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ABSTRACT 
 

It is shown that dark matter and energy are cosmological quantum effects. De Sitter world is considered as a cosmological 

model. It is shown that in the de Sitter world, gravity and anti-gravity are different states of the Wigner elementary quantum 

system. It has been proven that in the Minkowski world, which is the limiting case of the de Sitter world, antigravity can be 

excluded. Moreover, it is shown that the Wigner - Inönü limit of the de Sitter model to the Minkowski world plays the role of 

Bohr's correspondence principle in quantum mechanics. A plan for further research is proposed. 
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1. INTRODUCTION 
 

Currently, the phenomena of dark matter and energy are the main problems of cosmology, and the study 

of their nature and constituent particles is one of the actual problems of high-energy physics, [1, 2]. 

 

It should be noted that the dark matter and energy are not the only problem connecting cosmology with 

high-energy physics. There are other fundamental problems of theoretical physics whose developmental 

history shows that their solution can be found at the intersection of elementary particle physics and 

cosmology. Particle theory is based on quantum field theory, while cosmology is based on Einstein's 

general theory of relativity. 

 

Quantum field theory was created because of the unification of quantum mechanics and special 

relativity, the highest achievement of which is the unified theory of electroweak interactions (Weinberg-

Salam-Glashow theory) and quantum chromodynamics. Quantum field theory is the only conceptually 

and mathematically developed theory successfully used in high-energy physics, which, unlike other 

well-known speculative theories, is fully consistent with experimental data, [3]. 

 

But, despite these achievements, quantum field theory has serious problems, the most famous of which 

is the appearance of infinite values of such fundamental quantities as mass and charge. Although using 

various renormalization procedures one can obtain numerical results that coincide with high precision 

with experimental data, it is impossible to exclude infinite values, which makes the theory 

mathematically and physically imperfect. 

 

Another theory successfully applied in cosmology and confirmed by numerous observations is 

Einstein’s general theory of relativity, [4, 5, 6]. Nevertheless, despite numerous attempts, it is still 

impossible to combine the general theory of relativity with quantum mechanics and build a quantum theory 

of gravity. The general theory of relativity without quantization also has its difficulties, for example, the 

problems of singularities, the laws of conservation of energy and momentum, the compatibility of solutions 

of the Einstein equations and the basic principles of the theory, and others, [7, 8]. 
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However, a comparison of the results of quantum field theory and general relativity shows that only a 

synthesis of the concepts of both theories will help find a solution to these difficulties. 

 

As an example, consider the problem of electric charge. From the classical works of Wigner, it is known 

that the spin and mass of an elementary particle have a quantum and relativistic nature. Wigner proved 

that spin and mass are invariants of projective representations of the Poincarè group, [9]. 

 
Nevertheless, the nature of the electric charge has not yet been clarified. On the other hand, it is in the 

general theory of relativity that Einstein's equations have solutions (the so-called Schwarzschild and 

Kerr solutions), which describe black holes with mass, angular momentum, and electric charge, [10]. 

Moreover, the mass, angular momentum, and electric charge of the black hole appear as integration 

constants for the solutions of the Einstein equations and completely define the black hole as a 

cosmological object, regardless of the black hole's prehistory, [11, 12]. 

 

Attempts to generalize the quantum field theory in the Minkowski world to the quantum field theory in 

the curved space-time of general relativity have not been successful. 

 

In this article, we show that dark matter and energy, regardless of their constituent particles, correspond 

to different states of a quantum system, and this phenomenon is essentially a cosmological quantum 

effect. We choose de Sitter’s world as a cosmological model, since it firstly, like the world of 

Minkowski, possesses the maximum group of movements, and secondly, in the limit, when the radius 

of curvature of space-time becomes infinite, it goes into the flat world of Minkowski. 

 

This circumstance makes it possible to use the operation of contraction of the de Sitter group into the 

Poincarè group. In their paper, Wigner and Inönü proposed a contraction operation on the transition 

from the Poincarè group to the Galileo group, where the speed of light plays the role of the contraction 

parameter. [13]. Subsequently, the contraction operation has generalized to a wide class of Lie groups 

and Lie algebras by many authors, [14]. 

