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Abstract

In this paper, the k-integral operators for analytic functions defined in the open unit discU = {z € C : |z| < 1}
are introduced. Several new subclasses of analytic functions satisfying certain relations involving these oper-
ators are also introduced. Further, we establish the inclusion relation for these subclasses. Next, the integral
preserving properties of a k-integral operator satisfied by these newly introduced subclasses are obtained.
Some applications of the results are discussed. Concluding remarks are also given.
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1. Introduction

Geometric function theory is one of the most important branches of complex analysis which focus on the
geometric properties of analytic functions. Geometric function theory was evolved around the turn of the 20"
century and developed deep connections with other fields of mathematics and physics like hyperbolic geome-
try, theory of partial differential equations, fluid dynamics etc. In this paper, we study certain classes based
on some important geometric properties like starlikeness, convexity, close-to-convexity and quasi-convexity
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of univalent analytic functions and associated with certain k-integral operators.
Let A be the class of analytic functions of the form
[e.9]
f(z) = z+Zanz”, (1)
n=2

where f is analytic in the open unit disc U = {z € C: |z| < 1}.
Let P be the class of function h(z) of the form
h(z) =14 hn2" (z € U),
n=1

which are analytic and convex in U and satisfy the following condition:

Re(h(z)) >0 (ze€U).

For the analytic functions f and ¢ in U, we say that the function g is subordinate to f in U [10], and

write
9(2) < f(z) or g=< [,
if there exists a Schwarz function w, which is analytic in U with
w(0) =0 and |w(z)| < 1,
such that
9(z) = f(w(z)) (z € U).

Al-Shagsi and Darus [1] defined the subclasses S*(u; @), K(u; @), C(u,n;¢,¢) and C*(u,n; ¢, 1) of the
class A in terms of the subordination principle between certain analytic functions. These subclasses are as

follows:

N U IR
S(M,qﬁ)—{feA-l_M(f(z) n) <902

(peP; 0<u<l; ZGU)},

K (:¢) = {f cA: 1; ({1 + ZJ{((Z))} - u) < ¢(2)

(peP; 0< u<,; zEU)}.

Cp,m; 0,9) = {f € A:3 g€ S (u;¢) such that

—n><¢(2) (¢, v eP; 0< pu, m<1; zEU)}-
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C*(p,m; 0,9) = {f € A:3 g€ K(u;¢)such that

1;7 ({HZ;('S)}_??) (=) (b EP; 0<p < 1; zEU)}. (5)

The classes S*(u; @), K(u;¢), C(u,n;¢,v) and C*(u,n; ¢, 1) consist of all analytic functions which are
starlike of order p, convex of order u, close to convex of order 1 and quasi-convex of order n, respectively

(see e.g. [3], &1, [7], [4], [13], [16]).

Now, we recall that the Jung-kim-Srivastava integral operator QY are defined as [7, p. 1788 (1.10)]:

= ()% [ (-2) "

TA+p+1) = T(A+n) (6)
=z+ Z anz",
T(A+1) “T(A\+p+n)
where (A > —1; p > 0; f € A). The Bernardi integral operator J,, f(z) are defined as [2]:
1 z
5@ =" [
< 0
— [+ 1 (7)
=2+ 2" >—1; feA),
+3 (25 s (u>—1: feA)
where f(t) =t+ > 07, a,t™.
Next, we recall the k-Gamma function, given by [5]:
o0 _tk
() = / et (Re(z) > 0; k> 0), (8)
0
satisfying the following properties [5]:
(k) =1
and
Fk(z+k) :sz( ) (9)
Also, the Pochhammer k-symbol is defined as [5]:
Li(y +nk)
~k YT TR keR, yeC/{0
Mux={ ~ Tu0) e (10

Yy +k)(y+(n—-1)k), neN, yeC
The k-Beta function is defined as [5]:

1 Ty 1 [tz y_q
b, y) k (kz’k) k/o ! (=1 ' ’ (11)
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where k > 0, Re(z) >0 and Re(y) > 0 and it satisfies the following property [5]:

_ De(@)Th(y)

(12)

It is clear that, for k& = 1, equations (8), (10) and (11), give the Gamma function I'(z), Pochhammer
symbol (), and Beta function B(x,y), respectively.

In the next section, we define certain k-integral operators and then, we introduce four subclasses S& w1 9),
K§7k(u; ?), C’Ek(u, n; ¢, 1) and QCE (1, m; ¢, 1) of the class A. These subclasses contain functions satisfying
certain relations involving these newly introduced k-integral operators. Further, we deduce certain inclusion

relations for the classes S5, (113 6), K&, (115 6), €5, (1:m: 6, 1) and QC (. m; b, ).
2. Inclusion Results
First, we define the k-integral operator Mg, : A — A as:

o s Lila+B+k) 2B £\ E!
Mand @) = B ()T (B + 1) /0 " (1 - z) Fyds

(a>0; B>—-1; k>0; feA), (13)

which for k =1, 8 = X and o = p, give the Jung-kim-Srivastava integral operator Q%, given by equation (6).

