

RESEARCH ARTICLE

Study of generalized networks using graph theory

Tomáš Vetrík

 $\label{lem:potential} Department\ of\ Mathematics\ and\ Applied\ Mathematics,\ University\ of\ the\ Free\ State,\ Bloemfontein,\ South\\ Africa$

Abstract

We study eccentricity-based indices such as Zagreb eccentricity indices, general eccentricity index and total eccentricity index. We present exact values of eccentricity-based indices of generalized networks related to binary and m-ary trees, where $m \ge 2$.

Mathematics Subject Classification (2020). 05C90, 05C12

Keywords. graph theory, eccentricity-based index, network

1. Introduction

Let G be a network with vertex set V(G) and edge set E(G). The distance between two vertices is the number of edges in a shortest path connecting them. The eccentricity $ecc_G(v)$ of a vertex v is the distance between v and a vertex furthest from v in G.

Gao et al. [3] and Imran et al. [5] studied networks HT(k) (see Figure 1) and ST_k^1 (see Figure 2). We generalize those networks.

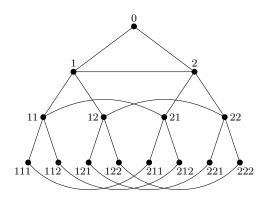


Figure 1. Network HT(k) for k=3.

We introduce the sets $HT_{m,k}$ and $ST_{m,k}$ for $m \geq 2$. The special cases for m = 2 contain the networks HT(k) and ST_k^1 studied in [3] and [5].

We define general networks using complete m-ary trees $T_{m,k}$ of height $k \geq 1$. The tree $T_{m,k}$ contains $1 + m + m^2 + \cdots + m^k$ vertices which are divided into k + 1 sets V_i for

Email address: vetrikt@ufs.ac.za

Received: 09.11.2020; Accepted: 01.06.2021

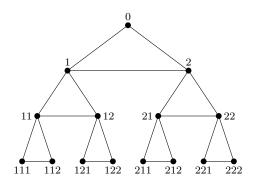


Figure 2. Network ST_k^1 for k=3.

i = 0, 1, 2, ..., k, where $|V_i| = m^i$. The vertex in V_0 is called the root and we denote it by 0. For i = 1, 2, ..., k, we denote the vertices in V_i by $(x_1, x_2, ..., x_i)$ or simply $x_1 x_2 ... x_i$, where $x_1, x_2, ..., x_i \in \{1, 2, ..., m\}$. So

$$V_i = \{(x_1, x_2, \dots, x_i) \mid 1 \le x_j \le m; \ j = 1, 2, \dots, i\}.$$

The root is adjacent to all the m vertices $(1), (2), \ldots, (m)$ in V_1 . For $i = 1, 2, \ldots, k-1$, any vertex (x_1, x_2, \ldots, x_i) of V_i is adjacent to m vertices

$$(x_1, x_2, \ldots, x_i, 1), (x_1, x_2, \ldots, x_i, 2), \ldots, (x_1, x_2, \ldots, x_i, m)$$

of V_{i+1} . If m=2, then $T_{2,k}$ is called the complete binary tree.

The set $ST_{m,k}$ contains all the networks obtained from $T_{m,k}$ by connecting each vertex v in V_i for $i=2,3,\ldots,k$, to any m-1 vertices in V_i whose first coordinate is equal to the first coordinate of v, and by connecting every two different vertices in V_1 . One of the networks of $ST_{m,k}$ for m=3 and k=3 is presented in Figure 3. Note that if k=1 or 2, there is only one network in $ST_{m,k}$ for every $m\geq 2$.

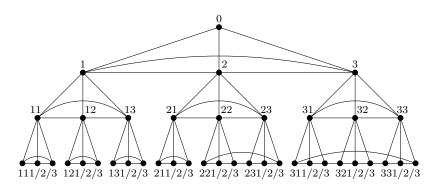


Figure 3. One of the networks in $ST_{m,k}$ for m=3 and k=3.

