

Generalized *R*-contraction by using triangular α -orbital admissible

Ferhan Şola Erduran¹ 💿

Keywords:Abstract - This study presents Ciric type generalization of R-contraction and generalized R-
contraction by using an α-orbital admissible function in metric spaces using the definition of R-
contraction, introduced by Roldan-Lopez-de-Hierro and Shahzad [New fixed-point theorem
under R-contractions, Fixed Point Theory and Applications, 98(2015): 18 pages, 2015] and prove
some fixed-point theorems for this type contractions. Thanks to these theorems, we generalize
some known results.

Subject Classification (2020): 54H25, 47H10.

1. Introduction

This section provides some of basic notions. The concept of fixed point appeared in 1922 with the Banach contraction principle (BCP) [1]. So far, many studies [2-5] has been conducted on this concept applied in many areas, such as differential equations theory and economics. The most striking of the results obtained by generalizing BCP is the Meir-Keeler contraction (MKC) provided in [6]:

Let T be a self-mapping on a complete metric space (X, d). Given $\varepsilon > 0$, there exist $\delta > 0$ such that

 $\varepsilon \leq d(x, y) < \varepsilon + \delta$ implies that $d(Tx, Ty) < \varepsilon$

After that, many authors studied extensions of MKC. In [7], the authors presented the notion of simulation function (SF), an auxiliary function for improving BCP, and generalized MKC:

A simulation function ξ is a mapping from $[0, \infty) \times [0, \infty)$ to \mathbb{R} such that

 $\xi_1) \, \xi(0,0) = 0$

 ξ_2) $\xi(t, s) < s - t$, for all s, $t \in \mathbb{N}$

 $\xi_3) \text{ If } \{t_n\}, \{s_n\} \text{ are sequences in } (0, \infty) \text{ such that } \lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n > 0 \text{ then } \limsup_{n \to \infty} \xi(t_n, s_n) < 0$

Afterwards, [8] modified the condition ξ_3 of SF to expand the family of SFs:

 ξ_3) If $\{t_n\}, \{s_n\}$ are sequences in $(0, \infty)$ such that $\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n > 0$ and $t_n < s_n$, for all $n \in \mathbb{N}$, then $\limsup_{n \to \infty} \xi(t_n, s_n) < 0$.

¹ferhansola@gazi.edu.tr (Corresponding Author)

¹Department of Mathematics, Faculty of Science, Gazi University, Ankara, Turkey

Article History: Received: 09 Nov 2020 - Accepted: 01 Mar 2021 - Published: 30 Apr 2021

In [7], the researchers then put forward the Z-contraction mapping as follows:

Let (X, d) be a metric space and T be a self-mapping on X. If there exists $\xi \in Z$ (Z is the family of SFs), for all $x, y \in X$ with $x \neq y$,

$$\xi(d(Tx,Ty),d(x,y)) \ge 0$$

then T is Z-contraction concerning ξ . So, they generalized the Banach fixed point theorem in metric space using the auxiliary function ξ . Furthermore, the concept of manageable function (MF) provided by [2] to work multivalued contraction mappings is as follows:

A function $\eta: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is manageable if

 η_1) $\eta(t, s) < s - t$, for all s, t > 0

 $\begin{array}{l} \eta_2 \text{) For a bounded sequence } \{t_n\} \subset (0,\infty), \text{ a non-increasing sequence } \{s_n\} \subset (0,\infty), \ \eta \ \text{provides} \\ \\ \underset{n \to \infty}{\text{limsup}} \frac{t_n + \eta(t_n,s_n)}{s_n} < 1. \end{array}$

Besides, [7] defined Man(R)-contraction for single-valued mapping as follows:

Let (X, d) be a metric space and T be self-mapping on X. If there exists $\eta \in Man(R)$ such that

 $\eta(d(Tx, T^2x), d(x, Tx)) \ge 0$

for all $x \in X$, then T is Man(R)-contraction.

