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Abstract. In this work, we consider singular conformable fractional Sturm-Liouville operators defined by the
expression

%(y) = −T 2
αy(t) +

ξ2 − 1
4

t2 y(t) + p(t)y(t),

where 0 < t < ∞, ξ ≥ 1 and p(.) is real-valued functions defined on [0,∞) and satisfy the condition p (.) ∈
L1
α,loc(0,∞). We construct a space of boundary values for minimal symmetric singular conformable fractional

Sturm-Liouville operators in limit-circle case at singular end point. Finally, we give a description of all maximal
dissipative, accumulative and self-adjoint extensions of conformable fractional Sturm-Liouville operators with the
help of boundary conditions.
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1. Introduction

The theory of extensions of symmetric operators is one of the main research areas of operator theory. The extensions
theory developed originally by J. von Neumann [21]. Later, in [17], Rofe-Beketov investigated self adjoint extensions
of a symmetric operator in terms of abstract boundary conditions with aid of linear relations. Bruk [4] and Kochubei
[10] are introduced the notion of a space of boundary values. They described all maximal dissipative, accumulative,
self-adjoint extensions of symmetric operators. For a more comprehensive discussion of extension theory of symmetric
operators, the reader is referred to [7].

Fractional differential equations are used today in many fields such as transmission line theory, signal processing,
chemical analysis, heat transfer, hydraulics of dams, material science, temperature field problems oil strata, diffusion
problems, waves in liquids and gases, Schrödinger equation and fractal equation [3, 9, 11–13, 15, 16, 18–20, 22].

Recently Khalil et al. gave a new definition of the fractional derivative and fractional integral, viewed as the natural
extension of the classical derivative using the limit form [8]. This new definition draws attention with its classical
derivative compatibility and the product rule and division rule, which is not provided for other fractional derivatives,
is provided for this new fractional derivative definition. This definition, which is called a conformable fractional
derivative, has attracted a great deal of attention due to these features and many studies have been done in a short
time. In their study, Khalil and his colleagues expressed Rolle’s theorem and mean value theorem for functions that
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can be differentiated as a fractional-order by proving that this new fractional derivative definition provides the product
rule and division rule. Later in [1], the conformable fractional derivative analysis developed by Abdeljawad; For this
new definition, the concepts of left and right conformable fractional derivatives, fractional chain rule and Gronwall
inequality, high order fractional integral definition for α > 1, fractional power serial expansion and Laplace transform.

In this study, we give a description of all maximal dissipative, self adjoint and other extensions of conformable
fractional singular Sturm-Liouville operators with the help of boundary conditions. A similar way was employed
earlier in the classical Sturm-Liouville operator case in [2, 5–7].

In what follows, we state some concepts for conformable fractional equations that will be related to our results.

Definition 1.1 ( [1]). Assume α be a positive number with 0 < α < 1. A function x : (0, b) −→ R : =(−∞,∞) the
conformable fractional derivative of order α of x at t > 0 was defined by

Tαx(t) = lim
ε→0

x
(
t + εt1−α

)
− x (t)

ε
,

and the fractional derivative at 0 is defined
(Tαx) (0) = lim

t→0
Tαx(t).

Definition 1.2 ( [1]). The conformable fractional integral starting from 0 of a function x of order 0 < α≤1 is defined
by

(Iαx) (t) =

t∫
0

sα−1x(s)ds =

t∫
0

x(s)dαs.

Lemma 1.3 ( [1]). Assume that x is a continuous function on (0, b) and 0 < α < 1. Then, we have

TαIαx (t) = x (t) ,

for all t > 0.

Theorem 1.4 ( [1]). Let x, y : [0, b]→ R be two functions such that x and y are conformable fractional differentiable.
Then, we have ∫ b

0
y (t) Tα (x) (t) dαt +

∫ b

0
x(t)Tα (y) (t) dαt = x (b) y (b) − x (0) y (0) .

Let us denote by L2
α(0,∞), the space of all complex-valued functions defined on [0,∞) such that

‖y‖ :=

√∫ ∞

0
|y (t)|2 dαt < ∞.