For $G \in ST_{m,k}$, no vertex of $V(G) \setminus (V_0 \cup V_1)$ with the first coordinate j is adjacent to a vertex with the first coordinate l, where $j \neq l$. Therefore, the eccentricity of $(x_1, x_2, \ldots, x_i) \in V_i$ for $i \geq 2$ is k + i - 1. A vertex furthest from (x_1, x_2, \ldots, x_i) is any vertex $(y_1, y_2, \ldots, y_k) \in V_k$, where $x_1 \neq y_1$ and the shortest path between (x_1, x_2, \ldots, x_i) and (y_1, y_2, \ldots, y_k) is

$$(x_1, x_2, \ldots, x_i), (x_1, x_2, \ldots, x_{i-1}), \ldots, (x_1), (y_1), (y_1, y_2), \ldots, (y_1, y_2, \ldots, y_k).$$

The eccentricity of any vertex in $V_0 \cup V_1$ is k.

The network ST_k^1 is one of the networks in $ST_{2,k}$. The network ST_k^1 is obtained from the complete binary tree $T_{2,k}$ by joining the vertex $(x_1, x_2, \ldots, x_{i-1}, 1)$ and the vertex $(x_1, x_2, \ldots, x_{i-1}, 2)$ for each $i = 1, 2, \ldots, k$ and $x_1, x_2, \ldots, x_{i-1} \in \{1, 2\}$.

The set $HT_{m,k}$ contains all the networks obtained from $T_{m,k}$ by connecting each vertex v in V_i for $i=2,3,\ldots,k$, to any m-1 vertices in V_i whose second coordinate is equal to the second coordinate of v, and by connecting any two vertices in V_1 . If k=1 or 2, there is only one network in $HT_{m,k}$ for every $m \geq 2$. The network which is in the set $HT_{m,k}$ if m=3 and k=2 is presented in Figure 4.

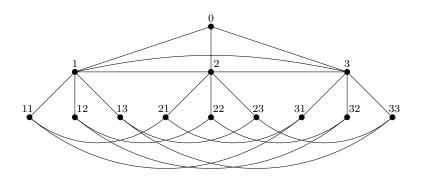


Figure 4. The network which is in the set $HT_{m,k}$ if m=3 and k=2.

For $G \in HT_{m,k}$, no vertex of $V(G) \setminus (V_0 \cup V_1)$ with the second coordinate j is adjacent to a vertex with the second coordinate l, where $j \neq l$. The eccentricity of $(x_1, x_2, \ldots, x_i) \in V_i$ for $i \geq 2$ is k+i-1 A vertex furthest from (x_1, x_2, \ldots, x_i) is any vertex $(y_1, y_2, \ldots, y_k) \in V_k$, where $x_1 \neq y_1$ and $x_2 \neq y_2$. A shortest path between (x_1, x_2, \ldots, x_i) and (y_1, y_2, \ldots, y_k) is for example the path

$$(x_1, x_2, \ldots, x_i), (x_1, x_2, \ldots, x_{i-1}), \ldots, (x_1), (y_1), (y_1, y_2), \ldots, (y_1, y_2, \ldots, y_k),$$

where $x_1 \neq y_1$ and $x_2 \neq y_2$. The eccentricity of any vertex in $V_0 \cup V_1$ is k. This implies that any network in $ST_{m,k}$ and any network in $HT_{m,k}$ have the same number of vertices of given eccentricity.

The network HT(k) studied in [3] and [5] is one of the networks in $HT_{2,k}$. The network HT(k) is obtained from the complete binary tree $T_{2,k}$ by joining the vertex $(1, x_2, \ldots, x_i)$ and the vertex $(2, x_2, \ldots, x_i)$ for each $i = 1, 2, \ldots, k$ and $x_2, \ldots, x_i \in \{1, 2\}$.