Recently, [9] have introduced *R*-function for considering a true extension of MKC as follows:

Let $A \subset \mathbb{R}$, $A \neq \emptyset$, and $\varrho: A \times A \rightarrow \mathbb{R}$ be a function. Then, ϱ is called an *R*-function:

 (ϱ_1) If a sequence $\{a_n\} \subset (0, \infty) \cap A$ and $\varrho(a_{n+1}, a_n) > 0$ for all $n \in \mathbb{N}$, then $\{a_n\} \to 0$.

 (ϱ_2) If two sequence $\{a_n\}, \{b_n\} \subset (0, \infty) \cap A$ converges to $L \ge 0$ such that $L < a_n$ and $\varrho(a_n, b_n) > 0$ for all $n \in \mathbb{N}$, then L = 0.

 (ϱ_3) If $\{a_n\}, \{b_n\} \subset (0, \infty) \cap A$ are two sequences such that $\{b_n\} \to 0$ and $\varrho(a_n, b_n) > 0$ for all $n \in \mathbb{N}$, then $\{a_n\} \to 0$.

Let R_A denote the family of all *R*-functions, (X, d) be a metric space, and *T* be a mapping on *X*. *T* is *R*-contraction concerning ρ if there exist $\rho \in R_A$ such that $ran(d) \subset A$ and

$$\varrho(d(Tx,Ty),d(x,y)) > 0$$

for all $x, y \in X$ with $x \neq y$

$$\operatorname{ran}(d) = \{d(x, y) \colon x, y \in X\} \subset [0, \infty)$$

[9] also gave R-contraction concerning ρ and showed a relationship between the class of some known functions and R-function and between some known contractions and R-contraction relating to ρ as follows:

i. A SF is an R-function and verifies (ϱ_3) ,

ii. Any MF is an R-function and confirms (ρ_3),

iii. A Geraghty function (GF) $\phi: [0, \infty) \to [0, 1)$ holds if $\{t_n\} \subset [0, \infty)$ and $\{\phi(t_n)\} \to 1$, then $\{t_n\} \to 0$ [10] If $\phi: [0, \infty) \to [0, 1)$ is a GF, then $\varrho'_{\phi}: [0, \infty) \times [0, \infty) \to \mathbb{R}$, defined with

$$\varrho'_{\phi}(t,s) = \phi(s)s - t$$

for all $t, s \in [0, \infty)$, is an R-function on $[0, \infty)$ satisfying condition (ϱ_3) ,

iv. Any MKC is R-contraction in respect of ϱ ,

v. A Geraghty contraction (GC) is a self-mapping *T* on *X* such that for every $x, y \in X$ and ϕ is a GF $d(Tx, Ty) \leq \phi(d(x, y))d(x, y)$ [10].

Every GC is R-contraction in respect of ϱ .

In [9], it is claimed that if $\varrho(t, s) \leq s - t$ for all $t, s \in A \cap (0, \infty)$, then (ϱ_3) is held.

[11] presented the concept of weakly Picard operator as follows:

Let (X, d) be a metric space and T be a self-mapping on X. Given a point $x_0 \in X$, the Picard sequence $\{x_n\}$ of T started with x_0 is given by $x_{n+1} = Tx_n$ for all $n \in \mathbb{N}$. T defined as a weakly Picard operator if, for all $x_0 \in X$, the Picard sequence of T converges to a fixed point of T. Also, T is a Picard operator if it is a weakly Picard operator, and T has a unique fixed point.

2. Main Result

This section proves the Ciric type generalization of R-contraction concerning ρ , and presents a generalization of known results and illustrates them.

