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1. Introduction

This section provides some of basic notions. The concept of fixed point appeared in 1922 with the
Banach contraction principle (BCP) [1]. So far, many studies [2-5] has been conducted on this concept
applied in many areas, such as differential equations theory and economics. The most striking of the
results obtained by generalizing BCP is the Meir-Keeler contraction (MKC) provided in [6]:

Let T be a self-mapping on a complete metric space (X, d). Given € > 0, there exist § > 0 such that
e <d(x,y) <&+ dimplies thatd(Tx, Ty) < €

After that, many authors studied extensions of MKC. In [7], the authors presented the notion of
simulation function (SF), an auxiliary function for improving BCP, and generalized MKC:

A simulation function § is a mapping from [0, o) X [0, ) to R such that
§)8(0,0) =0
&) &t s) <s—tforalls,teN

&) If {t,}, {s,} are sequences in (0, ) such that lim t, = lim s, > 0 then limsup &(t,,s,) <0

n—oo n—-oo n—-oo
Afterwards, [8] modified the condition &5 of SF to expand the family of SFs:

&) If {t,}, {s,} are sequences in (0, ) such that lim t, = lim s, > 0 and t, < s, for all n € N, then

n—-oo n—-oo

limsup &(t,, sp) < 0.

n—oo
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In [7], the researchers then put forward the Z-contraction mapping as follows:

Let (X, d) be a metric space and T be a self-mapping on X. If there exists § € Z (Z is the family of SFs), for
allx,y € Xwithx # y,

§(d(Tx, Ty), d(x,y)) = 0

then T is Z-contraction concerning €. So, they generalized the Banach fixed point theorem in metric space
using the auxiliary function & Furthermore, the concept of manageable function (MF) provided by [2] to
work multivalued contraction mappings is as follows:

A functionn: R X R — R is manageable if
NN s) <s—tforalls,t>0

n,) For a bounded sequence {t,} c (0,), a non-increasing sequence {s,} < (0,), n provides
I th + n(tn, Sn)
msup———mmm<

n—0o Sn

1.

Besides, [7] defined Man(R)-contraction for single-valued mapping as follows:

Let (X, d) be a metric space and T be self-mapping on X. If there exists 1 € Man(R) such that
n(d(Tx, T2x),d(x, Tx)) = 0

for all x € X, then T is Man(R) -contraction.

Recently, [9] have introduced R-function for considering a true extension of MKC as follows:

LetAc R, A+ @,and p: A X A — R be a function. Then, g is called an R-function:

(01) Ifa sequence {a, } € (0,0) N A and ¢(a,41,a,) > 0foralln € N, then {a,} — 0.

(0,) If two sequence {a,}, {b,} © (0,0) N A converges to L > 0 such that L < a,, and ¢(a,, b,,) > 0 for
alln € N, then L = 0.

(03) If{a,}, {b,} c (0,0) N A are two sequences such that {b,,} - 0 and ¢(a,, b,) > 0foralln € N, then
{ay} - 0.

Let R, denote the family of all R-functions, (X, d) be a metric space, and T be a mapping on X. T is R-
contraction concerning g if there exist o € R4 such thatran(d) c A and

o(d(Tx, Ty),d(x,y)) > 0
forallx,y € X withx =y
ran(d) = {d(x,y):x,y € X} c [0, )

[9] also gave R-contraction concerning ¢ and showed a relationship between the class of some known
functions and R-function and between some known contractions and R-contraction relating to ¢ as
follows:

I A SF is an R-function and verifies (03),

ii. Any MF is an R-function and confirms (g3),

iil. A Geraghty function (GF) ¢: [0, ) — [0,1) holds if {t,} c [0, ) and {¢(t,)} — 1, then {t,,} = 0[10]
If ¢: [0,0) — [0,1) is a GF, then Q'¢: [0, ) x [0,0) — R, defined with

