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ABSTRACT. We give a proof of Hölder continuity for bounded local weak solutions to the equation

(∗) ut =

N∑
i=1

(|uxi |
pi−2uxi )xi , in ΩT = Ω× (0, T ], with Ω ⊂⊂ RN ,

under the condition 2 < pi < p̄(1 + 2/N) for each i = 1, .., N , being p̄ the harmonic mean of the pis, via recently
discovered intrinsic Harnack estimates. Moreover, we establish an equivalent formulation of these Harnack estimates
within the proper intrinsic geometry.
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1. INTRODUCTION AND MAIN RESULT

Equations of the kind of (∗) fall into the wide class of degenerate equations, because their
coordinate modulus of ellipticity |uxi |pi−2 vanishes as soon as the partial derivative uxi ap-
proaches zero. This behaviour is classically studied in equations evolving as the degenerate
p-Laplacian

(1.1) ut − div

(
|∇u|p−2∇u

)
= 0, in ΩT = Ω× (0, T ], Ω ⊂⊂ RN ,

whose modulus of ellipticity |∇u|p−2∇u goes to zero when the whole gradient of the solution
vanishes. Within a rich variety of other different techniques, the method of intrinsic scaling is
one of the keys to access the theory of regularity for degenerate parabolic equations (see for
instance [7], [10]): it provides a correct interpretation of the evolution of the equation, inter-
preted in a particular geometry dictated by the solution itself, hence the name. This method
has proven to be powerful and flexible enough to be adapted to a wide class of equations; a
sketchy example for the doubly nonlinear case can be found in [4]. Nevertheless, the appli-
cation of this method to the anisotropic case is not straightforward, because the degenerative
behavior of the equation is purely directional, i.e., some partial derivatives can vanish while
some other ones may direct the diffusion. When pi ≡ p, the equation (∗) is a different equation
from (1.1) and bears the name of orthotropic p-Laplacian. The prototype equation (∗) reflects the

Received: 11.11.2020; Accepted: 19.01.2021; Published Online: 01.03.2021
*Corresponding author: Simone Ciani; simone.ciani@unifi.it
DOI: 10.33205/cma.824336

93



94 Simone Ciani and Vincenzo Vespri

modeling of many materials that reveal different diffusion rates along different directions, such
as liquid crystals, wood or earth’s crust (see for an example the book [26]). The regularity of
bounded local weak solutions to equations as (∗) with measurable and bounded coefficients
is still an open problem. The main difference with standard nonlinear regularity theory is the
directional growth of the operator, usually referred to as nonstandard growth (see for instance
[1]). This requires the definition of a new class of function spaces, called anisotropic Sobolev
spaces (see Section 2), and whose study is open and challenging.

1.1. The elliptic problem. Even in the elliptic case, a standard statement of regularity for such
equations requires a bound on the sparseness of the powers pi. Indeed, in general, the weak so-
lution can be unbounded, as proved in [15], [19]. Lipschitz bounds were obtained by Marcellini
for the p, q nonstandard growth in his work [21], supposing the coefficients are regular enough.
This work opened one way to the regularity theory of the so-called nonstandard growth con-
ditions. See also the work by Uralt’seva and Urdaletova in [28], and [17], [18] for more general
equations. In [2], the authors proved the boundedness of solutions under the assumption

(1.2) p < N, max{p1, .., pN} < p∗,

where p̄ and p̄∗ are defined respectively in (2.11) and (2.12). Regularity properties are proved
assuming strong conditions on the regularity of the coefficients (see [20], [21]). In this context,
we quote also the contribution [12]. A recent result of Lipschitz regularity has been proven by
Brasco and Bousquet in [3] for the elliptic counterpart of (∗), by assuming that solutions are just
bounded. On the other hand, structure conditions are left in big generalisation while a tighter
condition on the spareness of pi is used in the paper [14] to obtain Lipschitz bounds. This list
is far from being complete, we refer to the survey [22] for an exhaustive bibliography. Never-
theless even in the elliptic case, when the coefficients are rough, Hölder continuity remains still
nowadays an open problem. Indeed, continuity conditioned to boundedness has been proved
in [11] through the intrinsic scaling method, but with a condition of stability on the exponents
pi which is only qualitative. Removability of singularities has been considered in [27], where
the idea of working with fundamental solutions in the anisotropic framework had yet been
taken into consideration.