Definition 2.1. Let (X, d) be a metric space T be a self-mapping on X and $\rho \in R_A$. T is generalized *R*-contraction in respect of ρ the following case satisfying ran(d) $\subset A$ and

$$\varrho(d(Tx,Ty),M(x,y)) > 0\#(2.1)$$

for all $x, y \in X$ and $x \neq y$, where

$$M(x, y) = \max \left\{ d(x, y), d(x, Tx), d(y, Ty), \frac{1}{2} [d(x, Ty) + d(y, Tx)] \right\}.$$

Theorem 2.2. Let (X, d) be a complete metric space and T be generalized *R*-contraction on X in respect of *q*. Suppose that one of the followings hold.

i. T is continuous, *ii*. ϱ satisfies the condition (ϱ_3), *iii*. $\varrho(t, s) \le s - t$ for all $t, s \in A \cap (0, \infty)$.

Then *T* is a Picard operator, and *T* has a unique fixed point.

Proof.

Let we take any $x_0 \in X$ and $\{x_n\}$ is a Picard sequence of T started with x_0 . If there exists some $n_0 \in \mathbb{N}$, $x_{n_0+1} = Tx_{n_0} = x_{n_0}$ then x_{n_0} is a fixed point of T. Assume that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N}$. Since T is generalized R-contraction in respect of ϱ ,

$$\varrho(d(Tx_{n-1}, Tx_n), M(x_{n-1}, x_n)) > 0\#(2.2)$$

where

$$M(x_{n-1}, x_n) = \max\left\{ d(x_{n-1}, x_n), d(x_{n-1}, Tx_{n-1}), d(x_n, Tx_n), \frac{d(x_{n-1}, Tx_n) + d(x_n, Tx_{n-1})}{2} \right\}$$
$$= \max\left\{ d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_n, x_{n+1}), \frac{d(x_{n-1}, x_{n+1}) + d(x_n, x_n)}{2} \right\}$$
$$= \max\{a_{n-1}, a_n\}.$$

From (2.2), we get

 $\varrho(a_n, \max\{a_{n-1}, a_n\}) > 0\#(2.3)$

If $a_{n-1} \leq a_n$ for some $n \in \mathbb{N}$, then from (2.3)

$$\varrho(a_n, a_n) > 0$$

which is a contradiction. Therefore, $a_{n-1} > a_n$ for all $n \in \mathbb{N}$ and $\varrho(a_n, a_{n-1}) > 0$.

From (ϱ_1) , we have $\{a_n = d(x_n, x_{n+1})\} \rightarrow 0$.

Now, we show the sequence $\{x_n\}$ is Cauchy. Assume $\{x_n\}$ is not a Cauchy sequence. There exist $\varepsilon > 0$, for all $k \ge n_1$, there exist m(k) > n(k) > k and $d(x_{n(k)}, x_{m(k)}) \ge \varepsilon$. Let m(k) be the smallest number and satisfies the conditions above. Then $d(x_{n(k)-1}, x_{m(k)}) < \varepsilon$. Hence,

$$\varepsilon \leq d(x_{n(k)}, x_{m(k)}) \leq d(x_{n(k)}, x_{m(k)-1}) + d(x_{m(k)-1}, x_{m(k)}) < \varepsilon + d(x_{m(k)-1}, x_{m(k)}).$$

As $k \to \infty$, $\lim_{k \to \infty} d(x_{n(k)}, x_{m(k)}) = \varepsilon$. Since

$$|d(x_{n(k)}, x_{m(k)-1}) - d(x_{n(k)}, x_{m(k)})| \le d(x_{m(k)-1}, x_{m(k)})$$

we get $\lim_{k \to \infty} d(x_{n(k)}, x_{m(k)-1}) = \varepsilon$. Similarly, we obtain

$$\lim_{k\to\infty} d(x_{n(k)-1}, x_{m(k)}) = \varepsilon = \lim_{k\to\infty} d(x_{n(k)-1}, x_{m(k)-1})$$