0 y(ts) = p()s —t
forallt,s € [0, ), is an R-function on [0, ) satisfying condition (g3),
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iv. Any MKC is R-contraction in respect of o,
v. A Geraghty contraction (GC) is a self-mapping T on X such that for every x,y € X and ¢ is a GF
d(Tx,Ty) < ¢(d(x,y))d(x,y) [10].
Every GC is R-contraction in respect of g.
In [9], it is claimed thatif o(t,s) < s — tforallt,s € A N (0, ), then (g3) is held.
[11] presented the concept of weakly Picard operator as follows:

Let (X, d) be a metric space and T be a self-mapping on X. Given a point x, € X, the Picard sequence {x,,}
of T started with x; is given by x,,,; = Tx,, for all n € N. T defined as a weakly Picard operator if, for all
X € X, the Picard sequence of T converges to a fixed point of T. Also, T is a Picard operator if it is a
weakly Picard operator, and T has a unique fixed point.

2. Main Result
This section proves the Ciric type generalization of R-contraction concerning g, and presents a
generalization of known results and illustrates them.

Definition 2.1. Let (X,d) be a metric space T be a self-mapping on X and g € R4. T is generalized R-
contraction in respect of p the following case satisfying ran(d) c A and

o(d(Tx, Ty), M(x,y)) > 0#(2.1)

forall x,y € X and x # y, where

1
M(xy) = maX{d(x, y),d(x Tx), d(y, Ty), 5 [d(x Ty) +d(y, TX)]}-
Theorem 2.2. Let (X, d) be a complete metric space and T be generalized R-contraction on X in respect
of p. Suppose that one of the followings hold.

1. T is continuous,
il o satisfies the condition (g3),
iii. o(t,s) < s —tforallt,s € AN (0,).

Then T is a Picard operator, and T has a unique fixed point.
Proof.

Let we take any x, € X and {x,,} is a Picard sequence of T started with x,. If there exists some n, € N,
Xno+1 = TXn, = Xp, then x, is a fixed point of T. Assume that x,, # x4, for all n € N. Since T is

generalized R-contraction in respect of g,
0(d(Txp—1, Txp), M(xy_1,%,)) > 0#(2.2)

where

d(xn—lr Txn) + d(xn' Txn—l)}
2

M(xn—l: xn) = max {d(xn—lr xn): d(xn—lr Txn—l): d(xn' Txn)r

d(xp—1, Xp41) + d(xy, xn)}
2

= max {d(xn—li Xn), d(Xpn—1, %), d(Xpn, Xp41),

= max{ap_y,an}.

From (2.2), we get
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o(an, maxfap_4,ap}) > 0#(2.3)
Ifa,_; < a, for somen € N, then from (2.3)
e(an,ap) >0
which is a contradiction. Therefore, a,_; > a, foralln € N and o(a,,a,_1) > 0.
From (g;), we have {a,, = d(x,,Xp+1)} = 0.

Now, we show the sequence {x,}is Cauchy. Assume {x,,} is not a Cauchy sequence. There exist € > 0,
for all k > n,, there exist m(k) > n(k) > k and d(xp k), Xm(k)) = €- Let m(k) be the smallest number

and satisfies the conditions above. Then d(xn(k)_l, xm(k)) < €. Hence,
& < d(Xnge), Xm@i)) < d(%n Xm@o-1) + d(Xm@o-1 Xmw) < € + d (Xm0 -1 Xmao)-

As k — oo, Ill_r)rgo d(xn(k),xm(k)) = &. Since

|d (Xngiey, Xmr-1) = A(Fntey ¥m))| < d(Xma)-1 Xmx))

we get Ilgglo d(xn(k),xm(k)_l) = ¢. Similarly, we obtain

li Ood(xn(k)_l,xm(k)) = ¢ = lim d(xn(k)_l,xm(k)_l).

k— k—co

LetL = &> 0, {ty = d(xn@), Xm@)} = L {sx = d(%n@ey-1, Xm@-1)} = L and

d(%ngie)-1, Xm0 -1) A(Xnior-1 T -1)» d(Xma -1, Txm(k)—l):}

Ad(Xnto—1 Xma-1) < MXno-1) Xm)—1) = Max 1
( nom 1) nomTmo { g[d(xn(k)—vTxm(k)—l) +d(xm(k)—1»Txn(k>—1)]

Taking a limit k - oo, we have 111—{2: M(xn(k)_l,xm(k)_l) = L.SinceL=¢< d(xn(k),xm(k)) = t; and

4 (d(xn(k),xm(k))'M (xn(k)—l'xm(k)—l)) >0

forall k € N, then (g,) guarantees L. = € = 0. Consequently, {x,} is Cauchy. Since the metric space (X, d)
is complete, there exist z € X such that x,, = z. Let show that z fixed point.