 

In addition, we show that in this case, the role of a contraction operation is analogous to the role of the 

Bohr correspondence principle. Before creating the Heisenberg matrix mechanics and Schrodinger wave 

mechanics, N. Bohr successfully applied the correspondence principle to study the quantum nature of 

atomic phenomena of a certain class, [15, 16, 17]. In our work, the operation of contraction replaces the 

principle of the correspondence of Bohr, since we do not have a complete theory of quantum gravity. 

 

2. WIGNER THEORY OF ELEMENTARY SYSTEMS 

 

A real understanding of the nature of the spin and mass of elementary particles appeared after the 

classical work of E.Wigner on the representations of the inhomogeneous Lorentz group (that is, the 

Poincarè group, 1937), [9]. He established that the projective representations of this group act in the 

Hilbert state space and that these representations are equivalent to vector representations of the 

universally covering group of the Poincaré group. He introduced the concept of an elementary system 

and showed that such systems correspond to irreducible representations, that is, the space of these 

representations has no invariant subspaces. Moreover, Wigner proved that the rest mass and the spin of 

an elementary particle are invariants that uniquely characterize irreducible representations of the 

Poincarè group. 

 

In Einstein's theory of special relativity, the Poincarè group 𝑃+
↑  plays the role of the group of space-time 

symmetries. And in relativistic quantum mechanics instead of the Poincaré group, the universal covering 

group of the Poincarè group 𝑃+
↑  (so-called quantum mechanical Poincarè group, 𝑃+

↑ ) plays the role group 

of the symmetry because the states of quantum mechanical systems form the space rays, [14, 18]. On 

the other hand, the unitary ray representations of the Poincarè group, i.e. projective representations are 
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equivalent to unitary irreducible representations of the quantum-mechanical Poincarè group. It is for this 

reason that the unitary irreducible representations (UIR) of the quantum-mechanical Poincarè group 𝑃+
↑̅̅ ̅ 

describe the state of elementary particles. Invariants of the Poincarè group 𝑃+
↑̅̅ ̅  (mass and spin) 

characterize the invariant properties of elementary particles, and the generators of the Poincarè group 

determine the set of observables that determine the states of elementary particles during independent 

measurements. 

 

Invariants of the inhomogeneous Poincarè group (Casimir operators) are constructed using translation 

generators 𝑃𝜇 and 4-dimensional rotations 𝑀𝜇𝜈 as follows, [19]: 

 

𝑚2 = 𝑃𝜇𝑃
𝜇;     𝑤2 = 𝑤𝜇𝑤

𝜇 = 𝑚2𝑠(𝑠 + 1);      𝑤𝜚 = 𝜖𝜆𝜇𝜈𝜚𝑃
𝜆𝑀𝜇𝜈                               (1) 

                      
Here, 

m, s - mass and spin of the particle, respectively, and 𝑤𝜚 is the Pauli-Lubansky-Bargmann vector. 

 

Important! In the case 𝑚2 > 2, there is a third invariant - the sign of energy: 

 

𝜀 =
𝑃0
|𝑃0|

= ±1. 

 

 

3. EINSTEIN’s EQUATIONS AND DE SITTER’s SOLUTIONS 

 

According to Einstein’s general relativity, the metric properties of space-time are determined by the 

distribution and motion of matter, [5, 6]: 

 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅𝜆

𝜆 + Λ𝑔𝜇𝜈 = −
8𝜋𝐺

𝑐4
𝑇𝜇𝜈                                                 (2) 

Here,  

𝑅𝜇𝜈 − the Ricci tensor, 𝑔𝜇𝜈 − the metric tensor, Λ − the cosmological constant, 𝐺 − Newton’s 

gravitational constant, 𝑇𝜇𝜈 − the energy-momentum tensor and 𝜆, 𝜇, 𝜈 = 0,1,2,3. 