1.2. The parabolic problem. To the best of our knowledge, the boundedness of local weak
solutions to equations behaving as (∗) has been proved in [13], [23]. More precisely, they prove
that local weak solutions are bounded if

(1.3) pi < p̄

(
1 +

2

N

)
, i = 1, .., N.

Again in [13], the authors find some useful L∞ estimates, together with finite speed of propa-
gation and lower semicontinuity of solutions. These have been the starting point for the study
of fundamental solutions to (∗) (see for instance [5]), and the behaviour of their support in
[6]. Recently, an approach based on an expansion of positivity relying on the behaviour of
fundamental solutions has brought the authors to prove in [6] the following Harnack inequal-
ity, properly structured in an intrinsic anisotropic geometry that we are about to describe. Fix
numbers θ, ρ > 0 to be defined later, and define the anisotropic cubes

(1.4) Kρ(θ) :=

N∏
i=1

{
|xi| < θ

pi−p̄
pi ρ

p̄
pi

}
.
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Next, define the following centered, forward and backward anisotropic cylinders, for a generic
point (x0, t0):

(1.5)


centered cylinders: (x0, y0) +Qρ(θ) = {x0 +Kρ(θ)} × (t0 − θ2−p̄ρp̄, t0 + θ2−p̄ρp̄);

forward cylinders: (x0, y0) +Q+
ρ (θ) = {x0 +Kρ(θ)} × [t0, t0 + θ2−p̄ρp̄);

backward cylinders: (x0, y0) +Q−ρ (θ) = {x0 +Kρ(θ)} × (t0 − θ2−p̄ρp̄, t0].

We use the following Theorem 1.1 as an essential tool to prove the Hölder continuity of so-
lutions, in a similar fashion to the approach firstly used by J. Moser in [24] and successively
developed in [8] for degenerate parabolic equations of p-Laplacian type with measurable coef-
ficients.

Theorem 1.1. Let u be a non-negative local weak solution to (∗) such that for some point (x0, t0) ∈ ΩT ,
we have u(x0, t0) > 0. There exist constants c, γ depending only upon pi, N such that the following
inequality holds for all intrinsic cylinders (x0, t0) +Q+

4ρ(θ) contained in ΩT

(1.6) u(x0, t0) ≤ γ inf
x0+Kρ(θ)

u(x, t0 + θ2−p̄ρp̄), θ =

(
c

u(x0, t0)

)
.

It is remarkable that estimate (1.6) is prescribed on a space configuration dependent on the
solution. This property differs substantially from the isotropic case because it reveals a typical
anisotropic intrinsic geometry. In this setting, an expansion of positivity can be performed by
means of the comparison principle (see [6]). In the present work, we show that Theorem 1.1
implies local Hölder continuity of local weak solutions to (∗).

Theorem 1.2. Let u be a local weak solution to (∗). Then u is locally Hölder continuous in ΩT , i.e.,
there exist constants γ > 1, α ∈ (0, 1) depending only upon pi, N , such that for each compact set
K ⊂⊂ ΩT we have

(1.7) |u(x, t)− u(y, s)| ≤ γ||u||∞
(∑N

i=1 |xi − yi|
pi
p̄ ||u||

p̄−pi
pi∞ + |t− s|

1
p̄ ||u||

p̄−2
p̄
∞

π-dist(K, ∂ΩT )

)α
,

for every pair of points (x, t), (y, s) ∈ K, with
(1.8)

π-dist(K, ∂ΩT ) := inf

{(
|xi−yi|

pi
p̄ ||u||

p̄−pi
pi∞ ∧|t−s|

1
p̄ ||u||

p̄−2
p̄
∞

)
: (x, t) ∈ K, (y, s) ∈ ∂ΩT , i = 1..N

}
.