Using equations (11) and (12), we obtain that the function Mg, f, defined in the open unit disc U =
{z € C:|z| < 1} has the following series representation:

- Ty(a+ B+ k)Dk(8 + nk) n,
Z+2Fkﬁ+k Wulor + B + nk) ™

(a>0; B>-1; k>0; fe A (14)

Mg f(z

which on using equations (9) and (10), gives

« _ . o+ /8 (ﬁ)mk n
UNCEEEDY (“57) o2 S0,

(a>0;, B>-1; k>0; feA). (15)

Using equations (9) and (14), we can verify that the function Mg f satisfies the following recurrence
relation:

S (Mgtr) = () Mara - (SF0) magitree) (16)

Remark 2.1. Substituting k =1, 8 = X\ and a = p in equation (16), we get the recurrence relation satisfied
by the integral operator QX [7, p. 1790 (2.2)].
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Also, we define another k-integral operator 87 by putting o = k and = ¢ in equation (2.1), as:

(c+k

flz)= = )/th_lf(t)dt (c0>-1, k>0, feA; z€U) (17)
kzk 0

which has the following series representation:

- k
Tf(z)=z+ Z (aa—:_nk> anz" (0>-1; k>0; fe A, z€U). (18)
n=2

In view of equations (7), (17) and (18), it is clear that for K = 1 and o = p, the k-integral operator 07
reduces to the Bernardi integral operator J,,.

In view of the definitions of the subclasses S*(u; @), K(u; @), C(u,n; ¢,1) and C*(u,n; ¢, 1) of A, deduc-
ing from the equations (2), (3), (4) and (5), respectively, we define the following classes of analytic functions
satisfying certain relations involving the function Mg, f:

Definition 2.2. The function f € A is said to be in the class Sgk(,u; @), if it satisfies the following differential
subordinalion:

1 z (Mg‘}kf(z))/
I—p Makf(z)

— | < é(2), (19)
where a >0; B> —1; k>0, o P, 0<u<l; zeU.

Definition 2.3. The function f € A is said to be in the class ng(u; @), if it satisfies the following differential
subordination:

1_ /
a <M5a,kf(z))
where a >0; B> —1; k>0, o P, 0<u<l; zeU.

2| Mg, f(z 8
1 1+(ﬁ’kf()> —u | < é(2), (20)

Definition 2.4. The function f € A is said to be in the class C’&k(,u, n; 0, 1), if it satisfies the following
differential subordination:

1 z <Mﬁo‘7kf(z))/
I—n Mﬁkg(z)

—n | < (), (21)
where g € S5, (1;9); >0 B> -1, k>0; g,p € P; 0<p,n<1l; z€U.

Definition 2.5. The function f € A is said to be in the class QC’E‘k(,u,n; @,), if it satisfies the following
differential subordination:

([, 2oy
L= (Mg 9(2))

wheregEKg7k(M;¢),'a>O; B>-1; k>0, ¢, peEP; 0< u,n<1; zeU.

—n | <¥(2), (22)
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Taking o = k and 3 = o in the Definitions 2.1-2.4, we define the classes S7 (u; @), K[ (113 ¢), CF (1, 5 ¢,v)
and QC7 (u,n; ¢,) of analytic functions, which satisfy certain relations involving the function 97 f(z), as :

N U N I )
Skm,ob)—{feA.l (FH ) <o
(a>—1;k>O;¢>€P;0§M<1;z€U)}. (23)
ol 1 2(07f(2)" | »
tso) = {reas ({1 20O ) <ot
(a>—1;k:>();¢€P;O§u<l;z€U)}. (24)

Ci(psm; ) = {f € A:3geSY(u;¢) such that

1 <Z(5Zf(2))’
L—n\ 07g(2)

(c>—-1; k>0; ¢, v eP; 0< pu, n<1; zEU)}.

- n> =< Y(2)

QCY (p,m; ,70) = {f € A:3 g€ K{(n;¢)such that
1 2 (07 f(2) ”} )
— 1+ —5F 7 — <
1=n <{ (979(2)) ! )
(0>-1 k>0, ¢, v eP; 0<pu, n<1; zEU)}.

It is clear from the Definitions 2.2-2.5 and equations (23)-(26) that the classes S;k(u; b), Ké”k(u;qﬁ),

Cgik(/% 3 ¢7 ¢)a chik(ua 3 ¢7 ¢)> Sg(ﬂ; ¢)>
K7 (s 0), CF(p,m; ¢,4) and QCF (u,m; ¢,v) are the subclasses of the class A of analytic functions of the

form (1) and defined in the open unit disc U.

Remark 2.6. In view of the Definitions 2.2-2.5 and equations (2)-(5), we obtain the following relations:

fesSslue) & MgfeS (1), (25)
feKgu(u;d) = Mg, f € K(u; o), (26)

and
€ QCE (1, ¢,9) & Mg, f € C*(u,n;9,9). (28)

Similarly, in view of equations (2)-(5) and equations (23)-(26), we obtain the following relations:
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fe S ¢) & 0pf €57 (1 ¢), (29)
f e Ki(u;0) < 0 f € K(p; 9), (30)
fe Ci(u,m; 0,4) < Opf € Clu,m;6,9) (31)

and
f € QT (p,m; ¢,9) < O f € C™ (1, m;0, 1) (32)
Remark 2.7. Since, it is easy to verify that z (Mg‘kf(z))/ = Mg, (2f'(z)) and hence z(09f(2)) =

07 (2f'(2)), in view of Definitions 2.2-2.5 and equations (23)-(26), we deduce the following relations:

feKgn(no) e =f € S5 d), (33)
feQCH (m;0,0) & 2f € OF (1,1 0,7), (34)
fe K (m¢) < zf € S7(u; ) (35)

and
f € QG (p,m; 6,) & 2f" € CF (136, 90). (36)