 

This equation can be rewritten in an equivalent form: 

 

𝑹𝝁𝝂 = 𝚲𝒈𝝁𝝂 −
𝟖𝝅𝑮

𝒄𝟒
(𝑻𝝁𝝂 −

𝟏

𝟐
𝒈𝝁𝝂𝑻𝝀

𝝀) ;                                           (𝟑) 

 

It is clear from (2) that the Λ − term, even in the absence of matter (𝑇𝜇𝜈 = 0), changes the space-

time geometry and Λ𝑔𝜇𝜈 is the energy-momentum tensor of the vacuum.1 

 
In the vacuum, the Einstein equations take the form: 

 

𝑹𝝁𝝂 = 𝚲𝒈𝝁𝝂;                                                                           (𝟒) 

                                                           
1 The values of G and Λ are constantly refined with the accumulation of observations: 

𝐺 = 6.6743 ∙ 10−8
𝑠𝑚3

𝑔 ∙ 𝑠𝑒𝑐2
,     (2020);                Λ~1.1056 ∙ 10−56𝑠𝑚2,         (2018).              
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For Λ = 0, the solution of (4) is the Minkowski manifold with a group of Poincarè motions. 

 

In the general case, the solutions of the Einstein equations (1)-(2) do not have a group of motions. 

However, in 1917 Willem de Sitter found two solutions of (4) for Λ ≠ 0 with different global groups 

of movements, [4, 8]: 

 

𝑑𝑠2 =
𝑑𝑟2

1 −
𝑟2

𝑅2

+ 𝑟2(𝑑𝜗2 + 𝑠𝑖𝑛2𝜗𝑑𝜑2) − (1 −
𝑟2

𝑅2
) 𝑐2𝑑𝑡2, if      Λ > 0;                     (5) 

 

𝑑𝑠2 =
𝑑𝑟2

1 +
𝑟2

𝑅2

+ 𝑟2(𝑑𝜗2 + 𝑠𝑖𝑛2𝜗𝑑𝜑2) − (1 +
𝑟2

𝑅2
) 𝑐2𝑑𝑡2, if      Λ < 0;                     (6) 

 
Here the radius R of the space and the cosmological constant Λ are related by the following formula:2 

Λ = ±
3

𝑅2
. 

Using stereographic projections:        

     

𝜉1 = 𝑟 cos 𝜗 ;                                   𝜉2 = 𝑟 sin 𝜗 cos𝜑 ;                              𝜉3 = 𝑟 sin 𝜗 sin𝜑 ; 
 

   𝜉4 = 𝑅√1 −
𝑟2

𝑅2
cosh (

𝑐𝑡

𝑅
) ;                     𝜉0 = 𝑅√1 −

𝑟2

𝑅2
sinh (

𝑐𝑡

𝑅
).  

and 
 

𝜂1 = 𝑟 cos 𝜗 ;                                   𝜂2 = 𝑟 sin 𝜗 cos𝜑 ;                              𝜂3 = 𝑟 sin 𝜗 sin𝜑 ; 
 

𝜂4 = 𝑅√1 +
𝑟2

𝑅2
cos (

𝑐𝑡

𝑅
) ;                     𝜂5 = 𝑅√1 +

𝑟2

𝑅2
sin (

𝑐𝑡

𝑅
). 

de Sitter solutions can be isometrically embedded as sub-manifolds in 5-dimensional pseudo-Euclidean 

spaces: 

𝝃𝟎
𝟐 − 𝝃𝟏

𝟐 − 𝝃𝟐
𝟐 − 𝝃𝟑

𝟐 − 𝝃𝟒
𝟐 = −𝑹𝟐                                           (𝟕) 

and 

𝜼𝟏
𝟐 + 𝜼𝟐

𝟐 + 𝜼𝟑
𝟐 − 𝜼𝟒

𝟐 − 𝜼𝟓
𝟐 = −𝑹𝟐,                                           (𝟖) 

respectively. 

 

These spaces have global symmetry groups SO(4,1) and SO(3,2) that leave the metrics (7)-(8) invariant. 

Groups SO(4,1) and SO(3,2) are called de Sitter groups. Spaces (5), (7) and (6), (8) are called de Sitter 

worlds of the 1st and 2nd kind or according to the modern terminology, de Sitter worlds dS and anti - 

de Sitter AdS, respectively. 

 

We restrict ourselves to the de Sitter world (5), (7), and the SO(4,1) group. We will consider the case of 

the anti-de Sitter world in a separate article because of the difficulties in interpreting space-time 

measurements. 