Moreover, through a similar approach to the isotropic case in [9], we show that the classical
Pini-Hadamard estimate can be recovered (see [25] for the complete reference)

(1.9) γ−1 sup
Kρ(x0)

u(·, t0 − ρ2) ≤ u(x0, t0)n ≤ γ inf
Kρ(x0)

u(·, t0 + ρ2), γ > 0,

when pi ≡ 2 for all i = 1, .., N and provided the parabolic cylinders (x0, t0)+Q±4ρ are contained
in ΩT . Indeed, the following theorem can be shown to be sole consequence of Theorem 1.1.

Theorem 1.3. Let u be a non-negative local weak solution to (∗) such that for some point (x0, t0) ∈ ΩT
we have u(x0, t0) > 0. There exist constants c, γ depending only upon pi, N such that for all intrinsic
cylinders (x0, t0) +Q4ρ(θ) contained in ΩT as in (1.5) we have
(1.10)

γ−1 sup
x0+Kρ(θ)

u(x, t0 − θ2−p̄ρp̄) ≤ u(x0, t0) ≤ γ inf
x0+Kρ(θ)

u(x, t0 + θ2−p̄ρp̄), θ =

(
c

u(x0, t0)

)
.
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Remark 1.1. When the elliptic counterpart is considered, we deal with stationary solutions to (∗), so
that the behavior at each time is always the same. In this context, easily deductible by (1.10), we get the
usual sup-inf estimate with no need of a waiting time. What is essential (at least for the proof of (1.6) in
[6]) and deeply different from the isotropic case where the elliptic estimate holds in classic cubes, is the
intrinsic space geometry (1.4) of Kρ(θ).

2. PRELIMINARIES

Given p := (p1, .., pN ), p > 1 with the usual meaning, we assume that the harmonic mean is
smaller than the dimension of the space variables

(2.11) p :=

(
1

N

N∑
i=1

1

pi

)−1

< N,

and we define the Sobolev exponent of the harmonic mean p,

(2.12) p∗ :=
Np

N − p
.

We will suppose all along this note that the pis are ordered increasingly, without loss of gener-
ality. Next, we introduce the natural parabolic anisotropic spaces. Given T > 0 and a bounded
open set Ω ⊂ R, we let ΩT = Ω× (0, T ] and we define

W 1,p
o (Ω) := {u ∈W 1,1

o (Ω)|Diu ∈ Lpi(Ω)},

Lp
loc(0, T ;W 1,p

o (Ω)) := {u ∈ L1
loc(0, T ;W 1,1

o (Ω))|Diu ∈ Lpiloc(0, T ;Lpiloc(Ω))}.

A function

u ∈ C0
loc(0, T ;L2

loc(Ω)) ∩ Lp
loc(0, T ;W 1,p

o (Ω))

is a local weak solution of (∗) if for all 0 < t1 < t2 < T and any test function ϕ ∈ C∞loc(0, T ;C∞o (Ω))
it satisfies

(2.13)
∫

Ω

uϕdx

∣∣∣∣t2
t1

+

∫ t2

t1

∫
Ω

(−uϕt +

N∑
i=1

|uxi |pi−2uxiϕxi) dxdt = 0.

By a density and approximation argument, this actually holds for any test function of the kind

ϕ ∈W 1,2
loc (0, T ;L2

loc(Ω)) ∩ Lp
loc(0, T ;W 1,p

o (Ω))

for any pi-semirectangular domain Ω ⊂⊂ RN , where traces can be properly defined (see Theorem
3 in [16]).

Definition 2.1. ([16]) If the set of N elements of the vector (p1, .., pN ) consists of L distinct values,
let us denote the multiplicity of each of the values by ni, i = 1, ..., L such that n1 + ... + nL = N .
We say that a bounded domain Ω ⊂ Rn satisfies the pi-semirectangular restriction related to the vector
(p1, .., pN ), if there exist bounded Lipschitz domains Ωi ⊂ Rni , i = 1, .., L, such that Ω = Ω1×...×ΩL.