Zagreb indices belong to the most well-known topological indices. We mention them in order to present the similarity between the definitions of classical Zagreb indices and Zagreb eccentricity indices. The first Zagreb index M_1 and the second Zagreb index M_2 of a network G are defined as

$$M_1(G) = \sum_{v \in V(G)} (deg_G(v))^2 = \sum_{uv \in E(G)} (deg_G(u) + deg_G(v))$$

and

$$M_2(G) = \sum_{uv \in E(G)} deg_G(u) deg_G(v),$$

where $deg_G(u)$ and $deg_G(v)$ are the degrees of vertices u and v in G, respectively. The Zagreb eccentricity indices are defined as

$$\xi_1(G) = \sum_{v \in V(G)} (ecc_G(v))^2,$$

$$\xi'_1(G) = \sum_{uv \in E(G)} (ecc_G(u) + ecc_G(v)),$$

$$\xi_2(G) = \sum_{uv \in E(G)} ecc_G(u)ecc_G(v).$$

The first Zagreb eccentricity index ξ_1 and the second Zagreb eccentricity index ξ_2 were introduced in [7]. The ξ'_1 index was introduced in [4] and we call it the modified Zagreb eccentricity index.

We generalize $\xi_1(G)$ and introduce the general eccentricity index

$$EI_a(G) = \sum_{v \in V(G)} (ecc_G(v))^a$$

for any real number a. If a = 1, we obtain the total eccentricity index

$$EI_1(G) = \sum_{v \in V(G)} ecc_G(v)$$

and EI_2 is the first Zagreb eccentricity index ξ_1 .

Eccentricity based indices have been studied because of their extensive applications. Eccentricity based indices of nanostar dendrimers were investigated in [2] and other related indices for example in [1] and [6].

2. Results

First we compute $\sum_{i=1}^k m^i$, $\sum_{i=1}^k im^i$ and $\sum_{i=1}^k i^2m^i$ for $m \geq 2$ and $k \geq 1$. Since

$$\sum_{i=1}^{k} m^{i} = \frac{m(m^{k} - 1)}{m - 1},$$

we obtain

$$(1-m)\sum_{i=1}^{k} im^{i} = m + m^{2} + m^{3} + \dots + m^{k} - km^{k+1} = \frac{m(1-m^{k})}{1-m} - km^{k+1}$$

and

$$\sum_{i=1}^{k} im^{i} = \frac{m(1-m^{k})}{(1-m)^{2}} + \frac{km^{k+1}}{m-1} = \frac{km^{k+2} - (k+1)m^{k+1} + m}{(m-1)^{2}}.$$

We have $(m-1)^2 \sum_{i=1}^k i^2 m^i$

$$= m + 2m^2 + 2m^3 + 2m^4 + \dots + 2m^k - (k^2 + 2k - 1)m^{k+1} + k^2 m^{k+2}$$

$$= m + 2m^2 (1 + m + m^2 + \dots + m^{k-2}) - (k^2 + 2k - 1)m^{k+1} + k^2 m^{k+2}$$

$$= \frac{2m^2 (m^{k-1} - 1)}{m - 1} + m - (k^2 + 2k - 1)m^{k+1} + k^2 m^{k+2},$$

thus

$$\begin{split} \sum_{i=1}^k i^2 m^i &= \frac{2m^{k+1} - 2m^2}{(m-1)^3} + \frac{k^2 m^{k+2} - (k^2 + 2k - 1)m^{k+1} + m}{(m-1)^2} \\ &= \frac{k^2 m^{k+3} - (2k^2 + 2k - 1)m^{k+2} + (k+1)^2 m^{k+1} - m^2 - m}{(m-1)^3}. \end{split}$$

A vertex v of any network in $ST_{m,k}$ and the same vertex v of any network in $HT_{m,k}$ have the same eccentricities, therefore for every network in $ST_{m,k}$ and every network in $HT_{m,k}$, we obtain the same value of the EI_a index (note that $a \in \mathbb{R}$).