This space is a Hilbert space with the inner product

(x, y) :=
∫ ∞

0
x (t) y (t)dαt, where x, y ∈ L2

α(0,∞).

The conformable α-Wronskian of x and y is defined by

Wα[x, y]t = x(t)Tαy(t) − y(t)Tαx(t), where t ∈ [0,∞).

2. Main Results

Here we study conformable fractional singular Sturm-Liouville differential expression

%(y) = −T 2
αy(t) +

ξ2 − 1
4

t2 y(t) + p(t)y(t), 0 < t < ∞, (2.1)

where ξ ≥ 1 and p(.) is real-valued functions defined on [0,∞) and satisfy the condition p (.) ∈ L1
α,loc(0,∞).

Let us denote by R0 the closure of the minimal symmetric operator [14] generated by (2.1). We denote by D the set
of all the functions y(.) from L2

α(0,∞) whose first conformable fractional derivatives are locally absolutely continuous
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in [0,∞) and %(y) ∈ L2
α(0,∞); D is the domain of the maximal operator R generated by expression %,and R = R∗0 [2].

For defect index (0, 0), the operator R0 is self-adjoint, i.e., R∗0 = R0 = R.
In this work, we assume that the symmetric operator R0 has defect index (1, 1).
Let u1(t) and u2(t) denote the solutions of %(y) = 0 satisfying the initial conditions

u1(1) = 1, Tαu1(1) = 0, u2(1) = 0, Tαu2(1) = 1.

Clearly, u1(t) and u2(t) are linearly independent and their Wronskians are equal to one;

Wα[u1, u2]t = Wα[u1, u2]1 = 1 (1 ≤ t ≤ ∞).

We recall that a triple (H,Υ1,Υ2), where H is a Hilbert space and Υ1 and Υ2 are linear maps of D(A∗) into H is
called the space of boundary values (SBV) of closed symmetric operator A in the Hilbert space H with equal defect
indices, if the following two conditions hold;

(1) For every f , h ∈ D(A∗)

(A∗ f , h)H − ( f , A∗h)H = (Υ1 f ,Υ2h)H − (Υ2 f ,Υ1h)H,

2. For every h1, h2 ∈ H, there is a vector f ∈ D(A∗) such that Υ1 f = h1, Υ2 f = h2.

We consider the following linear maps of D into C.

Υ1 f = Wα[ f , u1]∞, Υ2 f = Wα[ f , u2]∞, f ∈ D. (2.2)

Theorem 2.1. The triple (C,Υ1,Υ2) defined by (2.2) is the space of boundary values of the operator R0.

In order to check the first condition of (SBV), we first prove the following lemma.

Lemma 2.2. For arbitrary functions y(.), w(.) ∈ D, we have

Wα[y,w]t = Wα[y, u1]t.Wα[w, u2]t −Wα[y, u2]t.Wα[w, u1]t, 0 ≤ t ≤ ∞.

Proof. Observing that u1(t) and u2(t) are real functions, we have,

Wα[y, u1]t.Wα[w, u2]t −Wα[y, u2]t.Wα[w, u1]t

= (y(t)Tαu1(t) − Tαy(t)u1(t))
(
w(t)Tαu2(t) − Tαw(t)u2(t)

)
= (y(t)Tαu2(t) − Tαy(t)u2(t))

(
w(t)Tαu1(t) − Tαw(t)u1(t)

)
= y(t)Tαw(t) − Tαy(t)w(t) = Wα[y,w]t, 0 ≤ t ≤ ∞. �

Since the operator R0 having defect index (1,1) for ξ ≥ 1, we get the following Lagrange formula:

(Ry,w)L2
α(0,∞) − (y,Rw)L2

α(0,∞) = Wα[y,w]∞, (2.3)

for every y(.),w(.) ∈ D.
It follows from Lemma 2.2 and (2.3) that

(Υ1y,Υ2w)C − (Υ2y,Υ1w)C
= Wα[y, u1]t.Wα[w, u2]t −Wα[y, u2]t.Wα[w, u1]t = Wα[y,w]∞.