In particular, for the special choice of the function ¢(z), we set

1+ Az
5 i—— | =59 . (u; A, B -1<B<AXKI1
Sﬁ,k <M7 1+BZ> Sﬁ,k(u7 ) ) ( = < = )7

A
K5 (i) = K AB) (1B <A<,

14+ Bz
14+ Az
o . — Q9( - 1< <
and -
+ Az
7 — | = K7 (1 —-1<B<A<1).
k<ua1+Bz> Kk(,uaA>B> ( = < = )

Now, we proceed to establish several inclusion properties of the subclasses S5, (1;0), K 3 w15 D),
C’gk(u,n; ¢,1) and QC’gk(u, n; ¢, 1) associated with the function Mg, f, given by equation (14).

First, we need to mention the following lemma [6] to establish the inclusion property of the class Sg‘ k-

Lemma 2.8. Let u,v € C and p(z) be convex and univalent in U such that p(0) = 1 and Re(up(z)+v) > 0.
If q(2) is analytic in U with q(0) = 1, then the subordination

implies q(z) < p(z) (z€U).

Next, we establish the following inclusion relation for the class S§ (1 9):
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Theorem 2.9. Let 0 < pu <1 and ¢ € P, then
S k(s 6) C S5 (5 0), (37)
where L
Rd¢@»>nwx{&—a+ﬁqﬁt} (@>0; B> —1; k>0). (38)
(L—pk
Proof. Let f € S§,(u; ¢), then from Definition 2.2, we have
/
L (=05 0) 4(2) (39)
- —u | < o).
L —p M@kf(z)
We assume that
a+k !
1 z (Mﬁ,k; f(z))
'LL(Z) = 1 a+k K] (40)
—H Mg  f(2)
where u is analytic in U and «(0) = 1. Making use of equation (16) in the above equation, we get
a+ B (a+ B+ kMg, f(2)
u—um@y+u+< - ): 5 . (41)

kMg f(2)

Taking Logarithm of equation (43), then differentiating with respect to z and multiplying the resultant

equation with z, yields

2u(2) - 1 z (Mg,kf(z)),

(1*M)U(z)+u+azﬁ - =) Mg, f(2)

—p

o (mite)
Cn N Y7L R

Using equation (42) in equation (44), we get

2u/(2) 1 z (Mgkf(z))
+u(z) = - —
(1= )+t 2 A=m | Mief(e)
From subordination (41), we have
2u/(2)

Py + u(z) < ¢(2).

(1= pu(z) +p+ %

Since u(0) = 1, therefore in view of Lemma 2.1, the subordination (46) implies

u(z) < ¢(2)

with the condition

1%<u_mm@+u+azﬁ>>o

(42)

(45)

(46)
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Since «, 3, p € R, therefore the condition (48) is equivalent to the condition (30).
Using equation (42) in subordination (47), we get

(= (M)
L=n | M)

—p| <0(2), (47)

which in view of the Definition 2.2, gives

f € 831 ().
Hence, we establish the inclusion relation (39) subject to the condition (40).

In view of the Theorem 2.9, we get the following corollary by mathematical induction:

Corollary 2.10. Let 0 < u < 1 and ¢ € P such that condition (40) holds, then

S§ k(i 6) C S5H™ (s 0) (n>1; a>0; f>—1; k>0).

1+ Az
1+ Bz

Taking ¢(z) = < ) (-1< B< A<1; z€U)in Corollary 2.10, we obtain the following corollary:

Corollary 2.11. Let 0 < p < 1, then
Sg(p A, B) C S5 (1; A, B)
n>1;, -1<B<A<1;, a>0; B>-1; £k>0),

where
1+ Az

1+ Bz

k
N {0,_a+5+u}_

k(L —p)

Again, taking o = k and 8 = ¢ in Theorem 2.9 and Corollary 2.10, we obtain the following result for the
k-integral operator 07 :

Corollary 2.12. Let 0 < p <1 and ¢ € P, then

Sa (1 ) C S5 (; ¢) (n>1; 0>-1; k>0),
where
Re (¢(z)) > max {O, —W} . (49)

1+ Az
1+ Bz

Also, taking ¢(z) = <

corollary:

) (-1< B< A<1; z€U) in Corollary 2.12, we obtain the following
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Corollary 2.13. Let 0 < p < 1, then
SF(u; A,B) € S™(u;A,B) (n>1; -1<B<A<1; 0>—1; k>0),

where

14+ Az o+ 1+ pk
0, ———— . 50
1—|—Bz>m(m{’ 1 p)k (50)
Next, we establish the following inclusion relation for the subclass K
Theorem 2.14. Let 0 < u < 1 and ¢ € P. If the condition (40) holds, then
K§ (5 0) € K§TF (15 0) (@>0; B>—1; k>0). (51)
Proof. Making use of relation (35) and Theorem 2.9, we have
[ e K§ (o) < zf €55, (1 ¢)
= 2f' € S5"(u;¢)  with the condition (40)
& fe Kith(ue).
Hence, we get the inclusion property (53) .
0l

In view of Theorem 2.14, we get the following corollary by mathematical induction:

Corollary 2.15. Let 0 < u < 1, ¢ € P with condition (2.28) holds, then

K§ (i 0) € K§1™ (s 9) (n>1; a>0; B>-1; k>0).

