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Abstract

We study eccentricity-based indices such as Zagreb eccentricity indices, general eccentricity
index and total eccentricity index. We present exact values of eccentricity-based indices
of generalized networks related to binary and m-ary trees, where m > 2.
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1. Introduction

Let G be a network with vertex set V(G) and edge set E(G). The distance between
two vertices is the number of edges in a shortest path connecting them. The eccentricity
eccg(v) of a vertex v is the distance between v and a vertex furthest from v in G.

Gao et al. [3] and Imran et al. [5] studied networks HT (k) (see Figure 1) and ST} (see
Figure 2). We generalize those networks.

Figure 1. Network HT'(k) for k = 3.

We introduce the sets HT,, , and ST}, , for m > 2. The special cases for m = 2 contain
the networks HT (k) and ST} studied in [3] and [5].

We define general networks using complete m-ary trees 1), of height k > 1. The tree
T, 1 contains 1+ m + m? 4 --- + m¥ vertices which are divided into k + 1 sets Vj for
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Figure 2. Network ST} for k = 3.

i=0,1,2,...,k, where |V;| = m’. The vertex in Vj is called the root and we denote it by
0. Fori=1,2,...,k, we denote the vertices in V; by (x1,x2,...,z;) or simply x1z2...x;,
where x1,x9,...,2; € {1,2,...,m}. So

Vi={(z1,22,...,25) | 1 <y <m; j=1,2,...,i}.
The root is adjacent to all the m vertices (1),(2),...,(m) in V4. Fori =1,2,...,k —1,
any vertex (r1,x,...,x;) of V; is adjacent to m vertices
([El,.’EQ,...,$i,1),($1,$2,...,xi,2),...,($1,$2,...,Ji'z',m)

of Vit1. If m = 2, then T3}, is called the complete binary tree.

The set ST, ;, contains all the networks obtained from T, ;, by connecting each vertex
vin V; for i = 2,3,...,k, to any m — 1 vertices in V; whose first coordinate is equal to
the first coordinate of v, and by connecting every two different vertices in V;. One of the
networks of ST, ;. for m = 3 and k = 3 is presented in Figure 3. Note that if £ =1 or 2,
there is only one network in ST, ;, for every m > 2.

0

11 12 13 21 22 23 31 32 33

111/2/3 121/2/3 131/2/3 211/2/3 221/2/3 231/2/3 311/2/3 321/2/3 331/2/3
Figure 3. One of the networks in ST, , for m =3 and k = 3.

For G € ST, k, no vertex of V(G) \ (Vo U Vi) with the first coordinate j is adja-
cent to a vertex with the first coordinate [, where j # [. Therefore, the eccentricity of
(x1,x9,...,2;) € V; for i > 21is k+1i— 1. A vertex furthest from (z1,zs,...,2;) is any
vertex (yi,y2,...,Yk) € Vi, where z1 # y; and the shortest path between (z1,z2,...,2;)
and (y1,Y2,. ., Yk) 18

(IL'l,JIQ, oo ,.’Ei), ($17$27 ceey xi—l)a ceey («'171)7 (yl)v (y17y2)7 SRR (y17y27 o 7yk)
The eccentricity of any vertex in Vo U Vy is k.
The network ST; kl is one of the networks in S7T5 ;. The network ST, kl is obtained from
the complete binary tree T by joining the vertex (zi,z2,...,zi—1,1) and the vertex
(x1,m9,...,2i-1,2) for each i = 1,2,... k and x1,z9,...,2,—1 € {1,2}.
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The set HT,, , contains all the networks obtained from 7}, ; by connecting each vertex
vinV; for i =2,3,...,k, to any m — 1 vertices in V; whose second coordinate is equal to
the second coordinate of v, and by connecting any two vertices in V1. If £ =1 or 2, there
is only one network in HT}, j, for every m > 2. The network which is in the set HT,, ; if
m = 3 and k = 2 is presented in Figure 4.

Figure 4. The network which is in the set HT,, ;, if m = 3 and k = 2.