Let $L = \varepsilon > 0$, $\{t_k = d(x_{n(k)}, x_{m(k)})\} \to L$, $\{s_k = d(x_{n(k)-1}, x_{m(k)-1})\} \to L$ and

$$d(x_{n(k)-1}, x_{m(k)-1}) \le M(x_{n(k)-1}, x_{m(k)-1}) = \max \begin{cases} d(x_{n(k)-1}, x_{m(k)-1}), d(x_{n(k)-1}, Tx_{n(k)-1}), d(x_{m(k)-1}, Tx_{m(k)-1}), \\ \frac{1}{2} [d(x_{n(k)-1}, Tx_{m(k)-1}) + d(x_{m(k)-1}, Tx_{n(k)-1})] \end{cases}$$

Taking a limit $k \to \infty$, we have $\lim_{k \to \infty} M(x_{n(k)-1}, x_{m(k)-1}) = L$. Since $L = \varepsilon < d(x_{n(k)}, x_{m(k)}) = t_k$ and

$$\varrho\left(d\left(x_{n(k)}, x_{m(k)}\right), M\left(x_{n(k)-1}, x_{m(k)-1}\right)\right) > 0$$

for all $k \in \mathbb{N}$, then (ϱ_2) guarantees $L = \varepsilon = 0$. Consequently, $\{x_n\}$ is Cauchy. Since the metric space (X, d) is complete, there exist $z \in X$ such that $x_n \to z$. Let show that z fixed point.

Case 1: Suppose T is a continuous function. So $\{Tx_n = x_{n+1}\} \rightarrow Tz$, and Tz = z.

Case 2: In propositional logic, $p \Rightarrow q \equiv q' \Rightarrow p'$. Now we look at the proof of a fixed point of T concerning this point of view. Assume d(z, Tz) > 0.

$$a_n = d(Tx_n, Tz) = d(x_{n+1}, Tz)$$
 and so $\lim_{n \to \infty} a_n = d(z, Tz) > 0$ and

$$b_n = M(x_n, z) = \max \left\{ d(x_n, z), d(x_n, Tx_n), d(z, Tz), \frac{1}{2} [d(z, Tx_n) + d(x_n, Tz)] \right\}$$

Let $n \to \infty$, we get $\lim_{n \to \infty} b_n = M(x_n, z) = d(z, Tz) > 0$, but

$$\varrho(d(Tx_n, Tz), M(x_n, z)) > 0.$$

It contradicts to (ϱ_3) . Consequently, d(z, Tz) = 0.

Case 3: Assume $\varrho(t, s) < s - t$ for all $t, s \in A \cap (0, \infty)$. Proposition 1.2 means that Case 2 is applicable. z is a fixed point, so T is a weakly Picard operator.

Let $z \neq y$ and $z, y \in X$ be two fixed points. In this case, $a_n = d(z, y) > 0$ for all $n \in \mathbb{N}$.

$$\varrho(a_{n+1}, a_n) = \varrho(d(z, y), d(z, y)) = \varrho(d(Tz, Ty), M(z, y)) > 0$$

Applying $(\varrho_1), \{a_n\} \rightarrow 0$, which is a contradiction.

Example 2.3. Let X = [0,1] and $d: X \times X \to \mathbb{R}$ be a usual metric. Let $T: X \to X$ as $Tx = \frac{x}{x+1}$ for all $x \in X$. We define $\varrho: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $\varrho(t, s) = \frac{s}{s+1} - t$. From Theorem 2.2, x = 0 is a fixed point of T.

We have the following corollaries by using Theorem 2.2. In this case, we generalized Corollary 28-33 in [9] by using similar M(x, y).

Corollary 2.4. Any continuous generalized *R*-contraction has a unique fixed point.

Corollary 2.5. Any generalized Z -contraction has a unique fixed point.

Corollary 2.6. Every generalized Man(R)-contraction has a unique fixed point.