Taking ¢(z) = < (-1 < B< A<1; z€U)in Corollary 2.15, we obtain the following

Corollary:

1+ Az
1+ Bz

Corollary 2.16. Let 0 < < 1 and the condition (40) holds, then

K§1(u; A, B) C K§ ™ (u; A, B)
(n>1; -1<B<A<1l;a>0; >—-1; k>0).

Again, taking @« = k and § = o in Corollary 2.15, we obtain the following corollary for the subclass
Kﬁ(u; ¢) associated with the k-integral operator 07:

Corollary 2.17. Let 0 < < 1, ¢ € P and the condition (51) holds, then

K5 (u: ) C K3*(1; 0)
(n>1;, o >-1; k>0).
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1+ Az
1+ Bz

Also, taking ¢(z) = (

corollary:

Corollary 2.18. Let 0 < p < 1 and the condition (52) holds, then

K}(u; A, B) C Kj*(u; A, B)
(n>1; -1<B<A<1;,0>-1; k>0).

> (-1<B<A<1; z€U)in Corollary 2.17, we obtain the following

Further, we need to mention the following lemma [11] to establish the inclusion property for the subclass

Cg,k(u7 Uk (ba w) :

Lemma 2.19. Let h(z) be conver and univalent function in U and q(z) be analytic in U with Re(q(z)) > 0.

If (2) is analytic in U with ©(0) = h(0), then the subordination
p(2) + q(2)2¢'(2) < h(z) (z€U),

implies ©(z) < h(z).

Now, we establish the following inclusion relation for the subclass

Cg,k(u’ 5 ¢7 ¢)

Theorem 2.20. Let 0 < pu,n < 1 and ¢,vp € P. If the condition (40) holds, then

C§ (1 6,9) C C1E (s 6,9)) (>0; f>—1; kE>0).

Proof. Let f € Cg,k(ﬂv n; ¢,1), then from Definition 2.4, we have

1 z(Mgkf(z)),
1= | Mg ()

—n | <¥(2),

with g € Sgk(:“; ¢). Hence, by Theorem 2.9, if condition (40) holds, then we have g € Sg‘:};k(u

view of Definition 2.2, gives
!/
1 (= (Mgite)
L—p | M§iFg(2)

—p| < 9(2),

where 0 < p<land p € P .

Let

which gives

)

(52)

(53)

¢), which in

(54)
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Next, we suppose that

1 (2 (uitre)
w('z) 1 n Mazkg(z) AR (57)

or, equivalently
/
(1= myw(z) +mMgFrg(:) = = (MEEEF(2)
where w is analytic in U with w(0) = 1. Making use of recurrence relation (16) in the above equation, we
get

(58)

(1= (=) + ) M Hrg(z) = (‘”“’"

) Mo

(2 mrgitseon (59)

Differentiating both the sides of equation (61) with respect to z and then multiplying the resultant
equation with z, we obtain

(1=t +al (= (M5149) )

1= aGe) = (L) (= (el

_ (0‘ * B ) <z (gt (z>)') | (60)

Using equation (58) in the left hand side of equation (2.50), we get

[(1=n)w(z) + 1] [(1 = wp(2) + pl MG Fg(2)
+(1 = n)zw'(2) Mg Fg(2)

= () (= rzare)

- <O‘Zﬁ> (z (Mgt (z))'>. (61)

Using equation (60) in the right hand side of equation (63), we get
[(1=n)w(z) + 1] [(1 = wp(2) + pl M5 Fg(2) + (1 = n)zw' (2) MG Fg(2)
k ’
= <O‘+§+> (z (Mfi‘kf(Z)) )

() wea -+ gt (62)

On simplifying equation (64), we get

(1 —n)zw'(z)
a—+p

(1—wp(z) +p+ %

+ [w(2)(1 —n) +n]

_ (a+ B+k)/k z (Mﬁkf(z)) (63)
(1= w)p(2) + 4 + O‘Tw Mgite(z) )
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Now, using recurrence relation (16) for the function g in equation (58), we get
(a+B+k)/k  Mgitg(z) (64)
a+pB Mg '
(1= wp(z) + 1+ —— §x9(2)
Using equation (66) in the right hand side of equation (65), we get
/
1—n)zw'(z 2 | Mg f(2)
Lomle) b () - )+ =<Mag(z)> (65)
(1= pp(2) + p+ —— Bk
or, equivalently
o /
2w (2) 1 < (Mﬁkf(z)>
a8 O =TT T g ! (66)
(= p)p(z) + 1+ — Bik
Using subordination (55) in equation (68), we get
/
w/(z) +w(z) < ¥(2). (67)
a+f
(1= pp(2) +p+ —
Subordination (56) and equation (57), give
p(z) < ¢(2), (68)

with the condition (40) which is equivalent to

Re <(1 —pw)o(z) + p+ Oézﬁ) > 0.

1
Further, if we take g(z) =

O—MM@+M+E%£7

ity Re(q(z)) > 0.

Thus, applying Lemma 2.19 to subordination (69), we get

(2 (mgt )
W= 1 | a7 <

Since g € Sg"};k(u' ¢), therefore in view of Definition 2.4, subordination (71), gives

)

f e 5t (um; ¢, ).

Hence, we establish the inclusion relation (54) subject to the condition (40).