For G € HT,, , no vertex of V(G)\ (VoUV1) with the second coordinate j is adjacent to
a vertex with the second coordinate [, where j # [. The eccentricity of (x1,x2,...,2;) € V;
fori > 2is k+i—1 A vertex furthest from (x1, z9, ..., z;) is any vertex (y1,y2,...,Yx) € Vi,
where x1 # y1 and z3 # ya. A shortest path between (x1,z2,...,2;) and (y1,2,-..,Yk)
is for example the path

(1,72, .., @), (X1, 22, -+ Tim1)s -5 (1), (Y1), (Y15 92)5 - -5 (Y15 Y2, -+, Uk,

where x1 # y; and x9 # yo. The eccentricity of any vertex in Vo U Vj is k. This implies
that any network in ST, ; and any network in HT,, ; have the same number of vertices
of given eccentricity.

The network HT'(k) studied in [3] and [5] is one of the networks in HT5 j. The network
HT(k) is obtained from the complete binary tree T3 by joining the vertex (1,z2,...,x;)
and the vertex (2,x2,...,x;) foreach i =1,2,...,k and z2,...,2; € {1,2}.

Zagreb indices belong to the most well-known topological indices. We mention them
in order to present the similarity between the definitions of classical Zagreb indices and
Zagreb eccentricity indices. The first Zagreb index M; and the second Zagreb index Mo
of a network G are defined as

Mi(G)= > (dega(v))®*= > (dega(u)+ dega(v))
veV(Q) uweE(G)
and
Ms(G) = Z dega(u)dega(v),
uweE(G)

where degi(u) and degg(v) are the degrees of vertices u and v in G, respectively. The
Zagreb eccentricity indices are defined as

&a(G) = Y (eceq(v))?,

veV(G)

&(G) = Y (eceq(u) + ece(v)),

uweE(G)

&G) = > eccg(u)ecca(v).

weE(G)
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The first Zagreb eccentricity index & and the second Zagreb eccentricity index £ were
introduced in [7]. The & index was introduced in [4] and we call it the modified Zagreb
eccentricity index.

We generalize &1 (G) and introduce the general eccentricity index

BL(G)= ) (ecca(v))”
veV(G)
for any real number a. If a = 1, we obtain the total eccentricity index
EL(G) = Z eccg(v)
veV(G)

and FEls is the first Zagreb eccentricity index &;.

Eccentricity based indices have been studied because of their extensive applications.
Eccentricity based indices of nanostar dendrimers were investigated in [2] and other related
indices for example in [1] and [6].

2. Results

First we compute Y5, m?, Y%, im? and %, i?m’ for m > 2 and k > 1. Since

i i m(mk—1)
m'= ——~
i=1 m—1
we obtain
u i 2 3 k k+1 m(lfmk) k+1
(1—m)ZimZ:m+m +m? 4+ m” — kmt :ﬁ—km+
i=1
and
iimi _ m(1 — mk) " kmFt1 _ kmkt2 — (k + l)rnk"'1 +m
P (1 —m)? m—1 (m —1)2 '

We have (m —1)23°F | i2m!
= m42m>+2m3 +2m* + -+ 2mF — (k2 + 2k — D)mFL 4 k2mbt?
= m+2m*(L+m+m?+ -+ mP2) — (k% + 2k — 1)m*T! 4 k2mh+2

9 2 k71—1
_ m (m )—I—m—(k2—|—2k‘—1)mk+1—|—k2mk+2,

m—1
thus
ko, 2mFtl —2m?  E2mAt? — (k2 42k — D)mF Tt 4+m
ZZ mo= 5 T 2
= (m—1) (m—1)
E2mF 3 — (2k% + 2k — D)mP 2 + (k + 1)2mF —m? —m

(m—1)?

A vertex v of any network in ST, ; and the same vertex v of any network in HT}, j
have the same eccentricities, therefore for every network in ST, and every network in
HT,, , we obtain the same value of the E, index (note that a € R).

Theorem 2.1. For any network G € ST,, ;, U HT,, }., we have

k
EI(G) =k"+ Y m'(k+i—1)"
=1
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Proof. The network G contains 1 4+ m + m? + --- + mF vertices. For i = 0,1,2,...,k,
we have |V;| = m’, where V; is the set of vertices at distance i from the root 0. For
1 = 1,2,...,k, any vertex in V; has eccentricity k£ + ¢ — 1. The vertex in 0 € Vj has
eccentricity k. Thus

EL(G) = Y K"+ > K+ > (k+1)"+--4 > (2k—1)"
veV) veV] vEVS ’UGVk
= mOk 4+ mE +mPk+ 1)+ 4+ mF2k—1)°
k
= K+ mi(k+i—1)°
=1

O

In Theorems 2.2 and 2.3, we investigate the total eccentricity index EI; and the first
Zagreb eccentricity index FEIy (= &) of biological networks, respectively.