 

The commutation relations for the generators of the group 𝑆𝑂(4,1) have the form: 

                                                           
2 It is easy to see that for Λ → 0, i.e. 𝑅 → ∞, both solutions (4)-(5) are transferred to the flat world of Minkowski. 
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[𝑴𝝁𝝂,𝑴𝝔𝝈] = 𝒊(𝒈𝝁𝝔𝑴𝝂𝝈 − 𝒈𝝁𝝈𝑴𝝂𝝔 − 𝒈𝝂𝝔𝑴𝝁𝝈 + 𝒈𝝂𝝈𝑴𝝁𝝔); 

 

[𝑴𝝁𝝂, 𝑷𝝔] = 𝒊(𝒈𝝁𝝔𝑷𝝂 − 𝒈𝝂𝝔𝑷𝝁);          [𝑷𝝁, 𝑷𝝂] =
𝒊

𝑹𝟐
𝑴𝝁𝝂; 

where 

𝑷𝝁 =
𝟏

𝑹
𝑴𝟒𝝁 

 

The Casimir operators of the Lie algebra of the group SO(4,1) have the following form, [19]: 

 

𝐶1 = −
2

𝑅2
𝑀𝑎𝑏𝑀

𝑎𝑏 = −𝑃𝜆𝑃
𝜆 −

1

𝑅2
𝑀𝜇𝜈𝑀

𝜇𝜈 = 𝑀2,                             (9) 

and 

𝐶2 = 𝑊𝑎𝑊
𝑎;          𝑊𝑎 =

1

8𝑅
𝜀𝑎𝑏𝑐𝑑𝑒𝑀

𝑏𝑐𝑀𝑑𝑒 .                                          (10) 

To consider the result of the contraction 𝑅 → ∞, it is convenient to represent the operator 𝐶2 in the 

following form: 

𝐶2 = −𝑉𝜆𝑣
𝜆 −

1

𝑅2
𝑉4
2,                                                                                         (11) 

where 

𝑉𝜆 = −
1

2
𝜀𝜆𝜚𝜇𝜈4𝑃

𝜚𝑀𝜇𝜈 ,                                                                                       (12) 

 

𝑉4 =
1

8
𝜖𝜆𝜇𝜈𝜚𝑀

𝜆𝜇𝑀𝜈𝜚.                                                                                          (13) 

From the last expressions, it is clear that when 𝑅 → ∞ the Lie algebra of the group SO(4,1) becomes 

over to the Lie algebra of the Poincare group, and the Casimir operators become: 

 

𝐶1 → −𝑃𝜆𝑃
𝜆 = 𝑚2,                                                                                                     (14) 

 

𝐶2 → −𝑉𝜆𝑣
𝜆 = 𝑚2𝑠(𝑠 + 1).                                                                                     (15) 

 

where s, m are spin and rest mass, respectively.3 

 
From the limiting transition of the Casimir operators 𝐶1, 𝐶2, it follows that unlike the Minkowski world 

in the de Sitter world, elementary systems are identified not by mass and spin, but by some functions of 

spin and mass. 

 

Important! It is obvious that any function of invariants is invariant. Therefore, as invariants 

characterizing the unitary irreducible representations of the group SO(4,1), any pair of functionally 

independent invariants can be chosen to identify the unitary irreducible representations of the group 

SO(4,1). 

 

In particular, non-degenerate representations of the group SO(4,1) can be constructed in the space of (2s 

+ 1)-component vector-functions and the degree of homogeneity of 𝜎 on the upper field of the cone, 

[15]. Then the parameters s and 𝜎 will play the role of invariants characterizing the irreducible 

representations of the group SO(4,1). 

                                                           
3 This limiting transition corresponds to the well-known Wigner- Inönü contraction, [13, 14, 19]. 
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In addition, as will be shown in the next section, after the operation of contraction, the parameter s 

becomes into spin and 𝜎 to the function of mass m. 

 

The basis for our assumption about the nature of dark matter and energy is the following theorem on the 

contraction of representations of the de Sitter group SO(4,1) to the representations of the Poincarè group 

ISO(3,1). 

 

Theorem. The result of the contraction of the UIR's, 𝑇(𝜎,𝑠)(𝑔);   𝑔 ∈ 𝑆𝑂(4,1);  𝜎 = −3 2⁄ + 𝑖𝑚𝑅,   for 

𝑅 → ∞ is the direct sum of UIR,  𝑈(𝑚,𝑠;𝜀)(𝑔);   𝑔 ∈ 𝐼𝑆𝑂(3,1), with mass m, spin s and differing in 

energy sign 𝜀. 
The proof of the theorem is given in the article [20, 21]. 