Theorem 2.1. For any network $G \in ST_{m,k} \cup HT_{m,k}$, we have

$$EI_a(G) = k^a + \sum_{i=1}^k m^i (k+i-1)^a.$$

Proof. The network G contains $1 + m + m^2 + \cdots + m^k$ vertices. For $i = 0, 1, 2, \ldots, k$, we have $|V_i| = m^i$, where V_i is the set of vertices at distance i from the root 0. For $i = 1, 2, \ldots, k$, any vertex in V_i has eccentricity k + i - 1. The vertex in $0 \in V_0$ has eccentricity k. Thus

$$EI_{a}(G) = \sum_{v \in V_{0}} k^{a} + \sum_{v \in V_{1}} k^{a} + \sum_{v \in V_{2}} (k+1)^{a} + \dots + \sum_{v \in V_{k}} (2k-1)^{a}$$

$$= m^{0}k^{a} + m^{1}k^{a} + m^{2}(k+1)^{a} + \dots + m^{k}(2k-1)^{a}$$

$$= k^{a} + \sum_{i=1}^{k} m^{i}(k+i-1)^{a}$$

In Theorems 2.2 and 2.3, we investigate the total eccentricity index EI_1 and the first Zagreb eccentricity index EI_2 (= ξ_1) of biological networks, respectively.

Theorem 2.2. For any network $G \in ST_{m,k} \cup HT_{m,k}$, we have

$$EI_1(G) = \frac{(2k-1)m^{k+2} - 2km^{k+1} + m^2 - km + k}{(m-1)^2}.$$

Proof. By Theorem 2.1, we have

$$EI_1(G) = k + \sum_{i=1}^{k} m^i (k+i-1).$$

So

$$EI_{1}(G) = k + (k-1) \sum_{i=1}^{k} m^{i} + \sum_{i=1}^{k} im^{i}$$

$$= k + (k-1) \frac{m(m^{k}-1)}{m-1} + \frac{km^{k+2} - (k+1)m^{k+1} + m}{(m-1)^{2}}$$

$$= \frac{(2k-1)m^{k+2} - 2km^{k+1} + m^{2} - km + k}{(m-1)^{2}}.$$

Theorem 2.3. For any network $G \in ST_{m,k} \cup HT_{m,k}$, we have

$$\xi_1(G) = \frac{(2k-1)^2 m^{k+3} - (8k^2 - 4k - 1)m^{k+2} + 4k^2 m^{k+1}}{(m-1)^3} + \frac{(2k-1)m^3 - (k+1)^2 m^2 + 2k^2 m - k^2}{(m-1)^3}.$$

Proof. By Theorem 2.1, we have

$$EI_2 = \xi_1(G) = k^2 + \sum_{i=1}^k m^i (k+i-1)^2.$$

So

$$\xi_1(G) = k^2 + \sum_{i=1}^k m^i [(k-1)^2 + 2(k-1)i + i^2)]$$

$$= k^2 + (k^2 - 2k + 1) \sum_{i=1}^k m^i + (2k-2) \sum_{i=1}^k i m^i + \sum_{i=1}^k i^2 m^i$$

$$= k^2 + (k^2 - 2k + 1) \frac{m(m^k - 1)}{m - 1} + (2k - 2) \frac{km^{k+2} - (k+1)m^{k+1} + m}{(m-1)^2}$$

$$+ \frac{k^2 m^{k+3} - (2k^2 + 2k - 1)m^{k+2} + (k+1)^2 m^{k+1} - m^2 - m}{(m-1)^3}$$

$$= \frac{(2k-1)^2 m^{k+3} - (8k^2 - 4k - 1)m^{k+2} + 4k^2 m^{k+1}}{(m-1)^3}$$

$$+ \frac{(2k-1)m^3 - (k+1)^2 m^2 + 2k^2 m - k^2}{(m-1)^3}.$$

In Theorem 2.4, we investigate the invariant

$$I(G) = \sum_{uv \in E(G)} f(ecc_G(u), ecc_G(v)),$$

where $f(ecc_G(u), ecc_G(v))$ is a function of $ecc_G(u)$ and $ecc_G(v)$ such that $f(ecc_G(u), ecc_G(v)) = f(ecc_G(v), ecc_G(u))$.