In view of Theorem 2.20, we get the following corollary by mathematical induction:

then from subordination (60) and the above inequal-

(69)
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Corollary 2.21. Let 0 < p,n < 1 and ¢, € P. If the condition (40) holds, then
C8rlpsm 6, 9) COGT ™M (omsdp) (21, a>0; B> —1; k>0).

Taking a = k and B = ¢ in Corollary 2.21, we obtain the following corollary for the subclass C¥ (11, 1; ¢, 1))
associated with the k-integral operator 0 :

Corollary 2.22. Let 0 < p < 1 and ¢,v € P. If the condition (51) holds, then
Cy (s 13 6,) € C¥ (1 m; 6, 9) (n>1; 0> -1; k>0),
Next, we establish the following inclusion relation for the subclass
QCE (1,13 0, ):
Theorem 2.23. Let 0 < p,n < 1 and ¢, € P. If the condition (40) holds, then

QCH (1,15 0,%) C QG (wm;d,) (@ >0; B> —1; k>0). (70)

Proof. Making use of relation (36) and Theorem 2.20, we get
f € QUYL 6,0) & 2f € CF (1 m: 6,0)
=zf' e Cg};k(u, 75 ¢, ) with the condition (40)

& f e QT (1, m; 6, 0).

Hence, we establish the inclusion property (72).

O
In view of Theorem 2.23, we get the following corollary by mathematical induction:
Corollary 2.24. Let 0 < p,n < 1 and ¢,¢ € P. If the condition (40) holds, then
QCF (1.5 0,9) C QCGE ™ (om; ¢,90)  (n>1; a>0; B> —1; k>0).
Taking @ = k and f = o in Corollary 2.24, we obtain the following corollary for the subclasses

QC¥ (1, n; ¢,) associated with the k-integral operator a7 -

Corollary 2.25. Let 0 < p,n <1 and ¢, 1 € P. If the condition (41) holds, then
QG5 (1,5 0, 9) € QCF* (1, 6, 1)) (n>1; 0> ~1; k>0).
In the next section, we establish the integral preserving property of the k-integral operator 07 and satisfied

by the subclasses Sg,k:(/‘? ?)y Kg (s 9),
C3 (1 m; 6, ) and QCS, (1, m; 6, ) of the class A,
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3. Integral Preserving Properties

In this section, we obtain the conditions under which the preserving property of the k-integral operator
i is satisfied by the classes Sg‘k(u; ?),

K§ 1 (150), C8 i (u,m; 6, 9) and QCF (1,13 0,9) -

For this, we define the integral operator J§ o 1 I terms of the function Mg‘kf, given by equation (14), as:

Tgond ()= (M3.S(2)) = Z [ agepieya ()
where a > 0; 8,0 > —1; k> 0; fe A
Remark 3.1. Using equations (14) and (16), we get O, (Mgikf(z)) = Mg,k( 7f(2)); that is, from equation
(73), we get Jg ,  f(z) = Mg, (07 f(2)).

First, we establish the following integral preserving property satisfied by the class Sg w1 @)

Theorem 3.2. Let f € S§,(u; ¢) with ¢ € P and

o+ pk

Re(¢(z)) > max {0, 0=k

} (> 0; Byo>—1; k>0), (72)
then 07 f, defined by equation (17), belongs to the class Sgik(,u; ?).
Proof. Let f € Sg’k(u; ¢), then from Definition 2.2, we have

1 z (Mg‘}kf(z)y
I—p Makf(z)

—pu | <o(2). (73)

We take ( )/
1 z JEmkf(z)
Y(z) = — 74
(Z) 1 o ,LL Jg7o_7kf(z) /’L ) ( )

where Y is analytic in U with Y/(0) =1 .

g
Multiplying equation (73) with z* and then differentiating both sides of resultant equation with respect
to z, we get

!/
., (J5anf@) an MS,£(2) )
k J§ ot (2) k J§ ot (2)
Using equation (76) in the left hand side of equation (77), we get
o) o Mé“kf(Z)
1- )Y T (7 1) BRI
(-wy@+u+ i = (5+1) 770 (76)



E.S.A. AbuJarad et al., Adv. Theory Nonlinear Anal. Appl. 4 (2020), 459-482. 474

Taking the logarithm of equation (78), then differentiating with respect to z and multiplying the resultant
equation with z, yields

a-pevie)  F(M50@) = ()

_ ) L , ()
Q-pYE+p+s  MiSE Tooxl ()
or, equivalently
!/
2Y'(2) 1 ? (Mgkf(z)>
= —H
(1— )Y (2) +p+ % Q—p) | Mg,f(2)
/
1 z (Jgp’kf(z))
- o — K],
(1—p) Jﬁ’0'7kf(z)
which on using equation (76), gives
/
2Y'(2) +Y(2) 1 o (Mgk:f(z)) (73)
z) = 5 —ul.
(1=p)Y(2)+p+ % (1= n) Mg f(2)
Again, using subordination (75) in equation (80), we get
Y/
T v <o) (79)
A=Y (2) +n+
In view of Lemma 2.8, subordination (81) implies
Y(z) < ¢(2), (80)
with the condition Re <(1 —w)o(z) + p+ %) > 0, which is equivalent to the condition (74).
Using equation (76) in subordination (82), we get
!/
L (2ol 0) 4(2) 5)
> — |l < o(2).
L—p Jﬁﬁ’kf(z)
In view of Remark 3.1, subordination (83) has the following equivalent form:
/
(= (Mg @) .
= = — | <o(z).
L—p Mﬂ’k (5kf(2’))
Therefore, in view of Definition 2.2, we get
rf(2) € S5 k(s ¢)-
OJ