We will suppose all along the work that Ω ⊂⊂ RN is a pi-semirectangular domain, being
considerations and estimates of local nature.
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3. PROOF OF THEOREM 1.2

We employ the intrinsic Harnack inequality (1.6) to establish locally quantitative Hölder
estimates for local, weak solutions u of (∗), conditioned to the boundedness condition 2 <
pi < p̄(1 + 2/N) for each i = 1, .., N . Fix a point (x0, t0) ∈ ΩT which, up to translations, we
will consider to be the origin in RN+1, and for an initial radius ρ0 > 0, consider the cylinder
Q′ = Kρ0

× (−ρ2
0, 0], with vertex at (0, 0), and set

M0 = sup
Q′

u, m0 = inf
Q′
u, and ω0 = M0 −m0 = osc

Q′
u.

With ω0 at hand, we can construct the initial cylinder for our purpose, intrinsically scaled:

Q0 = Kρ0
× (−θp̄−2

0 ρp̄0, 0] =

N∏
i=1

{
|xi| < θ

p̄−pi
pi

0 ρ
p̄
pi
0

}
×
(
− θp̄−2

0 ρp̄0, 0

]
, where θ0 =

(
c

ω0

)
,

and c is a constant to be determined later only in terms of the data and independent of u, ρ0.
The accommodation of degeneracy deals with the following fact: if ω0 > cρ0, then Q0 ⊂ Q′.
Converse inequality would lead directly to continuity in Q0.

Proposition 3.1. Either ω0 ≤ cρ0, or there exist numbers γ > 1, δ, ε ∈ (0, 1), that can be quantita-
tively determined only in terms of the data pi, N and independent of u, ρ0, such that if we set

(3.14) ωn = δωn−1, θn =

(
c

ωn

)
, ρn = ερn−1,

and

Qn = Qρn(θn) =

N∏
i=1

{
|xi| < θ

p̄−pi
pi

n ρ
p̄
pi
n

}
× (−θp̄−2

n ρp̄n, 0], for n ∈ N, holding Qn+1 ⊂ Qn,

then the oscillation in Qn can be controlled with the same constant by the oscillation in Qn−1, i.e.,

(3.15) osc
Qn

u ≤ ωn.

Proof. The proof is by induction: we show constants δ, ε, c depending only upon the data pi, N ,
such that if the statement holds for the n-th step, then it holds the the (n+1)-th. Coherently with
the accommodation of degeneracy, the first inductive step has already been stated. Assume
now that Qn has been constructed and that the statement holds up to n. Set

Mn = sup
Qn

u, mn = inf
Qn

u, and Pn =

(
0,−1

2
θnρ

p̄
n

)
.

The point Pn is roughly speaking the point whose coordinates are the mid-point of each coor-
dinate of Qn. On a first glance, we observe that we can assume

ωn ≤Mn −mn = osc
Qn

u,

because otherwise there is nothing to prove. At least one of the two inequalities

Mn − u(Pn) >
1

4
ωn, or u(Pn)−mn >

1

4
ωn

must hold. Indeed, if it is not so, we arrive at the contradiction

ωn ≤Mn −mn ≤
1

2
ωn.
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We assume that the first inequality holds true, the proof for the second case is similar. The
function (Mn−u) is a nonnegative weak solution of (∗) inQn, and satisfies the intrinsic Harnack
inequality (1.6) with respect to Pn, if its waiting time and space levels

(
c1

Mn − u(Pn)

)p̄−2

,

(
c1

Mn − u(Pn)

) p̄−pi
pi

,

are inside the respective time and space ranges of Qn. To this aim, we define c to be greater
than c1 so that (

c1
Mn − u(Pn)

)
≤
(
c

ωn

)
, as ωn ≤ 4

(
Mn − u(Pn)

)
.

Finally, we have the estimate

inf
Qρn/4

(Mn − u) ≥ 1

γ
(Mn − u(Pn)) >

1

4γ
ωn.

