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Modified Sumudu Transform and Its Properties 

Uğur DURAN*1 

 

Abstract 

Saif et al. (J. Math. Comput. Sci. 21 (2020) 127-135) considered modified Laplace transform 

and developed some of their certain properties and relations. Motivated by this work, in this 

paper, we define modified Sumudu transform and investigate many properties and relations 

including modified Sumudu transforms of the power function, sine, cosine, hyperbolic sine, 

hyperbolic cosine, exponential function, and function derivatives. Moreover, we attain two 

shifting properties and a scale preserving theorem for the modified Sumudu transform. We give 

modified inverse Sumudu transform and investigate some relations and examples. Furthermore, 

we show that the modified Sumudu transform is the theoretical dual transform to the modified 

Laplace transform. 

Keywords: Gamma function, Sumudu transform, Laplace transform, convolution 

 

 

1. INTRODUCTION 

Throughout this paper, the symbols , , , 

 and 0  are referred to the set of all complex 

numbers, the set of all real numbers, the set of all 

integers, the set of all-natural numbers, and the set 

of all non-negative integers, respectively. 

Integral transforms have been played a key role to 

solve the differential or integrodifferential 

equations cf. [1-12]. One of the most useful 

integral transforms is the Laplace transform, for 

f  being a function defined for 0t  , defined by  
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      
0

= = ,stF s f t e f t dt




  (1.1) 

provided that the integral converges. It has 

powerful applications, not only in applied 

mathematics but also in other branches of science 

such as astronomy, engineering, physics, etc., cf 

[5-9]. Also, diverse integral transforms such as 

Sumudu, Fourier, Elzaki, and M -transforms have 

been considered, and their properties and 

applications have been examined in detail by 

many scientists, cf. [1-12] and see also the 

references cited therein. The Laplace transform is 

the theoretical dual transform of the Sumudu 

transform which is introduced by Watugula [10], 

given by 
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Several applications of Sumudu transform have 

been investigated and studied by many physicists 

and mathematicians, cf. [1-4, 6, 10-12]. For 

instance, Watagula [11] defined two variables 

Sumudu transform and provided an example 

solving partial differential equations with known 

initial conditions. Weerakoon [12] attained the 

Sumudu transform of partial derivatives and 

proved its applicability demonstrated utilizing 

three different partial differential equations. 

Kilicman et al. [6] studied some properties of the 

Sumudu transform and relationship between 

Sumudu and Laplace transforms, and then gave an 

application of the double Sumudu transform to 

solve the wave equation in one dimension having 

singularity at initial conditions. Asiru [1] 

provided Sumudu transform of several special 

functions and derived some applications with 

Abel’s integral equation, an integrodifferential 

equation, a dynamic system with delayed time 

signals and a differential dynamic system. 

Belgacem et al. [2] developed fundamental 

properties including scale and unit-preserving 

properties of Sumudu transform and proved a 

solution to an integral production-depreciation 

problem. Belgacem [3] analyzed deeper Sumudu 

properties and connections. Belgacem et al. [4] 

generalized all existing Sumudu integration, 

differentiation, and Sumudu shifting theorems 

and convolution theorems. In this study, we 

introduce modified Sumudu transform and 

investigate many properties and relations 

including modified Sumudu transforms of the 

power function, sine, cosine, hyperbolic sine, 

hyperbolic cosine, exponential function, and 

function derivatives. Moreover, we obtain two 

shifting properties and a scale preserving theorem 

for the modified Sumudu transform. We provide 

modified inverse Sumudu transform and derive 

some relations and examples. Furthermore, we 

show that modified Sumudu transform is the 

theoretical dual transform to modified Laplace 

transform. Lastly, we give duality between the 

modified Laplace transform and the modified 

Sumudu transform. 

The Sumudu transformation satisfies the 

following operational properties, cf. [2,4]: 

 

Let  f t ,  g t A  be Sumudu transforms 

 M u  and  N u , respectively. Then the 

Sumudu transform of the convolution of f  and 

g  is given by 

      = ,f g t uM u N u  S  (1.4) 

where the convolution integral is given by (cf. 