 

4. CONCLUSION 

  

In the flat world of Minkowski, Wigner's elementary systems are determined by the rest mass, the spin 

and the sign of their energy can be identified with elementary particles. The requirement of stability of 

physical systems forces us to limit the energy spectrum from below and exclude negative energies. 

 

In the de Sitter world, elementary Wigner systems are identified by spin and by a parameter, which is 

the flat limit of a function of spin and mass, with different energy signs. However, unlike the Minkowski 

world, we can not exclude negative energies from consideration. 

 

Thus, elementary systems on a cosmological scale can be in states with positive and negative energies. 

Elementary systems in a state with positive energy behave like a gravitating mass, and in a negative 

energy state as an anti-gravity mass. 

 

We arrive at the following conclusions: 

1. Dark matter and energy consist of such elementary systems; 

2. Dark matter and energy are the first manifestations of quantum properties on the scale of the 

universe. Until now, quantum phenomena have been encountered in the micro-world, and also 

as macroscopic quantum effects in the theory of condensed matter; 

3. Dark matter and energy are carriers of information about the first moments of the universe after 

the Big Bang. 

 

The last conclusion follows from the fact that according to the standard cosmological model, the de 

Sitter world is a necessary phase of the evolution of the universe in the first instants (10-34 -10-32 seconds) 

after the Big Bang, (see reviews on cosmology in [22, 23]). 

 

In our opinion, sterile neutrinos are the most suitable for the role of particles that make up dark matter, 

because they are massive, and they participate only in gravitational interactions. It follows from the 

above analysis that in the de Sitter's world, such particles can be in two quantum states with positive or 

negative energies, i.e., be gravitational or anti-gravitational. 

 

Of course, our universe is not the de Sitter's world, although according to some data it is developing in 

the direction of this model, [22]. Considering the given phenomena of dark matter and dark energy in 

the general case is a difficult task because today there is no quantum theory of gravity. The solution of 

this problem in general for the gravitational field requires not only new physical concepts but also new 

mathematics. 

 

From this point of view, it is very interesting to recall the history of the origin of quantum mechanics. 

Even before the creation of Schrodinger wave mechanics and Heisenberg matrix mechanics, N.Bohr 

introduced the concept of stationary orbits (the so-called Bohr orbits) and the correspondence principle 
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to study atomic phenomena, [15, 17]. The last principle allowed the use of the concepts of classical 

mechanics to interpret the experimental data of atomic physics before the creation of complete quantum 

mechanics. In our case, the operation of contraction plays the role of the Bohr principle of 

correspondence in the absence of the quantum theory of gravity and allows us to use the concepts of 

mass and spin from the at Minkowski world in the world of de Sitter. A common property of the worlds 

of Minkowski and de Sitter is that both worlds possess the maximum group of movements (the Poincarè 

ISO(3,1) and de Sitter SO(4,1) groups, respectively). This circumstance allows us to use the contraction 

operation and the well-known results of relativistic quantum field theory, [3]. 

 

But, in the general case, a solution to the problem of quantizing the gravitational field is required. This 

problem cannot be solved in the same way as an electromagnetic field or a general gauge field. The first 

main problem is that the general theory of relativity postulates a fundamental experimental fact about 

the equality of gravitational and inertial mass. According to the well-known work of Bohr-Rosenfeld, 

[24], precisely due to a decrease in the ratio of the charge of a test particle to its mass, it is possible 

without contradicting the interpretation of quantum measurements in quantum electrodynamics. 

 

The analysis carried out by Bohr-Rosenfeld to measure the quantized electromagnetic field shows that 

the ratio of the charge density of the test body to the mass density plays an important role. If it is possible 

to make this ratio, at least in theory, sufficiently small, then a local measurement of the field is possible. 