Case 1: Suppose T is a continuous function. So {Tx,, = x,;1} = Tz and Tz = z.

Case 2: In propositional logic,p = q = q' = p’. Now we look at the proof of a fixed point of T concerning
this point of view. Assume d(z,Tz) > 0.

ap = d(Txp, Tz) = d(Xy41, TZ) and so 111_2}0 a, =d(z,Tz) > 0and

1
bIl = M(an Z) = max {d(an Z)I d(an TXH)' d(Z' TZ)' E [d(Z! TXH) + d(XIll TZ)]}
Letn — oo, we get lim b, = M(x,,z) = d(z,Tz) > 0, but
n—0o

Q(d(TXn, Tz),M(Xn,z)) > 0.
It contradicts to (g3). Consequently, d(z, Tz) = 0.

Case 3: Assume o(t,s) < s — tforallt,s € A n (0, o). Proposition 1.2 means that Case 2 is applicable. z
is a fixed point, so T is a weakly Picard operator.

Letz # y and z,y € X be two fixed points. In this case, a,, = d(z,y) > 0 foralln € N.
Q(an+1' an) = Q(d(Z, }’): d(Z, y)) = Q(d(TZ, TY): M(Z, y)) >0
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Applying (01), {a,} = 0, which is a contradiction.

Example 2.3. Let X = [0,1] and d: X X X — R be a usual metric. Let T: X - X as Tx = ﬁ for all x € X.
We defineg: RX R - R, o(t,s) = i — t. From Theorem 2.2, x = 0 is a fixed point of T.

We have the following corollaries by using Theorem 2.2. In this case, we generalized Corollary 28-33 in
[9] by using similar M (x, y).

Corollary 2.4. Any continuous generalized R-contraction has a unique fixed point.
Corollary 2.5. Any generalized Z -contraction has a unique fixed point.
Corollary 2.6. Every generalized Man(R)-contraction has a unique fixed point.

Corollary 2.7. Let (X, d) be a complete metric space and T: X — X. Assume that there exist ¢, : [0, ©) =
[0, ) such that

Y(d(Tx, Ty)) < p(M(x,y)) — p(M(x,y))

for all x,y € X. If ¢ is lower semi-continuous, 1 is nondecreasing, i continuous from right and
@~1({0}) = {0}, then Thas a unique fixed point.

Proof.

It is obvious Theorem 2.2 and Theorem 22 in [9].

Corollary 2.5. Every generalized GC has a unique fixed point.
Proof.

It is obvious Theorem 2.2 and Corollary 26 in [9].

Corollary 2.6. Every generalized MKC has a unique fixed point.
Proof.

It is obvious from Theorem 2.2 and Theorem 25 in [9].
3. Admissible Functions

[12] gave a-admissible concept as follows: let T: X — X, a: X X X - R. T is said to be a-admissible if
a(x,y) =21 implies a(Tx,Ty) = 1. Then, [3] added the condition; a(x,z) > 1, a(z,y) =1 imply
a(x,y) = 1, nearby the a-admissible condition and so they introduced triangular ¢-admissible notion.
We understand from these definitions, triangular a-admissible implies ¢-admissible, but the converse
is not valid. In 2014, Popescu [4] introduced a-orbital and triangular a-orbital admissible notions as
follows:

Definition 3.1. [4] LetT: X = X, a: X X X - R. T is said to be a-orbital admissible if a(x, Tx) = 1 implies
a(Tx, T?x) = 1.