Remark 3.3. If f € 5§, (1;¢), then in view of subordination (83) and equation (2), we get Jg , , f(z) €
S*(u; @), provided the condition (74) holds.
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In view of Theorem 3.2, we get the following corollary by mathematical induction:

Corollary 3.4. If f € S5, (1;¢), and the condition (74) holds, then (07)" f € Sg§ ;.(11; &)
(n>1; k>0, 0<pu<1; o>—1; ¢ € P), where (07)" f:=(07 ---07 ) f.
——

n times
. 1+ Az .
For the choice ¢(z) = T+ B (-1<B< A<1; z€U), we have the following corollary:
z
Corollary 3.5. Let f € S§,(u; A, B) with
1+ Az o+ uk
—_ 82
g > e (82
then (0F)" f € S5, (1: A, B) n>1;,0<pu<l, k>0, 0>-1).
For the choices @« = k and 8 = o, we have the following corollary:
Corollary 3.6. If f € S7(u;¢) and the condition (74) holds, then (07)"f € S7(u; @) (n>1; k>

0; 0<u<l; o>—-1; p €P).

Remark 3.7. In view of relation (31), the above corollary can be restated as:
“fO7f € S*(u; ¢) and the condition (74) holds, then (07)" f € S*(u; ¢) m>1; k>0, 0< u<l; o>
-1, e P).”

Now, we establish the following integral preserving property satisfied by the class Kg‘,k(ﬂ; ?):

Theorem 3.8. Let [ € ng(u; @) with ¢ € P and the condition (74) holds, then 07 f(2), defined by equation
(17), belongs to the class Kg’k(,u; ®)
(a>0; B,o>—-1, k>0; z€U).

Proof. Making use of Remark 2.7, relation (35) and Theorem 3.2, we have
feK§ (o) < zf €55, (1 ¢)
= 07 (2f")(2) € S§1.(1; B) provided the condition (74) holds
2 (07f(2)) € 8§ 1, (u: 0)

< 07 f(2) € K3 (1: ).

In view of Theorem 3.8, we get the following corollary by mathematical induction:

Corollary 3.9. If f € K§, (u;$), and the condition (74) holds, then (37)"f € K/‘ik(u; ®) (n>1; k>
0; 0<pu<l; a>0; B,0>—1; ¢ € P), where (07)"f:=(07---07)f.
——

n times
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1+ Az

For the choice ¢(z) = ;]
z

(1< B< A<1; zeU), Corollary 3.9 gives the following corollary:

Corollary 3.10. Let f € K§,(u; A, B) and the condition (84) holds, then (OF)"f € K§,(u; A, B)  (n =
L kE>0,0<pu<l;a>0; B,o>—-1; -1<B<A<LI).

For the choices « = k and 8 = o, Corollary 3.9 give the following corollary:

Corollary 3.11. If f € K] (;¢) and the condition (3.2) holds, then (07)"f € KJ (u; ¢) n>1; 0<
u<l, k>0 0>—-1, ¢p€P).

Remark 3.12. In view of the relation (32), the above corollary can be restated as:
“fO7f € K(u; ¢) and the condition (74) holds, then (07)"f € K(u; ¢) (n>1; 0<pu<l, k>0, 0>
-1, ¢ P).”

Next, we establish the following integral preserving property satisfied by the class C’g‘k(u, n;¢0,1):

Theorem 3.13. Let [ € C’g"k(,u,n; ¢,1) with ¢, € P and condition (74) holds, then 0F f(z), defined by
equation (17), belongs to the class
Cgrlpmé ) (>0 Bo>-1, k>0; z€U).

Proof. Let [ € Cg,k(,u,n; ¢, 1), then by using Definition 2.4, we have

1 Z(Makf(z))/
L—n Mg"kg(z)

—n| <¢(2), (83)

with g € Sglk(u; ¢). Hence by Theorem 3.1 , we have 07 g(z) € Sgk(,u; ¢), which in view of Definition 2.2,
gives

1 (= (Mg, @e))

o o — M = ¢(Z),
IL—p M,B,k: (5kg(z))
or, equivalently
/
1 [ (T8092) " "
@ ¥ < Z),
1—mn Jg@kg(z)
with the condition (74).
If we take .
1 z nga’,cg(z)
V(z) = < >—M : (85)

then V is analytic in U with V(0) = 1.
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Next, we take

1 (2 (se)
Yo = | e ] (36)

where N is analytic in U with N(0) = 1. By using equation (77) in equation (88), we get

N1 =)+l T o9(2) + (3) Joonf (2) = (3 +1) MRS (2): (87)

By differentiating both sides of equation (89) with respect to z, then multiplying the resultant equation

z
with [ —— |, we obtain
<ngg7k9(z)>

z(Jg, (z)/
[N(2)(1 =) + 1] 2 (os9)) + (1= n)2N'(2) +

Jg7o'7k’g(2)
o[ 7 (Jg’gka(z))/ o z (Mg"kf(z)y
k I3, 59(2) - (E + 1) 5 19(2) (88)
Using equations (87) and (88) in equation (90), we get
[N(2)(L=n) +n] [V(2)(1 = p) + p] + (1 = n)zN"(2) +
. o [ # (M)
E[N(Z)(l—ﬁﬂ'??]: (E‘i‘l) W (89)
On simplifying equation (91), we obtain
ZN'(z) L N(2) T n
V(Z)(l—/ﬁ)‘f',u‘i'z —n
<E+1> ] Mﬁkf z (90)
V() —p) +p+7 [0 (2)

k

Using equation (77) for the function g in equation (92), then using equation (87) in the resultant equation,
we get

