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Abstract

In this paper, we study the concept of rough I−convergence for difference sequences in (Rn,‖.‖) where Rn denotes the real n−dimensional

space with the norm ‖.‖. At the same time, we examine some basic properties of the set I−LIMr
∆xi

=
{

x∗ ∈ Rn : ∆xi
r→ x∗

}
which is called

as r− I− limit set of the difference sequence (∆xi) and we give some properties of I − liminf∆xi, I − limsup∆xi and I−core{∆xi} .
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1. Introduction and Background

As can be seen from the title of the article, there are four important concepts that will form the basis of this article. These are;
- Statistical convergence,
- I−convergence,
- Difference sequences,
- Rough convergence.
Now let us give the literature information and important definitions related to these concepts in order.
Statistical convergence was defined in 1951 by Fast ([16]) and Steinhaus ([29]), independently and later on, it found a wide application in
many fields such as summability theory ([17]), number theory ([10]), measure theory ([24]) and trigonometric series ([30]). Therefore, it has
become one of the most popular topics in the last seventy years. If we are talking about the concept of statistical convergence, it is necessary
to know the concept of natural density because natural density is the basis of statistical convergence.

Definition 1.1. Let K ⊆ N be a subset of N, the set of all natural numbers.

d(K) = lim
n→∞

|Kn|
n

is said to be natural density of K where Kn = {k ∈ K : k ≤ n} and |Kn| gives the number of elements in Kn. It is easy to see that if K is a
finite set then, d(K) = 0.

Now we can give the definition of statistical convergence as follows:

Definition 1.2. ([16]) A real or complex sequence x = (xi) is statistically convergent to L provided that

lim
n

1
n
|{i≤ n : |xi−L| ≥ ε}|= 0

for each ε > 0. This is indicated by st− limx = L. So, it is obvious that each sequence that convergent is also statistically convergent.

Kostyrko et al. ([23]) defined the concept of ideal convergence, or shortly I−convergence, in a metric space by using ideals and so they
generalized many types of convergence including statistical convergence. In their study, they obtained that if I =I f = {A⊆ N : A is finite}
then, I f−convergence coincides with the usual convergence and if I = Id = {A⊆ N : d(A) = 0} then, Id−convergence (where d(A)
is natural density of A) coincides with the statistical convergence. Many examples about the concept of I−convergence can be seen in
Kostyrko and his friends’ paper.
I−convergence is based on the definition of an ideal I in N. The concept of filter, which can be considered as the dual of the ideal, is also
used in the conclusion of many proofs. Thus, before defining I−convergence, the definitions of ideal and filter will be needed.
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Definition 1.3. A family of sets I ⊆ 2N is an ideal if the following properties are provided:

(i) /0 ∈I ,
(ii) A,B ∈I implies A∪B ∈I ,
(iii) For each A ∈I and each B⊆ A implies B ∈I .
We say that I is non-trivial if N /∈I and I is admissible if {n} ∈I for each n ∈ N.

Definition 1.4. A family of sets F ⊆ 2N is a filter if the following properties are provided:

(i) /0 /∈F ,
(ii) If A,B ∈F then we have A∩B ∈F ,
(iii) For each A ∈F and each A⊆ B we have B ∈F .

Proposition 1.5. If I is an ideal in N then the collection,

F(I ) = {A⊂ N : N\A ∈I }

forms a filter in N which is called the filter associated with I .

Definition 1.6. ([23]) A sequence of reals x = (xi) is I−convergent to L ∈ R if and only if the set

Aε = {i ∈ N : |xi−L| ≥ ε} ∈I

for each ε > 0. In this case, we say that L is the I−limit of the sequence x.

Definition 1.7. A sequence x = (xi) is I−bounded if there exists a positive real number M such that

{i ∈ N : |xi| ≥M} ∈I .

In 1981, Kizmaz ([22]) defined difference sequences such that ∆x = (∆xi) = (xi− xi+1) where x = (xi) is a real number and i ∈ N. In his
paper, he also defined c0(∆) = {x = (xi) : ∆x ∈ c0} , c(∆) = {x = (xi) : ∆x ∈ c} and l∞(∆) = {x = (xi) : ∆x ∈ l∞} spaces where, l∞, c and c0
are bounded, convergent and null sequence spaces, respectively. He investigated relations between these spaces and he obtained c0(∆)⊆
c(∆)⊆ l∞(∆).
After Kızmaz’s study, which can be considered as a base about difference sequences, Et ([11]), Et and Çolak ([12]), Başarır ([4]), Et and
Başarır ([13]), Et and Nuray ([15]), Gümüş ([18]), Gümüş and Nuray ([19]), Aydın and Başar ([2]), Bektaş et al. ([5]), Et and Esi ([14]),
Savaş ([28]) and many others searched various properties of this concept.
In 2011, Gümüş and Nuray ([18]) defined ∆I−convergence as follows:

Definition 1.8. ([18]) Let x = (xi) be a real sequence, ∆x = (∆xi) = (xi−xi+1) and I is an admissible ideal in N. For each ε > 0 if the set

{i ∈ N : |∆xi−L| ≥ ε}

belongs to I then, the sequence x is called as ∆I−convergent to the real number L and it is denoted by ∆I − limxi = L. The number L is
said to be ∆I−limit of the sequence. The set of all ∆I−convergent sequences is denoted by cI (∆). If studying with difference sequences
and I−convergence together, the relation between cI and cI (∆) is important. The author investigated this relation in her thesis. ([18])