Corollary 2.7. Let (X, d) be a complete metric space and $T: X \to X$. Assume that there exist $\varphi, \psi: [0, \infty) \to [0, \infty)$ such that

$$\psi(d(Tx,Ty)) \le \psi(M(x,y)) - \varphi(M(x,y))$$

for all $x, y \in X$. If φ is lower semi-continuous, ψ is nondecreasing, ψ continuous from right and $\varphi^{-1}(\{0\}) = \{0\}$, then *T* has a unique fixed point.

Proof.

It is obvious Theorem 2.2 and Theorem 22 in [9].

Corollary 2.5. Every generalized GC has a unique fixed point.

Proof.

It is obvious Theorem 2.2 and Corollary 26 in [9].

Corollary 2.6. Every generalized MKC has a unique fixed point.

Proof.

It is obvious from Theorem 2.2 and Theorem 25 in [9].

3. Admissible Functions

[12] gave α -admissible concept as follows: let $T: X \to X$, $\alpha: X \times X \to \mathbb{R}$. *T* is said to be α -admissible if $\alpha(x, y) \ge 1$ implies $\alpha(Tx, Ty) \ge 1$. Then, [3] added the condition; $\alpha(x, z) \ge 1$, $\alpha(z, y) \ge 1$ imply $\alpha(x, y) \ge 1$, nearby the α -admissible condition and so they introduced triangular α -admissible notion. We understand from these definitions, triangular α -admissible implies α -admissible, but the converse is not valid. In 2014, Popescu [4] introduced α -orbital and triangular α -orbital admissible notions as follows:

Definition 3.1. [4] Let $T: X \to X$, $\alpha: X \times X \to \mathbb{R}$. *T* is said to be α -orbital admissible if $\alpha(x, Tx) \ge 1$ implies $\alpha(Tx, T^2x) \ge 1$.

Definition 3.2. [4] Let $T: X \to X$, $\alpha: X \times X \to \mathbb{R}$. *T* is said to be triangular α -orbital admissible if *T* is α -orbital admissible, $\alpha(x, y) \ge 1$, if $\alpha(y, Ty) \ge 1$ implies $\alpha(x, Ty) \ge 1$.

Every α -admissible mapping is an α -orbital admissible and every triangular α -admissible mapping is a triangular α -orbital admissible mapping. So that a triangular α -orbital admissible mapping is a very wide function class in the literature.

Lemma 3.3. [9] Let $T: X \to X$ be a triangular α -orbital admissible mapping. Assume that there exist $x_1 \in X$ such that $\alpha(x_1, Tx_1) \ge 1$. Define a sequence $\{x_n\}$ by $x_{n+1} = Tx_n$. Then we have $\alpha(x_n, x_m) \ge 1$ for all $n, m \in \mathbb{N}$ with n < m.

Definition 3.4. Let (X, d) be a metric space, $T: X \to X$. *T* is an α -admissible *R*-contraction in respect of ϱ if there exist $\varrho: A \times A \to \mathbb{R}$ such that for all $x, y \in X$, $\alpha(x, y)d(Tx, Ty) \in A$, $\operatorname{ran}(d) \subset A$, $\alpha: X \times X \to [0, \infty)$,

$$\varrho(\alpha(x, y)d(Tx, Ty), d(x, y)) > 0$$

for all $x, y \in X$ with $x \neq y$. If $\alpha(x, y) = 1$, then *T* is a *R*-contraction.

Theorem 3.5. Let (X, d) be a complete metric space, $\alpha: X \times X \to \mathbb{R}$, $T: X \to X$. If

T is an α -admissible *R*-contraction type mapping in respect of ρ ,

T is a triangular α -orbital admissible mapping, there exist $x_0 \in X$ and $\alpha(x_0, Tx_0) \ge 1$,

 $\varrho(t,s) < s - t$ for all $t, s \in A \cup (0,1)$,

T is a continuous function.

Then, *T* is a Picard operator and has a fixed point in *X*.

Proof.