Theorem 2.2. For any network G € ST, U HT,, 1., we have
(2k — D)ym**+2 — 2km**t 4+ m? —km + k
(m —1)2 '

EL(G) =
Proof. By Theorem 2.1, we have

k
EL(G)=k+) m'(k+i-1).
=1

So
k k
EL(G) = 1) m' Z
=1 =1
( -1) kmkt2 — (k+1)m k+1 4 om
m—1 (m—1)2

(2k — 1)m*+2 — 2km* L + m? — km + k
(m—1) '

Theorem 2.3. For any network G € ST, 1, U HT), j., we have
(2k — 1)2mF+3 — (8k% — 4k — 1)mF+2 + 4k2mF+!
(m—1)?
(2k — 1)m? — (k + 1)?m? + 2k*m — k?
(m—1)3 '

§1(G) =

Proof. By Theorem 2.1, we have

k
EL=6(G) =k +> m'(k+i-1)>
=1
So

k
a(@) = K+ Zmi[(k —1)24+2(k—1)i+142)]

k
= K+ 2k‘+12 (2k —2) sz +sz

m(m -1) kmk+2 — (k+ 1)mF 4 m
—+(2k -2
m—1 + ) (m—1)2

= K>+ (K =2k +1)
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N E2mF 3 — (2k% + 2k — D)mP 2 + (k + 1)2mFH —m?2 —m

(m—1)?
_(2k = 1)?mF 3 — (8k% — 4k — 1)mF T2 4 4kZmP ]
N (m—1)3
(2k — 1)m3 — (k + 1)?m? + 2k*m — k?
(m—1)3 '

In Theorem 2.4, we investigate the invariant
I(G) = Z fleccq(u), eccq(v)),
weFE(G)
where f(eccg(u),eccq(v)) is a function of eccg(u) and eccg(v) such that f(eccq(u),
eccg(v)) = f(eccq(v), eceq(u)).
If f(eccq(u),eccq(v)) = eccq(u) + eccq(v), we obtain the modified Zagreb eccentricity

index If f(eccg(u),eccq(v)) = eccg(u)eccq(v), we obtain the second Zagreb eccentricity
index.

Theorem 2.4. For any network G € ST, ), U HT,, },, we have

Eo ko i+l i
I(G):m-f(k,k)—kZme(k—ki—Q,k%—i—1)+Z%f(k+i—1,k+i—l).
=2 =1

Proof. The network G contains

(m—1)m  (m—1)m? (m — 1)mk>
2 2 2

(m+m2—|—---+mk)+< + +o

edges. Let
Eij={uw e EG) |ueV; veV;}
So the set E; ; contains the edges incident with one vertex in V; and the other vertex in
V;. We obtain
‘E()J’ =m, |E172‘ = m2, ey ‘Ek—l,k| = mk

and
(m — 1)m*

(m—1)m Bas| = (m —1)m?
) s 2

Byl =
| B 1] 5 5

ey ‘Ek,k| =
Note that
E(G)=(EynUE 12U UEp_14)U(E11 UE22U---UELp).

For i = 1,2,...,k, any vertex in V; has eccentricity k 4+ ¢ — 1 and the vertex 0 € Vj has
eccentricity k. Thus we obtain

I(G) = Y fleceg(u),ecca(v))

weE(QG)

uveEo’l u’UGEl’Q

+ > fk+LE+2) 4+ D) f(2k—2,2k-1)
wv€Fs 3 weEl,_1 1

+ > fleEk)+ D fk+LEk+1)+- 4+ D f(Rk—1,2k—1)
uwveF 1 wvE K3 2 uvE g i

= m- f(k k) +m?f(k,k+1)

T f (k)
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+Wf(k+1,k+1)+-~+(m;)mkf(%_l’%_l)

= m-flkk)+> mif(k+i—2k+i—1)

k i+1
m -m . .
+E ff(k—i—z—l,k—m—l).
i=1
O

In Theorem 2.5, we obtain the values of the modified Zagreb eccentricity index &] and
the second Zagreb eccentricity index & of the generalized networks.