The same conclusion can be generalized for any gauge field, except for the gravitational one. In the case 

of gravity, the role of charge is played by gravitational mass. And according to the principle of 

equivalence, gravitational mass is proportional to inertial one, and their ratio remains constant. The 

second problem is related to the existence of a gravitational radius for any gravitating body. And since 

the size of the test body cannot be less than its gravitational radius, this also excludes the local 

measurability of the gravitational field in the quantum case. 

 

Finally, another reason that does not allow constructing a quantum theory of gravity is the problem of 

defining vacuum in general relativity. Einstein's equations in the absence of matter have three well-

known solutions: de Sitter worlds of the 1st and 2nd kind, as well as the Minkowski world. On the other 

hand, from the constancy of the speed of light in a vacuum, it follows that the laws of physics in the 

absence of matter are invariant not only concerning the Lorentz group but also concerning the conformal 

group SO(4; 2). Moreover, H.Weyl even constructed a conformal invariant theory of gravity, [8]. For 

the vacuum problem, we are interested in the fact that all three groups - de Sitter groups of the 1st and 

2nd kind SO(4,1) and SO(3,2), respectively, as well as the Poincare group, are subgroups conformal 

group SO(4,2), /see Appendix/4. 

 

All this shows that the well-known methods of quantizing gauge fields, in particular the electromagnetic 

field, are inapplicable to the gravitational field. It is usually said that the gravitational field is not 

quantized. However, a different conclusion can and should be drawn. Recall that as a result of the 

unification of the special theory of relativity with quantum mechanics, a new object appears - a 

relativistic quantum field. This one is the basic concept of high-energy physics. But from the above, it 

follows that the result of combining general relativity with quantum mechanics will not be a quantized 

field, but a new object. From a mathematical point of view, the essence of the problem is that in the 

general theory of relativity, coordinates have neither metric nor physical meaning. They have only 

topological functions. Therefore, we must abandon standard methods and develop new ones and 

concepts that are adequate for general relativity. In our research, we will be based on the properties of 

the Einstein equations and their solutions. We have to reformulate the concepts in terms of solutions to 

Einstein's equations. Thus, we can achieve a unification of general relativity and quantum mechanics 

and obtain concepts that can replace analogs of the elementary system and Wigner's theorem in terms 

of solutions to Einstein's equations. 

                                                           
4 In our opinion, the interesting work [25] allows for a different interpretation. 
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This program is the basis for our further research. 

 

APPENDIX 

 

The group SO(4,2) is a connected component of the unit of the group of motions of the 6-dimensional 

pseudo-Euclidean space, which leaves the quadratic form invariant, [14, 19]: 

 

[𝑘, 𝑘] = 𝑘1
2 + 𝑘2

2 + 𝑘3
2 + 𝑘4

2 − 𝑘5
2 − 𝑘6

2 

 

Elements of 𝑔 ∈ 𝑆𝑂(4,2) are represented by 6 × 6 - matrices that perform linear transformations over 

𝑘 =  (𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6). From the definition, it follows that the relations are satisfied: 

  

𝑔⊺𝜂𝑔 = 𝜂,           det(𝑔) = 1,                                                                      (16) 
 

where the ⊺ means transposition and 𝜂 is the diagonal 6 × 6 −matrix: 

 
𝜂 = diag(1,1,1,1,−1,−1). 

 

The groups SO(4,1) and SO(3,2) are subgroups of the conformal group SO(4,2). Let us show that the 

Poincare group ISO(3,1) is also a subgroup of SO(4,2). 

 

Transitivity surfaces of the group SO(4,2): 

 

[𝑘, 𝑘] = 𝑘1
2 + 𝑘2

2 + 𝑘3
2 + 𝑘4

2 − 𝑘5
2 − 𝑘6

2 = 𝑐, 𝑐 ∈ ℝ  
 
pass into themselves under transformations from the group SO(4,2). Depending on the sign of c, there 

are three types of transitive surfaces: a hyperboloid, if c > 0 or c < 0, and a cone with a punctured vertex, 

if c = 0, because the point 𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 = 𝑘5 = 𝑘6 = 0 is the vertex of the cone and forms a 

homogeneous space. 

 

A cone with a punctured vertex plays an exceptional role in our study, so we restrict ourselves to the 

study of invariant measures and coordinate systems on the cone. 