Let $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$ and let $\{x_n\}$ be a Picard sequence of T started with x_0 such that $x_{n+1} = Tx_n$ for all $n \in \mathbb{N}$. If there exist $n_0 \in \mathbb{N}$, $x_{n_0+1} = x_{n_0}$, then x_{n_0} is a fixed point of T. In this case, suppose that $x_{n+1} \ne x_n$ or all $n \in \mathbb{N}$. Because of (*ii*) and (*iii*), we obtain

$$\alpha(x_0, x_1) = \alpha(x_0, Tx_0) \ge 1 \Rightarrow \alpha(Tx_0, Tx_1) \ge 1$$

similarly,

$$\alpha(x_1, x_2) = \alpha(x_1, Tx_1) \ge 1 \Rightarrow \alpha(Tx_1, Tx_2) \ge 1$$

continuing this process, we derive $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$. *T* is an α -admissible *R*-contraction, then

$$0 < \varrho \left(\alpha(x_n, x_{n-1}) d(Tx_n, Tx_{n-1}), d(x_n, x_{n-1}) \right) < d(x_n, x_{n-1}) - \alpha(x_n, x_{n-1}) d(x_{n+1}, x_n)$$

as a result, we get for all $n \in \mathbb{N}$

$$d(x_{n+1}, x_n) < \alpha(x_n, x_{n-1})d(x_{n+1}, x_n) < d(x_n, x_{n-1}) # (3.1)$$

Hence, the sequence $\{x_n\}$ is decreasing, bounded from below. Consequently, there exists $L \ge 0$ such that $\lim_{n\to\infty} d(x_n, x_{n-1}) = L$. From equation (3.1), we get

$$\lim_{n\to\infty}\alpha(x_n,x_{n-1})d(x_{n+1},x_n)=L.$$

Let $s_n = \alpha(x_n, x_{n-1})d(x_{n+1}, x_n)$, $t_n = d(x_n, x_{n-1})$ and we can easily see that $L < s_n$ for $n \in \mathbb{N}$. In this case, from the (ϱ_2) property, we have L = 0.

The sequence $\{x_n\}$ is Cauchy in *X*. Assume the sequence $\{x_n\}$ is not Cauchy. There exist $\varepsilon > 0$, for all $k \ge n_1$, there exist m(k) > n(k) > k and $d(x_{n(k)}, x_{m(k)}) \ge \varepsilon$. Let m(k) be the smallest and satisfies the above conditions. So $d(x_{n(k)-1}, x_{m(k)}) < \varepsilon$. Then

$$\varepsilon \le d(x_{n(k)}, x_{m(k)}) \le d(x_{n(k)}, x_{m(k)-1}) + d(x_{m(k)-1}, x_{m(k)}) < \varepsilon + d(x_{m(k)-1}, x_{m(k)})$$

As $k \to \infty$, we get $\lim_{k \to \infty} d(x_{n(k)}, x_{m(k)}) = \varepsilon$. Since

$$\left| d(x_{n(k)}, x_{m(k)-1}) - d(x_{n(k)}, x_{m(k)}) \right| \le d(x_{m(k)-1}, x_{m(k)})$$

we get $\lim_{k \to \infty} d(x_{n(k)}, x_{m(k)-1}) = \varepsilon$. Similarly, we obtain

$$\lim_{k\to\infty}d(x_{n(k)-1},x_{m(k)})=\varepsilon=\lim_{k\to\infty}d(x_{n(k)-1},x_{m(k)-1})$$