Therefore, the first requirement of the SBV is fulfilled. The second requirement is proved by the use of the following
lemma.

Lemma 2.3. For any complex δ0, δ1, there is a function y ∈ D satisfying

Wα[y, u1]∞ = δ0, Wα[y, u2]∞ = δ1.

Proof. Let us denote by R1 the closure of the minimal symmetric operator generated by %(y) in 1 ≤ t ≤ ∞. For any
complex numbers ρ0, ρ1, δ0 and δ1, there is function y1(.) ∈ D(R∗1) which satisfies the following conditions

y(1) = ρ0, Tαy(1) = ρ1, Wα[y, u1]∞ = β0, Wα[y, u2]∞ = β1. (2.4)

Now, let us prove these relations. We consider a function f (.) ∈ L2
α(1,∞) satisfying

( f , u1)L2
α(1,∞) = δ0 + ρ1, ( f , u2)L2

α(1,∞) = δ1 − ρ0. (2.5)
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Let y1(t) denote the solution equation %(y) = f (t), (1 < t < ∞) satisfying the initial conditions

y(1) = ρ0, Tαy(1) = ρ1.

This solution can be written as

y1(t) = ρ0u1(t) + ρ1u2(t) +

t∫
1

{u1(t)u2(v) − u1(v)u2(t)} f (v)dαv.

This expression shows that y1(.) ∈ D(R∗1). Let us apply Lagrange’s formula to the functions y1(t) and u j(t) ( j = 1, 2)

( f , u j)L2
α(1,∞) = (%(y1), u j)L2

α(1,∞)

= Wα[y1, u j]∞ −Wα[y1, u j]1 + (y, %(u j))L2
α(1,∞). (2.6)

If we let
%(u j) = 0, y1(1) = ρ0, Tαy1(1) = ρ1.

in (2.6), we find

Wα[y1, u j]1 =

{
−ρ1, j = 1
ρ0, j = 2,

and

( f , u1)L2
α(1,∞) = Wα[y1, u1]∞ + ρ1

( f , u2)L2
α(1,∞) = Wα[y1, u2]∞ − ρ0.

From (2.5) we obtain
Wα[y1, u1]∞ = δ0, Wα[y1, u2]∞ = δ1.

Hence, we have proved that there exists a function y1(.) ∈ D(R∗1) which satisfies (2.4).
For any complex numbers ρ0 and ρ1, let

y2(t) = ρ0u1(t) + ρ1u2(t) (0 < t ≤ 1).

Then, let us define

y(t) =

{
y2(t), 0 < t ≤ 1
y1(t), 1 ≤ t < ∞.

It is clearly that y ∈ D. With respect to the condition (2.4) we obtain

Wα[y, u1]∞ = Wα[y1, u1]∞ = δ0, Wα[y, u2]∞ = Wα[y1, u2]∞ = δ1.

Hence, Lemma 2.3 and Theorem 2.1 are proved. �

Recall that a linear operator S (with dense domain D(S )) acting in some Hilbert space H is called dissipative
(accumulative) if Im(S f , f ) ≥ 0 (Im(S f , f ) ≤ 0) for all f ∈ D(S ) and maximal dissipative (maximal accumulative) if
it does not have a proper dissipative (accumulative) extension

Using Theorem 2.1 and Theorem 1.6 [7], we can state the following theorem.

Theorem 2.4. For every number b ∈ C, Im b ≥ 0 or b = ∞, the restriction of R to the set of functions y ∈ D satisfying
either

Wα[y, u1]∞ − bWα[y, u2]∞ = 0, (2.7)
or

Wα[y, u1]∞ + bWα[y, u2]∞ = 0, (2.8)
is respectively the maximal dissipative and accumulative extension of the symmetric operator R0. Conversely, every
maximally dissipative (accumulative) extension of R0 is the restriction of R to the set of functions y(.) ∈ D satisfying
(2.7), (2.8). If Im b = 0 or b = ∞, the conditions (2.7) and (2.8) define self-adjoint extensions of the symmetric operator
R0. For b = ∞, the conditions (2.7), (2.8) should be replaced by Wα[y, u2]∞ = 0.
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