[2,4]) 

      
0

=
t

f g t g x f t x dx   (1.5) 

for  f t  and  g t  are piece-wise continuous 

and of exponential order. 

The gamma function is defined by the 

following improper integral (cf. [5-9]): 

  1

0
= ,t ss e t dt


    (1.6) 

where s  is a complex number with   > 0Re s . 

The gamma function satisfies the following 

relations 

      1 = and 1 = !s s s n n      

for n  being a non-negative integer. 

 

2. MODIFIED SUMUDU TRANSFORM 

In [9], the modified Laplace transform of a 

function  f t  which is peace-wise continuous 

and of exponential order is considered as follows 
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      
0

= ; = ,st

aL f t F s a a f t dt




  (2.1) 

where   > 0Re s  and    0, \ 1 .a   Note that 

upon setting =a e , modified Laplace transform 

reduces to usual Laplace transform in (1.1). Then 

the authors gave several basic properties of 

modified Laplace transform and provided 

connections with different functions in [9]. 

Motivated by the above, we define modified 

Sumudu transform as follows. 

 

 

Definition 1 Let    0, \ 1a   and 

         
1/

= , , >0 such that < ,if 1 0, .
1 2

jj
A f t M f t Ma t ta


 

  
     
  

 

 (2.2) 

Then, for   af t A , we define modified Sumudu 

transform by the following improper integral: 
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We note that 

   := .e f t f t      S  

Let    , af t g t A  and , .   The modified 

Sumudu transformation is a linear transform, 

namely 
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and for   =f t t  with 
log

> 0
a

u
, 

 
0 0

0

1 1
= = lim

log log

R
t

t tu R
u u

a
R

ta
t ta dt a dt

u a a


 





 
 
  
 
 

 

   
2 2

0

= = ,lim
log log

R
t

u

R

u u
a dt

a a





  

which gives the following theorem. 

 

 

 

Theorem 1 We have 
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which provides the following theorem. 
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Theorem 2 Let n . We have 
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1

! log
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From Definition 1 and using formula (2.7), we 

have 
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where = 1i  . Thus we give the following 

theorem. 

 

Theorem 3 We have 
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By Definition 1, and utilizing formula (2.7), we 

derive 
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Therefore, we give the following theorem. 

 

Theorem 4 We have 
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By Definition 1 and (1.6), for b  with > 1,b 
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Thus we give the following theorem. 

 

Theorem 5 The following 
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is valid for b  with > 1b  .  

 

We now investigate some formulas for modified 

Sumudu transform of derivatives of functions. 

By Definition 1, for 
log

> 0
a

u
, we see that 
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By (2.11), we provide the following theorem. 

Theorem 6 The following modified Sumudu 

transform 
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is valid for n  and 
log

> 0
a

u
.  

 

By Definition 1, for  1 2,u    , we observe that 
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Therefore, we give the following theorem. 
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 From Definition 1, we observe that 
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Thereby, we give the following theorem. 

Theorem 8 The following 

   =a af bt G bu    (2.13) 

holds.  

 

Let  t c   be unit step function given the 

below: 
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By Definition 1, for    =a af t G u   , we 

observe 

   
1

0

1
= =

1

bu
tc

bt u

a a

u
a f t a f t dt G

u bu

 
 
   

      
  

and 

     
1

=
t

u
a

c
f t c t c a f t c dt

u





       

   
0

1
= = .

t c c

u u
aa f t dt a f t

u

 


    

Hence, two shifting properties of modified 

Sumudu transform are given by the following 

theorem. 

Theorem 9 Let    =a af t G u   . Each of the 

following properties  

  = (The first shifting property)
1

bt

a a

u
a f t G

bu

 
      

and 

     = (The second shifting property)
c

u
a af t c t c a f t



       

holds for 
log

> 0
a

u
.  

 

By (1.5), it can be readily shown that the set of all 

modified Sumudu transformable functions form a 

commutative semigroup with respect to the 

convolution operator  . 

By Definition 1 and (1.5), we attain 
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     
0

1
=

t

u
a f g t a f g t dt

u




      

    0 0

1
= .

t
t

ua g f t d dt
u

  




   

Setting =t    yields =dt d , and we have 

      
0 0

1
= u

a f g t a g f d d
u

 

   
 

 

      

   
0 0

1 1
= u uu a f d a g d

u u

 

   
 

   
  
  
 

   = .a au f t g t        

Thus, we give the following theorem. 