By Lemma 4.3, we have $\alpha(x_{n(k)-1}, x_{m(k)-1}) \ge 1$. Thus, we deduce that

$$0 < \rho \left(\alpha (x_{n(k)-1}, x_{m(k)-1}) d(Tx_{n(k)-1}, Tx_{m(k)-1}), d(x_{n(k)-1}, x_{m(k)-1}) \right) < d (x_{n(k)-1}, x_{m(k)-1}) - \alpha (x_{n(k)-1}, x_{m(k)-1}) d(Tx_{n(k)-1}, Tx_{m(k)-1})$$

for all $k \ge n_1$. Consequently,

$$0 < d(x_{n(k)}, x_{m(k)}) < \alpha(x_{n(k)-1}, x_{m(k)-1})d(Tx_{n(k)-1}, Tx_{m(k)-1}) < d(x_{n(k)-1}, x_{m(k)-1})$$

for all $k \ge n_1$. Let $k \to \infty$, we have

$$\lim_{k\to\infty}\alpha(x_{n(k)-1},x_{m(k)-1})d(Tx_{n(k)-1},Tx_{m(k)-1})=\varepsilon.$$

Let $a_k = \alpha(x_{n(k)-1}, x_{m(k)-1})d(Tx_{n(k)-1}, Tx_{m(k)-1})$ and $b_k = d(x_{n(k)}, x_{m(k)})$. We show that $\varepsilon < a_k$ for all $k \ge n_1$. In this case, from the (ϱ_2) property, we have $\varepsilon = 0$, which is a contradiction. Hence, the sequence $\{x_n\}$ is Cauchy. From (X, d) is complete, there exist $z \in X$, $\{x_n\} \to z$.

Assume the condition (*v*) satisfied. In this case, $\{x_{n+1} = Tx_n\} \rightarrow Tz$, and so Tz = z. Therefore, *T* is a weakly Picard operator.

Theorem 3.6. Let (X, d) be complete, $\alpha: X \times X \to \mathbb{R}$ and $T: X \to X$. Assume the followings are satisfied:

T is a α - admissible *R*-contraction type mapping concerning ϱ ;

T is a triangular α - orbital admissible mappings,

There exist $x_0 \in X$ and $\alpha(\alpha, Tx_0) \ge 1$;

 $\varrho(t,s) < s - t$ for all $t, s \in A \cup (0,1)$;

if $\{x_n\} \in X$, $\alpha(x_n, x_{n+1}) \ge 1$ for all $n, x_n \to x$ as $n \to \infty$, then there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and $\alpha(x_{n_k}, x) \ge 1$ for all $k \in \mathbb{N}$.

So, *T* is a Picard operator and has a fixed point in *X*.

Proof.

From the proof of the above theorem, the sequence $\{x_n\}$, $x_{n+1} = Tx_n$ for all $n \in \mathbb{N}$, converges to $z \in X$. By the condition (v), there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and $\alpha(x_{n_k}, x) \ge 1$ for all $k \in \mathbb{N}$. Applying (i) for all k, we get

$$0 < \varrho(\alpha(x_{n_k}, z)d(Tx_{n_k-1}, Tz), d(x_{n_k}, z)) = \varrho(\alpha(x_{n_k}, z), d(x_{n_k}, Tz), d(x_{n_k}, z))$$
$$< d(x_{n_k}, z) - \alpha(x_{n_k}, z)d(x_{n_k}, Tz)$$

which is equivalent to

$$d(x_{n_k}, Tz) = d(Tx_{n_k-1}, Tz) \le \alpha(x_{n_k}, z)d(x_{n_k}, Tz) < d(x_{n_k}, z).$$

Let $k \to \infty$, we have d(z, Tz) = 0, i.e., z = Tz.

From the uniqueness of fixed point of α -admissible *R*-contraction type mapping,

(*H*) For all $x \neq y$, there exists $v \in X$ and $\alpha(x, v) \ge 1$, $\alpha(y, v) \ge 1$, $\alpha(v, Tv) \ge 1$.