!/
2NV'(z) PN = | (15,7 2) -
V(z)(1 - p) +u+% L—n | Mgg(2) 7
which on again using subordination (85), gives
2N'(z
&) NG < w0 (o1

V-t

Now, in view of subordination (86) and equation (87), we have

V(z) < ¢(2), (92)
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with the condition (74), which is equivalent to the condition

Re <¢(z)(1 W)t %)) > 0.

1
& then from subordination (3.22) and the above inequality
V-4 pt T

Since, if we take g(z) =
Re(q(z)) > 0.

Therefore, in view of Lemma 2.19, subordination (93) implies N(z) < (z), which on using equation
(88), gives
/
1 z (Jg7o7kf(z)>
L—n Jg’g,kg(z)

—n | <v¥(2)

or, equivalently
/
(= (Mg @72)
1-n| Mg, (079())

—n | <¢(2) (93)

In view of Definition 2.4, subordination (95) implies that
07.f(2) € CF (1,13 0,9). O

In view of Theorem 3.13, we get the following corollary by mathematical induction:

Corollary 3.14. If f € Cg‘,k(u,n;qﬁ,w) and the condition (74) holds, then (07)"f € Cg7k(u, no,)  (n>
I 0<pu<l; E>0,; a>0; B,0>—1; ¢ € P), where (07)"f:=(07 ---07)f.
——

n times

For the choices a« = k and 8 = o, Corollary 3.14 gives the following corollary:

Corollary 3.15. If f € C7(u,n; ¢,%) and the condition (74) holds, then (07)"f € C7(u,n; ¢,v) (n>
1, 0<u<l, k>0, 0>-1, p €P).

Remark 3.16. In view of the relation (93), the above corollary can be restated as:
"IfOLf € C(u,m; ¢,v) and the condition (74) holds, then (97)"
feClpmeo,y)  (n>1 0<u<l, k>0,0>~1, p€P).”

Finally, we establish the following integral preserving property satisfied by the class QC’g‘jk(,u, n; 0, ):

Theorem 3.17. Let f € chyk(,u,n; ¢,v) with ¢, € P and the condition (74) holds, then 07 f(z) defined
by equation (73) belongs to the class QCE‘JC(,MJ]; b, ) (a>0; B,o>—1, k>0; z€U).

Proof. Making use of Remark 2.7, relation (36) and Theorem 3.13, we have
feQCE(nn;0.9) & 2f € CF (1,15 0,9)
= 07(2f")(2) € CF (1, m:¢,%)  provided the condition (74) holds

& 2071 (2) € Cf (1,1 9, 9)
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& 07 f(2) € QCF (1,15 9, 1))
O
In view of Theorem 3.18, we get the following corollary by mathematical induction:
Corollary 3.18. If f € QCF (1, m; ¢, %) and the condition (74) holds, then (0F)" f € QCF (1, m; ¢, v) (n>

I, 0<pu<l; k>0, a>0; f,0 >—1; ¢ € P), where (07)"f:=(07---07 )f.
W—J
n times

For the choices @ = k and 8 = o, Corollary 3.19 give the following corollary:

Corollary 3.19. If f € QC7(u,n;¢,%) and the condition (74) holds, then (07)"f € QCF(u,n;¢,v)

m>1; 0<u<l; k>0, 0>—1; p € P).

Remark 3.20. In view of the relation (36), the above corollary can be restated as:

"IfOf € C*(u,m; ¢,v) and the condition (74) holds, then (07)"f € C*(u,n; ¢,) n>10<pu<

1, k>0, 0>—-1;, g P)."

In the next section, we discuss some applications of the results, established in the previous sections.

4. Application

4.1. First, we consider the Hypergeometric function F'(a,b;c; z), defined as [15]:

F(a,b;c;z)zzwz" (a,b,ceR, ¢>0, z€C).

= (c)nn!

The function Fi(z) is defined as [12]:

Fi(2) :== zF(a,b; c; 2) :Z_|_Z(

Now, applying the integral operator Mg, , defined by equation (15), on the function Fi(z), we get

o — [« + (a)n—l(b)n—l(ﬁ)n,k n
Mii(e) =2+ ( g > Onos(@ + B — 1)

(a>0; B>—-1; a,b,ceR; ¢>0; k>0; ze€U).

For o = k and 8 = o, the above equation gives 07 Fi(z), which is as follows:

+ k)
F _ 7”L 1(0- n
R Z+z nln—l (a—i—nk:)z

(o0 >—1; a,b,ceR, kE>0; fe A, z€U).

2" (a,b,c € R, ¢ >0, z € C).
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1. Taking f(z) = Fi(z) in Theorems 2.9, 2.14, 2.20, 2.23, Corollaries 2.10, 2.15, 2.21, 2.24 and then
combining the results, we get the following assertions for the function Fj(z):

If condition (40) holds, then
Fy € S§,(n;¢) = F1 € S5T"™ (13 9).
Fy € K§ (1 0) = F1 € K™ (u; ).
Fy € C§ i (um; 6, 0) = Fy € C5L™ (u,m;6,1).
Py € QC8 (1, m; ,%) = Fi € QC5L™ (1, m; 6, 4),

for n > 1, respectively.