Definition 3.2. [4] Let T: X = X, a: X X X = R. T is said to be triangular a-orbital admissible if T'is a-
orbital admissible, a(x,y) = 1, if a(y, Ty) = 1 implies a(x, Ty) = 1.

Every  a-admissible mapping is an a«-orbital admissible and every triangular
a-admissible mapping is a triangular a-orbital admissible mapping. So that a triangular
a-orbital admissible mapping is a very wide function class in the literature.
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Lemma 3.3. [9] Let T: X = X be a triangular a-orbital admissible mapping. Assume that there exist x; €
X such that a(xy,Tx;) = 1. Define a sequence {x,,} by x,;1 = Tx,,. Then we have a(x,, x,,) = 1 for all
n,m € Nwithn <m.

Definition 3.4. Let (X, d) be a metric space, T: X = X. T is an a-admissible R-contraction in respect of o
if there exist 0: A X A — Rsuch thatforallx,y € X, a(x,y)d(Tx,Ty) € A, ran(d) € A, a: X X X — [0, ),

o(a(x,y)d(Tx,Ty),d(x,y)) >0
forall x,y € X with x # y.If a(x,y) = 1, then T is a R-contraction.
Theorem 3.5. Let (X, d) be a complete metric space, a: X X X - R, T: X - X.If
T is an @-admissible R-contraction type mapping in respect of g,
T is a triangular a-orbital admissible mapping, there exist x, € X and a(x,, Txg) = 1,
o(t,s) <s—tforallt,s e AU (0,1),
T is a continuous function.
Then, T is a Picard operator and has a fixed point in X.
Proof.

Let xy € X such that a(xy,Txy) = 1 and let {x,} be a Picard sequence of T started with x, such that
Xn+1 = Txy, for all n € N. If there exist ng € N, x, 41 = Xy, then x,,  is a fixed point of T. In this case,

suppose that x,, .1 # x,, or alln € N. Because of (i) and (ii/), we obtain
a(xg,x1) = a(xg, Txg) =1 = a(Txy, Tx;) =1
similarly,
axy,xz) = alxy, Tx) =2 1= a(Txy, Tx) 2 1
continuing this process, we derive a(x,, x,,41) = 1 foralln € N.T is an @-admissible R-contraction, then
0< Q(a(xn, xn—l)d(Txn'Txn—l)vd(xn'xn—l)) < d(xp, xn-1) — a(xp, Xp_1)d(Xp41, Xn)

as aresult, we getforalln € N

d(xn+1'xn) < a(xn' xn—l)d(xn+1'xn) < d(xn' xn—l)#(B'l)

Hence, the sequence {x,, } is decreasing, bounded from below. Consequently, there exists L > 0 such that
lim d(x,,x,_1) = L. From equation (3.1), we get
n—-oo

1&1_{2) a(Xn, Xn—1)d(Xn41, %) = L.

Let s, = a(x,, xp_1)d(Xpn41,Xn), tn = d(x,, X,_1) and we can easily see that L < s, for n € N. In this
case, from the (p,) property, we have L = 0.

The sequence {x,} is Cauchy in X. Assume the sequence {x,,} is not Cauchy. There exist e > 0, for all k >
ny, there existm(k) > n(k) > kand d(x, k), Xm)) = €. Let m(k) be the smallest and satisfies the above

conditions. So d(xn(k)_l,xm(k)) < &.Then
e < d(Xn() ¥m@)) < (Xn() ¥m@)-1) + d(Xm)-1 Xm@0) < € + (Xm@) -1 ¥mex))

As k - 0o, we get lim d(%n (i) Xmky) = € Since

|4 (Xngiy Xmaaor-1) = A(Fny Xmao)| S d(Xma -1 Xm) )
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we get ]11_{20 d(xn(k),xm(k)_l) = ¢. Similarly, we obtain

Jim d(%n g1, Xmo) = € = im d(xnge)-1 Xm(io-1)-

By Lemma 4.3, we have a(xn(k)_l, xm(k)_l) > 1. Thus, we deduce that

0<o (a(xn(k)—l; Xm0-1)A(TXn0)=1, TXm(i)-1), d(xn(k)—lrxm(k)—l))