If $f(ecc_G(u), ecc_G(v)) = ecc_G(u) + ecc_G(v)$, we obtain the modified Zagreb eccentricity index If $f(ecc_G(u), ecc_G(v)) = ecc_G(u)ecc_G(v)$, we obtain the second Zagreb eccentricity index.

Theorem 2.4. For any network $G \in ST_{m,k} \cup HT_{m,k}$, we have

$$I(G) = m \cdot f(k,k) + \sum_{i=2}^{k} m^{i} f(k+i-2,k+i-1) + \sum_{i=1}^{k} \frac{m^{i+1} - m^{i}}{2} f(k+i-1,k+i-1).$$

Proof. The network G contains

$$(m+m^2+\cdots+m^k)+\left(\frac{(m-1)m}{2}+\frac{(m-1)m^2}{2}+\cdots+\frac{(m-1)m^k}{2}\right)$$

edges. Let

$$E_{i,j} = \{uv \in E(G) \mid u \in V_i, v \in V_j\}.$$

So the set $E_{i,j}$ contains the edges incident with one vertex in V_i and the other vertex in V_j . We obtain

$$|E_{0,1}| = m, |E_{1,2}| = m^2, \dots, |E_{k-1,k}| = m^k$$

and

$$|E_{1,1}| = \frac{(m-1)m}{2}, |E_{2,2}| = \frac{(m-1)m^2}{2}, \dots, |E_{k,k}| = \frac{(m-1)m^k}{2}.$$

Note that

$$E(G) = (E_{0,1} \cup E_{1,2} \cup \cdots \cup E_{k-1,k}) \cup (E_{1,1} \cup E_{2,2} \cup \cdots \cup E_{k,k}).$$

For $i=1,2,\ldots,k$, any vertex in V_i has eccentricity k+i-1 and the vertex $0 \in V_0$ has eccentricity k. Thus we obtain

$$I(G) = \sum_{uv \in E(G)} f(ecc_G(u), ecc_G(v))$$

$$= \sum_{uv \in E_{0,1}} f(k, k) + \sum_{uv \in E_{1,2}} f(k, k+1)$$

$$+ \sum_{uv \in E_{2,3}} f(k+1, k+2) + \dots + \sum_{uv \in E_{k-1,k}} f(2k-2, 2k-1)$$

$$+ \sum_{uv \in E_{1,1}} f(k, k) + \sum_{uv \in E_{2,2}} f(k+1, k+1) + \dots + \sum_{uv \in E_{k,k}} f(2k-1, 2k-1)$$

$$= m \cdot f(k, k) + m^2 f(k, k+1)$$

$$+ m^3 f(k+1, k+2) + \dots + m^k f(2k-2, 2k-1) + \frac{(m-1)m}{2} f(k, k)$$

$$+ \frac{(m-1)m^2}{2}f(k+1,k+1) + \dots + \frac{(m-1)m^k}{2}f(2k-1,2k-1)$$

$$= m \cdot f(k,k) + \sum_{i=2}^k m^i f(k+i-2,k+i-1)$$

$$+ \sum_{i=1}^k \frac{m^{i+1} - m^i}{2}f(k+i-1,k+i-1).$$

In Theorem 2.5, we obtain the values of the modified Zagreb eccentricity index ξ'_1 and the second Zagreb eccentricity index ξ_2 of the generalized networks.