2. Taking f(z) = Fi(z) in Theorems 3.2,3.8,3.13, 3.18, Corollaries 3.4, 3.9, 3.14, 3.19 and then combining
the results, we get the following assertions for the function Fj(z):

If condition (74) holds, then

F1€Sﬁk;( ;¢ o7

) = (OF)"F1 € S5 (s 9).-
Py € Kgj(p; ) = (07)"F1 € K§ (s ¢).
Py e O i (p,m; 0,9) = (07)

) = (0F)

Fy € QO3 (s m; 0,9

"€ CFlpm; ¢, 0).
6 nFl S ch,k(ﬂvnagi%w))

for n > 1, respectively.

4.2. Next, we consider the function w, .(2), defined as [14]:

= (—c/A b+ 1
up,b,c(z)zz((q)/n)l z (q:p+T>O, p,b,CGR, ZGU)'
n=0 ne

The function w(z) is defined as [14]:

= ZU zZ) =z 3 %Z’n
w(z) = p,b,c( ) - +n§2 (Q)nfl(n — 1)!

b+1
(q:PJr% >0,p,b,ceR,ze ).

Now, applying the integral operator Mg, , defined by equation (15), on the function w(z), we get

W & at B (/) Bk
M) = 2+ < 5 ) (@n1(a+Bps(n—1)1"

n=2
(a>0; B>—-1; ceR; ¢>0; k>0; feA).

For o = k and 8 = o, above equation gives 9w(z), which is as follows:

B (—c/4)" Lo+ k) n
Z+Z Jn—1(n —1) (o—i—nkz)z

(0 > -1, b,c,p,qER, k>0; feA; z€U).
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1. Taking f(z) = w(z) in Theorems 2.9, 2.14, 2.20, 2.23, Corollaries 2.10, 2.15, 2.21, 2.24 and then
combining the results, we get the following assertions for the function w(z):

If condition (40) holds, then
w € S§ (s 0) = w € S§T™ (13 9).
w e K§ (1 0) = w e K5 (us; ).
w € CF (1 ¢, 9) = w € CHE™ (1, m; 6, 9)-
w € QCF k(1,15 6,¥) = w € QG L™ (1,15 6, 9),
for n > 1, respectively.

2. Taking f(z) = w(z) in Theorems 3.2, 3.8, 3.13 and 3.18, Corollaries 3.4, 3.9, 3.14 and 3.19 and then
combining the results, we get the following assertions for the function w(z):

If condition (74) holds, then

w € S5 (1 @) = (07)"w € S5 (13 ).
w € K§p(p; ) = (0f)"w € K§ (s 9).
w € CF (.m0, %) = (07)"w € CF (1, m; 8, ¢).
w € QUG (ks m; ¢, ) = (07)"w € QCF (1,15 9, ),

for n > 1, respectively.

In the next section, some concluding remarks are given:

5. Concluding Remarks

In this section, we obtain the integral preserving properties of the k-integral operator M Gk defined by
equation (13). For this, we define the integral operator I§ , in terms of the function 07, given by equation
(17), as

I5oxf(2) = Mg, (07 f(2))

Ty(o+ B+ k) - NET
kzﬁ/’fma)rk(mm/o " (1‘z> Ef(t)dt

(a>0; B,o0>—1; k>0; feA), (94)

which in view of Remark 3.1, gives 1§ , = Jg , ..

In view of equations (13)-(16) and equation (96), we obtain the following integral preserving properties
of 87 by using the same steps involved in the proofs of Theorems 3.2, 3.8, 3.13 and 3.18 :

Theorem 5.1. Let f € S7(pu; ¢) with ¢ € P and

B+ pk
(1—pk

then Mg, f, defined by equation (14), belongs to the class S (u; ¢) and hence (Mg, )" f € ST (u; @) (n>
1, 0<u<l, k>0, 0>-1, ¢ €P).

Re(é(z)) > max {0, - } (> 0; B,0>—1; k>0), (95)
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Theorem 5.2. Let f € K{(u;¢) with ¢ € P, satisfying the condition (97), then Mg, f, defined by equation
(14) belongs to the class KJ (p;¢) and hence (Mg )" f € KJ (1 ¢) n>1; 0<pu<l, k>0, 0>
-1, ¢ € P).

Theorem 5.3. Let f € Cf(u,n;¢,9) with ¢ € P, satisfying the condition (97), then Mg, f, defined by
equation (14) belongs to the class CY(p,m;¢,v) and hence (Mg, )" f € Cf (k. m; &, %) m>1; 0<u<
1, k>0, o > -1, ¢ € P).

Theorem 5.4. Let f € QCY7(u,m;¢,%) with ¢ € P, satisfying the condition (97), then Mg, f, defined by
equation (14) belongs to the class QCY (u,n; ¢,v) and hence ( g‘k)”f € QCY (1, m; 0,7) (n>1; 0<
u<l k>0 0>-1 ¢€P).

Since I§ , , = J§ , i, therefore, in view of equations (31)-(44), Theorems 5.1-5.4 give Remarks 3.7, 3.12,
3.16 and 3.21.
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