Replacing (*iii*) with (*H*) in the hypothesis of Theorem 3.5 and Theorem 3.6, we get the uniqueness of the fixed point of *T*. Assume *z*, *t* are two fixed points of *T* and $z \neq t$. From the condition (*H*), there exists $v \in X$ and

$$\alpha(z,v) \ge 1, \alpha(t,v) \ge 1, \alpha(v,Tv) \ge 1.$$

Because *T* is triangular α -orbital admissible, we obtain $\alpha(z, T^n v) \ge 1$ and $\alpha(t, T^n v) \ge 1$ for all $n \in \mathbb{N}$, we get

$$0 < \varrho \left(\alpha(z, T^n v) d(Tz, T^{n+1}v), d(z, T^n v) \right)$$
$$< d(z, T^n v) - \alpha(z, T^n v) d(Tz, T^{n+1}v)$$

and so

$$d(z,T^nv) = d(Tz,T^nv) \le \alpha(z,T^nv)d(Tz,T^{n+1}v) < d(z,T^nv)$$

By the Theorem 3.5, we know that the sequence $\{T^n v\}$ converges to a fixed point t of T. As $n \to \infty$,

 $s_n = (z, T^n v) d(Tz, T^{n+1}v) \rightarrow d(z, t)$ and $t_n = d(z, T^n v) \rightarrow d(z, t)$

From (ϱ_2) , we d(z, t) = 0, which is a contradiction. Therefore, z = t.

Now, we can give some corollaries by using Theorem 3.5 and Theorem 3.6.

Corollary 3.7. Every α -admissible *Z*-contraction has a unique fixed point.

Corollary 3.8. Every α -admissible Man(R)-contraction has a unique fixed point.

We prove the following corollary by using Theorem 3.5 and Theorem 2.2.

Corollary 3.9. Every α -admissible *Z*-contraction has a unique fixed point.

Corollary 3.10. Every α -MKC has a unique fixed point.

Conflicts of Interest

The author declares no conflict of interest.

References

- [1] S. Banach, *Sur les operation dans les ensembles abstraits et leur application auxequeations integrales*, Fundementa Matheaticae, 3, (1922) 133–181.
- [2] W-S Du, F. Khojasteh, *New results and generalizations for approximate fixed-point property and their applications,* Abstract and Applied Analysis, 2014, (2014) Article ID: 581267, 1–9.
- [3] E. Karapınar, E. Kumam, P. Salimi, $On \alpha \psi$ -*Meir Keeler contractive mappings*, Fixed Point Theory and Applications, 2013, (2013) Article Number: 323, 1–21.
- [4] O. Popescu, *Some new fixed-point theorems for α-Geraghty contraction type maps in metric spaces*, Fixed Point Theory and Applications, 2014, (2014) Article Number: 190, 1–12.
- [5] H. Şahin, *Best proximity point theory on vector metric spaces*, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), (2021) 130–142.
- [6] A. Meir, E. Keeler, *A theorem on contraction mappings*, Journal of Mathematical Analysis and Applications, 28, (1969) 326–329.
- [7] F. Khojasteh, S. Shukla, S. Radenovic, *A new approach to the study of fixed-point theory for simulation functions*, Filomat, 29, (2015) 1189–1194.

- [8] A. F. Roldan Lopez de Hierro, E. Karapınar, C. Roldan Lopez de Hierro, J. Martinez-Moreno, *Coincidence point theorems on metric space via simulation functions*, Journal of Computational Applied Mathematics, 275, (2015) 345–355.
- [9] A. F. Roldan Lopez de Hierro, N. Shahzad, *New fixed-point theorem under R-contractions*, Fixed Point Theory and Applications, 2015, (2015) Article Number: 98, 1–18.
- [10] M. Geraghty, *On contractive mappings*, Proceedings of the American Mathematical Society, 40, (1973) 604–608.
- [11] I. A. Rus, *Picard operators and applications*, Scientiae Mathematicae Japonicae, 58, (2003) 191–219.
- [12] B. Samet, C. Vetro, and P. Vetro, *Fixed point theorems for* α - ψ -contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications, 75(4), (2012) 2154–2165.