Theorem 2.5. For any network $G \in ST_{m,k} \cup HT_{m,k}$, we have

$$\xi_1'(G) = \frac{(2k-1)m^{k+3} - 2m^{k+2} - (2k-1)m^{k+1} - (k-2)m^3 + km}{(m-1)^2}$$

and

$$\xi_{2}(G) = km + \left[\frac{m+1}{2}(k^{2}-2k+1) - k+1\right] \frac{m^{k+1}-m}{m-1}$$

$$+ \left[(m+1)(k-1) - 1\right] \frac{km^{k+2} - (k+1)m^{k+1} + m}{(m-1)^{2}}$$

$$+ \left(\frac{m+1}{2}\right) \frac{k^{2}m^{k+3} - (2k^{2}+2k-1)m^{k+2} + (k+1)^{2}m^{k+1} - m^{2} - m}{(m-1)^{3}}.$$

Proof. For the ξ'_1 index, we get $f(ecc_G(u), ecc_G(v)) = ecc_G(u) + ecc_G(v)$, so f(k+i-2, k+i-1) = 2k+2i-3 and f(k+i-1, k+i-1) = 2k+2i-2. Then by Theorem 2.4,

$$\xi'_{1}(G) = 2km + \sum_{i=2}^{k} m^{i}(2k+2i-3) + \sum_{i=1}^{k} \frac{m^{i+1} - m^{i}}{2} (2k+2i-2)$$

$$= 2km - (2k-1)m + \sum_{i=1}^{k} m^{i}(2k+2i-3) + \sum_{i=1}^{k} (m-1)m^{i}(k+i-1)$$

$$= m + [(k-1)(m-1) + 2k-3] \sum_{i=1}^{k} m^{i} + (m+1) \sum_{i=1}^{k} im^{i}$$

$$= m + [(k-1)m + k-2] \frac{m(m^{k}-1)}{m-1} + (m+1) \frac{km^{k+2} - (k+1)m^{k+1} + m}{(m-1)^{2}}$$

$$= \frac{(2k-1)m^{k+3} - 2m^{k+2} - (2k-1)m^{k+1} - (k-2)m^{3} + km}{(m-1)^{2}}.$$

For the ξ_2 index, we get $f(ecc_G(u), ecc_G(v)) = ecc_G(u)ecc_G(v)$, so

$$f(k+i-2,k+i-1) = (k+i-2)(k+i-1) = (k^2-3k+2) + (2ki-3i) + i^2$$

and

$$f(k+i-1,k+i-1) = (k+i-1)(k+i-1) = (k^2-2k+1) + (2ki-2i) + i^2$$

Then by Thworem 2.4,

$$\xi_2(G) = k^2 m + \sum_{i=2}^k m^i [(k^2 - 3k + 2) + (2ki - 3i) + i^2]$$

$$+ \sum_{i=1}^k \frac{m^{i+1} - m^i}{2} [(k^2 - 2k + 1) + (2ki - 2i) + i^2]$$

$$= k^2 m - k(k-1)m + \sum_{i=1}^k m^i [(k^2 - 3k + 2) + (2ki - 3i) + i^2]$$

$$+ \sum_{i=1}^k \frac{(m-1)m^i}{2} [(k^2 - 2k + 1) + (2ki - 2i) + i^2]$$

$$= km + \left[\frac{m-1}{2} (k^2 - 2k + 1) + (k^2 - 3k + 2) \right] \sum_{i=1}^k m^i$$

$$+ \left[(m-1)(k-1) + (2k-3) \right] \sum_{i=1}^k im^i + \left(\frac{m-1}{2} + 1 \right) \sum_{i=1}^k i^2 m^i$$

$$= km + \left[\frac{m+1}{2} (k^2 - 2k + 1) - k + 1 \right] \frac{m^{k+1} - m}{m-1}$$

$$+ \left[(m+1)(k-1) - 1 \right] \frac{km^{k+2} - (k+1)m^{k+1} + m}{(m-1)^2}$$

$$+ \left(\frac{m+1}{2} \right) \frac{k^2 m^{k+3} - (2k^2 + 2k - 1)m^{k+2} + (k+1)^2 m^{k+1} - m^2 - m}{(m-1)^3}$$

The following corollary holds for any network in biological networks in which one person transmits a virus or bacteria to two other people, so it holds also for the networks ST_k^1 and HT(k).