Theorem 2.5. For any network G € ST, U HT,, 1., we have
(2k — 1)mF 3 — 2mF+2 — 2k — D)m* 1 — (k — 2)m? + km

gl( ) (m_l)g
and
m+1 5 mktt —m
= k — k" =2k+1)—-k+1] ————
&) = km+ | TR0 -2k 1)~ k1] T
kmk+2_(k+1)mk+1+m
1)(k-1)—-1
+ [lm+ 1)k = 1)~ 1] 1P
<m + 1) K2mFts — (2k% + 2k — 1)mF T2 + (k + 1)?m* ! —m? —m
+ .
2 (m—1)3

Proof. For the & index, we get f(eccg(u),eccq(v)) = eccg(u) + eccg(v), so f(k+i—
2,k+i—1)=2k+2i—3and f(k+i1—1, k:—H—l) = 2k + 2i — 2. Then by Theorem 2.4,
k
&(G) = 2km+> m'(2k+ 2i — Z 2k+2z—2)
=2
k ' k '
= 2km—(2k—1)m+> m'(2k+2i—3)+ > (m—1m'(k+i—1)
i=1 i=1

k k
= m+[(k—1)(m—1)+2k—=3]Y_ m' + (m+1)>_ im'
=1 j=
_ m(mF — 1) EmFt2 — (k4 D)m* +m

(2k — 1)mF3 — 2mF+2 — 2k — D)ym* 1 — (k — 2)m? + km
(m —1)? '

For the & index, we get f(eccq(u),eccq(v)) = (u)eccg(v), so
Flk+i—2k+i—1)= (k—i—z—?)(k—i—z—l) :( 2 3k +2) + (2ki — 34) + i

and
flk+i—1k+i—1)=(k+i—1)(k+i—1)=(k*—2k+1)+ (2ki — 20) +¢°
Then by Thworem 2.4,

k
&(G) = Em+ Z m'[(k* — 3k 4 2) + (2ki — 34) + i?]

k
+Zw[(k2 — 2k +1) + (2ki — 26) + 7]
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k
= k'm—k(k—1m~+>_ m'[(k* — 3k +2) + (2ki — 3i) + i?]
=1

k i
N ; (m —21)m (k2 — 2k + 1) + (2ki — 20) + 2]

m—1.5 2 - i
= km—l—[Q(k —2k+1)+ (k —3k+2)]iz:1m

k k
) -1 )
+ [(m—=1)(k—1)+ (2k—3)] Y _im" + (mQ 1) > im!
=1 =1
1 k+1 _
= km+[m+(k2—2k+1)—k+1}m m
m—1
Emkt2 — (k + 1)mFL +m
D(k—1)—1
+ [(m+1)(k-1)—1] (m— 1)
<m + 1) RPmh 3 — (22 4 2k — Dm" 2 + (k + 1)*mF ! —m? —m
2 (m—1)3 '

0

The following corollary holds for any network in biological networks in which one person
transmits a virus or bacteria to two other people, so it holds also for the networks STk1
and HT (k).

Corollary 2.6. For any network G € ST5;, U H15 ), we have
EH(G) = (k—1)28 T — g2k 2 L okl _ 6L 1+ 16
and
E9(G) = (1 — k)28 4 k(k — 1)28F3 4 (K% — k +1)28F2 4 2FFL 32 4 16k — 22
Proof. By Theorem 2.5, the modified Zagreb eccentricity index
E(G) = (2k—1)283 —2. 282 _(9k — 1)2F! — (k — 2)2° 4 3k
= (k—1)2M* — k2R 2 L oF L 6k 116
and the second Zagreb eccentricity index
&(G) = 2k+ g(k:2 —2k+1) —k+ 1| (2" —2)
+ [3(k — 1) — 1)[k28+2 — (k + 1)2F+1 4 2]
+ 3[192’“3 — (2K 4 2k — 1)25F2 4 (k + 1)228 1 — 22 _ 9]
= (1 —k)2M* 4 k(k — )23 4 (K2 — b+ 1)282 1 281 382 1 16k — 22.
O

It is easy to check that for G € STy U HTy ), we obtain & (G) = 6 and &(G) = 3
if k=1 and (G) = 44 and &(G) = 54 if k = 2. These values can be computed after
drawing the networks of the set ST UHT5 ;.. The only network in ST ,UHT5 j, for k = 1
is the triangle. The only networks in the set ST5 ;U HTy j, for k = 2 are the networks ST}
and HT(2).
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