This means, as inf(−u) = − supu, that

Mn ≥ sup
Qρn/4

u+
1

4γ
ωn ≥ sup

Qn+1

+
1

4γ
ωn, if Qn+1 ⊂ Qρn/4 ⊂ Qρn ,

leading us, by subtracting infQn+1 u from both sides, to

Mn − inf
Qn

u ≥Mn − inf
Qn+1

u ≥ osc
Qn+1

u+
1

4γ
, if Qn+1 ⊂ Qρn/4 ⊂ Qρn ,

and thus to

osc
Qn+1

u ≤ δωn = ωn+1, if Qn+1 ⊂ Qρn/4 ⊂ Qρn .

By choosing

(3.16) δ = 1− 1

4γ
and ε =

1

4
δ
p̄−2
p̄ ,

we manage to have both the inclusion Qn+1 ⊂ Qρn/4 ⊂ Qρn and the (n + 1)-th conclusion of
the iterative step (3.15). Indeed, by direct computation,

θp̄−2
n+1ρ

p̄
n+1 =

(
c

ωn+1

)p̄−2(
ρp̄n

4p̄( 4γ−1
4γ )p̄−2

)

=

(
4γc

(4γ − 1)ωn+1

)p̄−2(
ρn
4

)p̄
=

(
c

ωn

)p̄−2(
ρn
4

)p̄
= θp̄−2

n (ρn/4)p̄,
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precisely, and for each i ∈ {1, .., N} as pi > 2, it holds

θ
p̄−pi
pi

n+1 ρ
p̄
pi
n+1 =

(
c

ωn+1

) p̄−pi
pi
(
ρn
4

(
1− 1

4γ

) p̄−2
p̄
) p̄
pi

=

(
c

(1− 1
4γ )ωn

) p̄−pi
pi
(

1− 1

4γ

)p̄−2

pi

(
ρn
4

) p̄
pi

=

(
c

ωn

) p̄−pi
pi
(
ρn
4

) p̄
pi
(

1− 1

4γ

) pi−p̄
pi

+ p̄−2
pi

= θn

(
ρn
4

) p̄
pi
(

1− 1

4γ

) pi−2

pi

≤ θ
p̄−pi
pi

n

(
ρn
4

) p̄
pi

.

�

3.1. Conclusion of the proof of Theorem 1.2. Owing to the previous Proposition, we conclude
that on each such intrinsically scaled cylinder Qn it holds oscQn u ≤ ωn, so that by induction
and the definition of ωn, we have

osc
Qn

u ≤ δnω0.

Let now 0 < ρ < r be fixed, and observe that there exists a n ∈ Z such that, by use of (3.16), we
have

εn+1r ≤ ρ ≤ εnr.
This implies

(3.17) (n+ 1) ≥ ln

(
ρ

r

) 1
ln(ε)

⇒ δn ≤ 1

δ

(
ρ

r

)α
, with α =

| ln(δ)|
| ln(ε)|

,

by an easy change of basis on the logarithm. Thus, by (3.16) and (3.17), we get

(3.18) osc
Q0

u ≤ osc
Qn

u ≤ ω0

δ

(
ρ

r

)α
.

Now finally, we give Hölder conditions to each variable, irrespective to the others. Fix (x, t), (y, s) ∈
K, s > t, let R > 0 to be determined later, and construct the intrinsic cylinder (y, s) +QR(M),
where M = ||u||L∞(ΩT ). This cylinder is contained in ΩT if the variables satisfy for each
i = 1, .., N ,

M
pi−p̄
pi R

p̄
pi ≤ inf

{
|xi − yi|, for x ∈ K, y ∈ ∂Ω

}
and M

2−p̄
p̄ R ≤ inf

t∈K
t

1
p̄ .

This is easily achieved if we set, for instance,

2R = π-dist(K; ∂Ω).