Corollary 2.6. For any network $G \in ST_{2,k} \cup HT_{2,k}$, we have

$$\xi_1'(G) = (k-1)2^{k+4} - k2^{k+2} + 2^{k+1} - 6k + 16$$

and

$$\xi_2(G) = (1-k)2^{k+4} + k(k-1)2^{k+3} + (k^2-k+1)2^{k+2} + 2^{k+1} - 3k^2 + 16k - 22.$$

Proof. By Theorem 2.5, the modified Zagreb eccentricity index

$$\xi_1'(G) = (2k-1)2^{k+3} - 2 \cdot 2^{k+2} - (2k-1)2^{k+1} - (k-2)2^3 + 3k$$

= $(k-1)2^{k+4} - k2^{k+2} + 2^{k+1} - 6k + 16$

and the second Zagreb eccentricity index

$$\xi_2(G) = 2k + \left[\frac{3}{2}(k^2 - 2k + 1) - k + 1\right](2^{k+1} - 2)$$

$$+ [3(k-1) - 1][k2^{k+2} - (k+1)2^{k+1} + 2]$$

$$+ \frac{3}{2}[k^22^{k+3} - (2k^2 + 2k - 1)2^{k+2} + (k+1)^22^{k+1} - 2^2 - 2]$$

$$= (1 - k)2^{k+4} + k(k-1)2^{k+3} + (k^2 - k + 1)2^{k+2} + 2^{k+1} - 3k^2 + 16k - 22.$$

It is easy to check that for $G \in ST_{2,k} \cup HT_{2,k}$, we obtain $\xi_1'(G) = 6$ and $\xi_2(G) = 3$ if k = 1 and $\xi_1'(G) = 44$ and $\xi_2(G) = 54$ if k = 2. These values can be computed after drawing the networks of the set $ST_{2,k} \cup HT_{2,k}$. The only network in $ST_{2,k} \cup HT_{2,k}$ for k = 1 is the triangle. The only networks in the set $ST_{2,k} \cup HT_{2,k}$ for k = 2 are the networks ST_2^1 and HT(2).

Acknowledgment. This work is based on the research supported by the National Research Foundation of South Africa (Grant Number 129252).

References

- [1] F. Asif, Z. Zahid, S. Zafar, M.R. Farahani and W. Gao, On topological properties of some convex polytopes by using line operator on their subdivisions, Hacet. J. Math. Stat. 49 (1), 136–146, 2020.
- [2] R. Farooq and M.A. Malik, On some eccentricity based topological indices of nanostar dendrimers, Optoelectronics and Advanced Materials, Rapid Communications 9 (5-6), 842–849, 2015.
- [3] W. Gao, H. Wu, M.K. Siddiqui and A.Q. Baig, Study of biological networks using graph theory, Saudi J. Biol. Sci. 25 (6), 1212–1219, 2018.
- [4] M. Ghorbani and M.A. Hosseinzade, A new version of Zagreb indices, Filomat 26 (1), 93–100, 2012.
- [5] M. Imran, M.A. Iqbal, Y. Liu, A.Q. Baig, W. Khalid and M.A. Zaighum, Computing eccentricity-based topological indices of 2-power interconnection networks, J. Chem. **2020**, 3794592, 2020.
- [6] M.K. Siddiqui, M. Imran and M. Saeed, Topological properties of face-centred cubic lattice, Hacet. J. Math. Stat. 49 (1), 195–207, 2020.
- [7] D. Vukičević and A. Graovac, Note on the comparison of the first and second normalized Zagreb eccentricity indices, Acta Chim. Slov. 57 (3), 524–528, 2010.