Theorem 10 For  f t  and  g t  being piece-

wise continuous and of exponential order 

functions on  0, , let    =a af t G u    and 

   =a ag t H u   . Modified Sumudu transform 

of the convolution is as follows: 

      = .a a af g t uG u H u    

 

3. FURTHER REMARKS 

By (1.1) and (1.2), the Sumudu transform is the 

theoretical dual transform to the Laplace 

transform given below (cf. [2,4]) 

        
 

 
 1/ 1/

=  and = .
F u G s

G u F s
u s

 (3.1) 

Using (2.1) and (2.3), for   af t A  and 

1 2< <u  , we observe that 

     
0

1 1 1
= = = ;

t

u
a aG u f t a f t dt F a

u u u


  

    
 


 (3.2) 

and 

      
0

1 1 1 1
; = = =

1
st

a aF s a L f t a f t dt G
s s s

s


  

 
 

  

 (3.3) 

which are the modified version of the duality in 

(3.1). Therefore, the relations (3.2) and (3.3) 

between the modified Sumudu transform and the 

modified Laplace transform means to acquire one 

from the other when needed. For example, since 

  
 

22 2
sinh = ,

log
a

b
L bt

s a b
 recall from 

Theorem 4, we have 

 

 
 

   
2 2 2

1/1 1 1
; = = .

log 1/
a

b s
F s a G

s s sa s b

 
 
 

 

Hence, we can say from (3.2) and (3.3) that the 

modified Sumudu transform is the theoretical 

dual transform to the modified Laplace transform. 

We now introduce modified inverse Sumudu 

transform of a function  f t  as follows: 

       1 1
= = , > 0 .

2

i
ut

a a a
i

f t G u a G u du
i








 


 
     

 (3.4) 

It can be readily seen that modified inverse 

Sumudu transform is a linear transform, namely, 

for ,  , 

   1

a a aG u H u      

       1 1= = ,a a a aG u H u f t g t             

where    =a af t G u    and    =a ag t H u   . 

From (3.4) and Theorem 10, we get 

 

      1 1
= .a a aG u H u f g t

u

     

Some examples of the modified inverse Sumudu 

transform are stated below. 

1 1
= 1 by (2.4)

log
a

a

  
 
 

 

 
1

1
log

= by (2.5)
!

n n

n

a

a t
u

n



     

1 1
= by (2.7)

log

bt

a e
a bu

  
 

 
 

 

 1

2 2 2

sin
= by (2.8)

log
a

btu

ba b u


 
 

  

 

 1

2 2 2

cos1
= by (2.8)

loglog
a

bt

aa b u


 
 

  

 

 1

2 2 2

sinh
= by (2.9)

log
a

btu

ba b u


 
 

  
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 

 1

2 2 2

cos1
= by (2.9).

loglog
a

h bt

aa b u


 
 

  

 

 

4. CONCLUSIONS 

Saif et al. [9] defined the modified Laplace 

transform as follows: 

      
0

= ; = ,st

aL f t F s a a f t dt




  

if the integral converges. Several properties and 

interesting formulas for modified Laplace 

transform were investigated in [9]. Inspired by 

this study, in this paper, we have considered 

modified Sumudu transform by the following 

improper integral: 

     
0

1
= = ,

t

u
a aG u f t a f t dt

u




     

     1 2, and 0, / 0u a      

for 

           
1/

= , , >0 such that < ,if 1 0, .
1 2

jj
f t A f t M f t Ma t t


 

  
      
  

Then, we have given many properties and 

relations covering modified Sumudu transforms 

of the power function, sine, cosine, hyperbolic 

sine, hyperbolic cosine, exponential function, and 

function derivatives. We also attained two 

shifting properties and a scale preserving theorem 

for the modified Sumudu transform. Moreover, 

we have provided modified inverse Sumudu 

transform and developed some relations and 

examples. Furthermore, we have shown that the 

modified Sumudu transform is the theoretical 

dual transform to the modified Laplace transform. 
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