−1, 𝑇𝑧) ≤ 𝛼(𝑥𝑛𝑘

, 𝑧)𝑑(𝑥𝑛𝑘
, 𝑇𝑧) < 𝑑(𝑥𝑛𝑘

, 𝑧). 

Let 𝑘 → ∞, we have 𝑑(𝑧, 𝑇𝑧) = 0, i.e., 𝑧 = 𝑇𝑧. 

From the uniqueness of fixed point of 𝛼-admissible 𝑅-contraction type mapping,  

(H) For all 𝑥 ≠ 𝑦, there exists 𝑣 ∈ 𝑋 and 𝛼(𝑥, 𝑣) ≥ 1, 𝛼(𝑦, 𝑣) ≥ 1, 𝛼(𝑣, 𝑇𝑣) ≥ 1. 
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Replacing (iii) with (H) in the hypothesis of Theorem 3.5 and Theorem 3.6, we get the uniqueness of the 

fixed point of 𝑇. Assume 𝑧, 𝑡 are two fixed points of 𝑇 and 𝑧 ≠ 𝑡. From the condition (H), there exists 𝑣 ∈

𝑋 and  

𝛼(𝑧, 𝑣) ≥ 1, 𝛼(𝑡, 𝑣) ≥ 1, 𝛼(𝑣, 𝑇𝑣) ≥ 1. 

Because 𝑇 is triangular 𝛼-orbital admissible, we obtain 𝛼(𝑧, 𝑇𝑛𝑣) ≥ 1 and 𝛼(𝑡, 𝑇𝑛𝑣) ≥ 1 for all 𝑛 ∈ ℕ, 

we get 

0 < 𝜚(𝛼(𝑧, 𝑇𝑛𝑣)𝑑(𝑇𝑧, 𝑇𝑛+1𝑣), 𝑑(𝑧, 𝑇𝑛𝑣)) 

 < 𝑑(𝑧, 𝑇𝑛𝑣) − 𝛼(𝑧, 𝑇𝑛𝑣)𝑑(𝑇𝑧, 𝑇𝑛+1𝑣) 

and so 

𝑑(𝑧, 𝑇𝑛𝑣) = 𝑑(𝑇𝑧, 𝑇𝑛𝑣) ≤ 𝛼(𝑧, 𝑇𝑛𝑣)𝑑(𝑇𝑧, 𝑇𝑛+1𝑣) < 𝑑(𝑧, 𝑇𝑛𝑣) 

By the Theorem 3.5, we know that the sequence {𝑇𝑛𝑣} converges to a fixed point 𝑡 of 𝑇. As 𝑛 → ∞,  

𝑠𝑛 = (𝑧, 𝑇𝑛𝑣)𝑑(𝑇𝑧, 𝑇𝑛+1𝑣) → 𝑑(𝑧, 𝑡) and 𝑡𝑛 = 𝑑(𝑧, 𝑇𝑛𝑣) → 𝑑(𝑧, 𝑡) 

From (𝜚2), we 𝑑(𝑧, 𝑡) = 0, which is a contradiction. Therefore, 𝑧 = 𝑡. 

Now, we can give some corollaries by using Theorem 3.5 and Theorem 3.6. 

Corollary 3.7. Every 𝛼-admissible 𝑍-contraction has a unique fixed point. 

Corollary 3.8. Every 𝛼-admissible Man(𝑅)̂ -contraction has a unique fixed point. 

We prove the following corollary by using Theorem 3.5 and Theorem 2.2. 

Corollary 3.9. Every 𝛼-admissible 𝑍-contraction has a unique fixed point. 

Corollary 3.10. Every 𝛼-MKC has a unique fixed point. 
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