To prove the Hölder continuity in the variable t, we first assume that (s− t) ≤ M2−p̄Rp̄. Then
∃ρ0 ∈ (0, R) such that (s− t)

1
p̄M

p̄−2
p̄ = ρ0, and the oscillation (3.18) gives

osc
Qρ0

u ≤ γω0

(
ρ0

R

)α
,

implying

|u(x, s)− u(x, t)| ≤ γM
(
M

p̄−2
p̄ |s− t|

1
p̄

π-dist(K; ∂ΩT )

)α
,
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as claimed. If otherwise s− t ≥M2−p̄Rp̄ then, exploiting the fact that ρα0 ≤ 4R, we have

|u(x, s)− u(x, t)| ≤ |u(x, s)|+ |u(x, t)| ≤ 2M ≤ 4M

(
M

p̄−2
p̄ |s− t|

1
p̄

π-dist(K; ∂Ω)

)α
.

About the space variables, we have for each i-th one the following alternative:

• If |yi − xi| < M
pi−p̄
pi R

p̄
pi , and then analogously ∃ρ0 ∈ (0, R) such that ρ0 = |yi −

xi|
pi
p̄ M

p̄−pi
pi and the oscillation reduction (3.18) gives

osc
Q0

u ≤ osc
Qρ0 (θ0)

u ≤ γω0

(
ρ0

R

)α
⇒ |u(yi, t)− u(xi, t)| ≤ γM

(
|yi − xi|

pi
p̄ M

p̄−pi
pi

π-dist(k; ∂ΩT )

)α
.

• If otherwise |yi − xi| ≥M
pi−p̄
pi R

p̄
pi , then similarly

|u(yi, t)− u(xi, t)| ≤ 2M ≤ 4M

(
|yi − xi|

pi
p̄ M

p̄−pi
pi

π-dist(k; ∂ΩT )

)α
.

The proof is completed.

4. PROOF OF THEOREM 1.3

We take as hypothesis that for each radius r > 0 such that the intrinsic cylinder Q4r(θ)
is contained in ΩT , the right-hand Harnack estimate (1.6) holds and we show that the full
Harnack estimate (1.10) comes as a consequence.

4.1. Step 1. Let us suppose that there exists a time t1 < t0 such that

(4.19) u(x0, t1) = 2γu(x0, t0),

where γ, c > 0 are the constants in (1.6). For such a time, it must hold

(4.20) t0 − t1 > θp̄−2
t1 rp̄ := c u(x0, t1)2−p̄rp̄ = c

u(x0, t0)2−p̄

(2γ)p̄−2
rp̄,

owing last equality to (4.19). Indeed, if (4.20) were violated then t0 ∈ [t1, t1 + θp̄−2
t1 rp̄], and

by applying (1.6) evaluated in (x0, t1) for a radius r > 0 small enough, we would incur a
contradiction

u(x0, t1) ≤ γu(x0, t0) ⇐⇒ 2γu(x0, t0) ≤ u(x0, t0).

So (4.20) holds, and we set t2 to be the time

(4.21) t2 = t0 − θp̄−2
t1 rp̄.

By (4.20), we deduce that t1 < t2 < t0 and again by the right-hand Harnack estimate (1.6), we
have that

(4.22) u(x0, t0) =
u(x0, t1)

2γ
≤ u(x0, t2) < 2γu(x0, t0),

where the last inequality comes from t1 being the first time before t0 respecting (4.19). The
contradiction of (4.19) is, in our context u(x0, t2) < 2γu(x0, t0), because the converse inequality
conflicts with our hypothesis (1.6). Now, let r > 0 be fixed, as in (1.6), and consider the vector
ξ ∈ RN whose components are

(4.23) ξi := θ
pi−p̄
pi r

p̄
pi , θ =

(
c

u(x0, t0)

)
.
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Now for each vector of parameters s ∈ [0, 1]N define ξs = (s1ξ1, ..., sNξN ). As s varies in [0, 1]N ,
the configuration x0 + ξs describes all points of x0 + Kr(θ). Consider s̄ ∈ [0, 1]N such that the
vector ξs̄ satisfies u(x0 + ξs̄, t2) = 2γu(x0, t0). We claim that such an s̄ does not exist or that
s̄ ≥ 1: in either case the conclusion is that

(4.24) sup
x0+Kr(θ)

u(·, t2) ≤ 2γ u(x0, t0).