 

We introduce a spherical coordinate system on the cone [𝑘, 𝑘]  =  0: 

 
𝑘 = 𝜔𝒏,            𝒏 = (𝜉, 𝜁),        0 < 𝜔 < ∞,          [𝒏, 𝒏] = 0.                                         (17) 

 

Here 𝜉 and 𝜁 are 4-dimensional and 2-dimensional unit vectors, respectively:5 

 

𝜁 = (sin𝜓 , cos𝜓),                 𝜁2 = 1,             0 ≤ 𝜓 < 2𝜋; 
 

𝜉 = (cos 𝜒 , sin 𝜒 cos 𝜗 , sin𝜒 sin 𝜗 cos𝜑 , sin𝜒 sin𝜗 sin𝜑),       𝜉2 = 1;                       (18) 
 

0 ≤ 𝜓 < 2𝜋;      0 ≤ 𝜒, 𝜗 ≤ 𝜋. 
 

As a fixed point, 𝑘̇ it is convenient to choose point with spherical coordinates: 

 

                                                           
5The spherical coordinate system does not constitute an atlas. Therefore, all of the following relations hold almost everywhere 

or for almost all elements of the group. 
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𝑘̇ = (1,0,0,0,0,1). 
 

The transformation ℎ(𝑘) (the so-called "boost" or the Wigner operator) that maps a fixed point 𝑘̇ to a 

given point k is defined as follows: 

 

ℎ(𝑘) = 𝑔34(𝜑)𝑔23(𝜗)𝑔12(𝜒)𝑔56(𝜓)𝑔16(𝛽),        𝛽 = ln𝜔                                            (19) 
 

The stationary group W of the point 𝑘̇ is isomorphic to the group of motions of the 4-dimensional pseudo-

Euclidean space 𝑀4, that is, Poincare group ISO(3,1): 

 

𝑊 = 𝐼𝑆𝑂(3,1). 
 

Each element of 𝑤 ∈ 𝑊 uniquely represented as: 

 

𝑤 = 𝑅(𝑟)𝐵(𝑧),                        (20) 
 

where 𝑧 is a 4-dimensional vector, and r is the pseudo-orthogonal 6 × 6 -matrix: 

 
𝑔⊺𝜂̂𝑔 = 𝜂̂,                     𝜂̂ = diag(1,1,1,−1). 

 

The matrices R(r) and 𝐵(𝑧) have the following form: 
 

𝑅(𝑟) = (
1 0⃗⃗⊺ 0

0⃗⃗ 𝑟 0⃗⃗

0 0⃗⃗⊺ 1

) ,     𝑅(𝑟) ∈ 𝑆𝑂(3,1) ⊂ 𝑆𝑂(4,2),                                           (21) 

 

𝐵(𝑧) =

(

  
 
1 +

𝑧2

2
𝑧⊺ −

𝑧2

2
𝑧  𝜂̂ −𝑧

𝑧2

2
𝑧⊺ 1 −

𝑧2

2 )

  
 
,     𝑧2 = 𝑧2 = 𝑧⊺𝜂̂𝑧 = 𝑧1

2 + 𝑧2
2 + 𝑧3

2 − 𝑧4
2.     (22) 

 

The matrices 𝐵(𝑧) form an abelian subgroup, which is a normal divisor of the stationary subgroup ≅
𝐼𝑆𝑂(3,1) : 

𝐵(𝑧1)𝐵(𝑧2) = 𝐵(𝑧1 + 𝑧2),                      𝑅(𝑟
−1)𝐵(𝑧)𝑅(𝑟) = 𝐵(𝑟−1𝑧). 

 

Thus, for 𝑔 ∈ 𝑆𝑂(4,2) we have: 

 

𝑔 = ℎ(𝑘)𝑤                                                            (23) 
 

Using the formulas (19)-(20), we obtain the expansion for the elements of the group (4,2) : 
 

𝑔 = 𝑔34(𝜑)𝑔23(𝜗)𝑔12(𝜒)𝑔56(𝜓)𝑔16(𝛽)𝑅(𝑟)𝐵(𝑧)                                           (24) 
 

Thus, the groups 𝑆𝑂(4,1), 𝑆𝑂(3,2), and 𝐼𝑆𝑂(3,1) are, up to isomorphism, subgroups of the conformal 

group 𝑆𝑂(4,2). 
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