< d(%n@0-1 Xm0 -1) = €(Xn00-1 Xm0 -1)A(TXn g -1, TXma-1)
for all k = n,. Consequently,
0 < d(xneiy Xm)) < @(Xng0-1, Xma0-1)A(TXn@0) -1, Txmao-1) < d(Xng)-1, Xm-1)
forall k = n,. Let k — oo, we have
Jim @ (xn (i1 ¥m0-1)4(T*n 01, TXm(i-1) = €

Let ax = a(Xn()-1 Xme)-1) (T Xn ) -1 TXmy-1) and by = d(xn), Xm(x))- We show that & < a; for
all k = n;. In this case, from the (g,) property, we have € = 0, which is a contradiction. Hence, the
sequence {x,} is Cauchy. From (X, d) is complete, there exist z € X, {x,,} - z.

Assume the condition (v) satisfied. In this case, {x,;1 = Tx,} = Tz, and so Tz = z. Therefore, T is a
weakly Picard operator.

Theorem 3.6. Let (X, d) be complete, a: X X X - Rand T: X — X. Assume the followings are satisfied:
T is a - admissible R-contraction type mapping concerning g;

T is a triangular a- orbital admissible mappings,

There exist x, € X and a(a, Tx,) = 1;

o(t,s) <s—tforallt,s € AU (0,1);

if {xn} € X, a(xn, xp41) = 1foralln, x, > x asn — oo, then there exists a subsequence {x,, } of {x,,} and
a(xn,,x) = 1forallk € N.

So, T is a Picard operator and has a fixed point in X.
Proof.

From the proof of the above theorem, the sequence {x,,}, x,4+1 = Tx,, for all n € N, converges to z € X.
By the condition (), there exists a subsequence {x,, } of {x,} and a(x,,,x) = 1 for all k € N. Applying

(i) for all k, we get
0< Q(a(xnk,z)d(Txnk_l, TZ), d(xnk, z)) = Q(a(xnk,z), d(xnk, Tz), d(xnk,z))
< d(xnk,z) - a(xnk,z)d(xnk,Tz)
which is equivalent to
d(xnk,Tz) =d(Txp,—1,T2) < a(xnk,z)d(xnk,Tz) < d(xnk,z).
Let k > oo, we have d(z,Tz) = 0,i.e,z =Tz.
From the uniqueness of fixed point of @-admissible R-contraction type mapping,

(H) Forall x # y, thereexistsv € Xand a(x,v) = 1,a(y,v) = 1,a(v,Tv) = 1.
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Replacing (/i) with (H) in the hypothesis of Theorem 3.5 and Theorem 3.6, we get the uniqueness of the
fixed point of T. Assume z, t are two fixed points of T and z # t. From the condition (#), there exists v €
X and

a(z,v)=21,a(t,v) = 1,a(wTv) > 1.

Because T is triangular a-orbital admissible, we obtain a(z, T"v) > 1 and a(t,T"v) > 1 for alln € N,
we get

0 < o(a(z, T")d(Tz T™*'),d(z, T"v))
<d(z,T™) — a(z, T™v)d(Tz T"*1v)

and so

d(z, T™) = d(Tz, T"v) < a(z, T"v)d(Tz, T""'v) < d(z, T™v)

By the Theorem 3.5, we know that the sequence {T™v} converges to a fixed point t of T. As n — oo,

s, = (z, T"v)d(Tz, T v) > d(z,t) and t, = d(z,T™v) - d(z,t)

From (p;), we d(z,t) = 0, which is a contradiction. Therefore, z = t.

Now, we can give some corollaries by using Theorem 3.5 and Theorem 3.6.

Corollary 3.7. Every a-admissible Z-contraction has a unique fixed point.

Corollary 3.8. Every a-admissible Man(R)-contraction has a unique fixed point.

We prove the following corollary by using Theorem 3.5 and Theorem 2.2.

Corollary 3.9. Every a-admissible Z-contraction has a unique fixed point.

Corollary 3.10. Every a-MKC has a unique fixed point.
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