Thus to establish the claim, assume that such vector s̄ exists and that s̄ < 1. Apply the estimate
(1.6) in the point (x2, t2) with x2 = x0 + ξs̄ to get

u(x2, t2) ≤ γ inf
x2+Kr(θt2 )

u(·, t2 + θp̄−2
t2 rp̄) = inf

x2+Kr(θt2 )
u(·, t0), being θt2 =

c

u(x2, t2)
,

where last equality holds because of

(4.25)
t2 + θp̄−2

t2 rp̄ = t0 −
(

c

2γu(x0, t0)

)p̄−2

rp̄ +

(
c

u(x2, t2)

)p̄−2

= t0 −
(

c

2γu(x0, t0)

)p̄−2

rp̄ +

(
c

2γu(x0, t0)

)p̄−2

rp̄ = t0,

being x2 the point for which holds u(x2, t2) = u(x0 + ξs̄, t2) = 2γ u(x0, t0) by assumption. But
since s̄ < 1, then x0 ∈ {x2 +Kr(θt2)} and we arrive to the contradiction

2γ u(x0, t0) = u(x2, t2) ≤ γ inf
x2+Kr(θt2 )

u(·, t0) ≤ γ u(x0, t0).

Finally, the contradiction implies that (4.24) holds, which means that for each r > 0 such that
Q4r(θ) ⊆ ΩT it holds

sup
x0+Kr(θ)

u

(
· ,
(

c

2γ u(x0, t0)

)p̄−2

rp̄
)
≤ 2γ u(x0, t0).

Let ρ > 0 be such that the right hand side of (1.10) holds, then by choosing r = ρ(2γ)
p̄−2
p̄ we

obtain, by suitably redefining the constants, the full estimate (1.10).

4.2. Step 2. Suppose on the contrary that such a time t < t0 for which holds true (4.19) does
not exist. In this case, we have

(4.26) u(x0, t) < 2γu(x0, t0), for all t ∈ [t0 − θ(4r)p̄, t0],

because the converse inequality would be in conflict with the holding Harnack estimate. We
establish by contradiction that this in turn implies

(4.27) sup
x0+Kr(θ)

u(·, t0 − θp̄−2rp̄) ≤ 2γ2u(x0, t0).

If not, it simultaneously holds (4.26) and a fortiori

(4.28) sup
x0+Kρ(θ)

u(·, t̄) > 2γ2u(x0, t0) > u(x0, t̄), for t̄ = t0 − θp̄−2rp̄.

Thus, by the proven continuity in space, there must exist by the intermediate value theorem a
point x̄ ∈ x0 +Kr(θ) such that

(4.29) u(x̄, t̄) = 2γu(x0, t0).

We apply the Harnack estimate (1.6) centered in (x̄, t̄) to get

u(x̄, t̄) ≤ γ inf
x̄+Kr(θt̄)

u(·, t̄+ θp̄−2
t̄ rp̄), where θt̄ =

c

u(x̄, t̄)
.
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Now, as γ > 1 and pi > 2 for each i ∈ {1, .., N}, we have
θ
pi−p̄
pi

t̄ r
p̄
pi =

(
2

2γu(x0,t0)

) pi−p̄
pi

r
p̄
pi ≥

(
2

2u(x0,t0)

) pi−p̄
pi

r
p̄
pi = θ

pi−p̄
pi r

p̄
pi ⇒ x0 ∈ {x̄+Kr(θt̄)},

t̄+ θp̄−2
t̄ rp̄ = t0 −

(
c

u(x0,t0)

)p̄−2

rp̄ +

(
c

2γu(x0,t0)

)p̄−2

< t0,

and thus, finally,

2γ2u(x0, t0) = u(x̄, t̄) ≤ γu(x0, t̄+ θp̄−2
t̄ rp̄) < 2γ2u(x0, t0),

owing last inequality to (4.28) and establishing (4.27) by contradiction. Finally, the estimate
(4.27), by possibly redefining the constants, is the desired left-hand estimate of (1.10).
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