Determining the place of sequences in that does not satisfy the convergence condition is as important as convergent ones. Although not
convergent, the existence of this kind of sequences that show similar characteristics to the concept of convergent sequence under certain
conditions, has led to the emergence of different types of convergence. One of these is the concept of rough convergence defined by Phu
([26]) in finite dimensional normed spaces. According to this idea, rough convergence of a sequence can be obtained by extending the range
of convergence by a number r > 0. Here, it should be noted that rough convergence has quite interesting applications in numerical analysis.
This concept was later extended by Phu ([27]) to infinite dimensional normed spaces. Accordingly, the definition of rough convergence in a
finite dimensional normed space can be given as follows:

Definition 1.9. ([26]) Let (X ,‖.‖) be a normed linear space and r be a nonnegative real number. Then the sequence x = (xi) in X is said to
be rough convergent (or r−convergent) to x∗, if for any ε > 0, there exists an iε ∈ N such that

‖xi− x∗‖< r+ ε

for all i≥ iε or equivalently

limsup‖xi− x∗‖< r.

In this definition, x∗ is called as an r−limit point of (xi), r is called by roughness degree and this situation denoted by xi
r→ x∗.

Let (xi) be a rough convergent sequence in a finite dimensional normed space (X ,‖.‖) and r be a non-negative real number. For each r > 0,
we obtain a different x∗ point. So, this point, which is called by the r−limit point of the sequence, may not be unique. Therefore, a set of
these points can be mentioned. This set is called by r−limit set and it is indicated by LIMr

xi
. As seen, the topological and analytical features

of the set are very important. The r−limit set of the sequence (xi) is defined by

LIMr
xi
=
{

x∗ ∈ X : xi
r→ x∗

}
.

Following Phu ([26])’s definition, Aytar ([3]) and Dündar and Çakan ([9]) and Pal, Chandra and Dutta ([25]) described rough statistical
convergent sequences and rough I−convergent sequences, respectively.
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Definition 1.10. ([3]) Let (Rn,‖.‖) be the real n−dimensional normed space and r be a non-negative real number. For every ε > 0, if the
set

{i ∈ N : ‖xi− x∗‖ ≥ r+ ε}

has natural density zero or

st− limsup‖xi− x∗‖ ≤ r

is satisfied then, the sequence x = (xi) is said to be rough statistically convergent (or r−statistically convergent) to x∗ ∈Rn, and it is denoted
by xi

rst→ x∗.

Definition 1.11. ([9]) Let (Rn,‖.‖) be the real n−dimensional normed space, I is an admissible ideal and r be a non-negative real number.
For every ε > 0, if the set

{i ∈ N : ‖xi− x∗‖ ≥ r+ ε} ∈I

or equivalently

I − limsup‖xi− x∗‖ ≤ r

then, x = (xi) is said to be rough I−convergent to x∗ ∈ Rn and it is denoted by xi
r−I→ x∗.

After these studies, Demir ([6],[7]) and Demir and Gümüş ([8]) studied the concept of rough convergence and rough statistical convergence
for difference sequences and proved some basic theorems. Arslan and Dündar defined rough convergence in 2−normed spaces ([1]). Kişi
and Ünal, studied rough statistical and rough ∆I2−statistical convergence of double sequences in normed linear spaces ([20]),([21]).

2. Main Results

In this part we define the concept of rough I−convergence for difference sequences and we prove some important theorems. It should be
noted here, throughout the paper, Rn denotes the real n−dimensional space with the norm ‖.‖ , ∆x = (∆xi) is a difference sequence such that
∆xi ∈ Rn, I is an admissible ideal and r is a nonnegative real number.

Definition 2.1. A difference sequence ∆x = (∆xi) in Rn is said to be rough I−convergent to x∗ ∈ Rn, provided that the set

{i ∈ N : ‖∆xi− x∗‖ ≥ r+ ε}

belongs to I for any ε > 0 or equivalently

I − limsup‖∆xi− x∗‖ ≤ r.

In this case we write ∆xi
r−I→ x∗.

The r−I−limit set of the sequence (∆xi) is defined by

I −LIMr
∆xi

=
{

x∗ ∈ Rn : ∆xi
r−I→ x∗

}
.

In this notation, r denotes the degree of roughness and it is easy to see that if r = 0, ∆I−convergence is obtained.
If I is an admissible ideal, then usual rough convergence for a difference sequence (∆xi) implies rough I−convergence.
Similar to Phu ([26]), Aytar ([3]) and Dündar ([9])’s studies, the idea of rough I−convergence for a difference sequence can be explained
with following example.

Example 2.2. Let ∆y = (∆yi) be a difference sequence which is I−convergent to x∗ and cannot be measured or calculated exactly.
Additionally, let ∆x = (∆xi) be an approximated sequence that provides the property {i ∈ N : ‖∆xi−∆yi‖> r} ∈I . Then, I−convergence
of the sequence (∆xi) is not assured, but as the inclusion

{i ∈ N : ‖∆yi− x∗‖ ≥ ε} ⊇ {i ∈ N : ‖∆xi− x∗‖ ≥ r+ ε}

and we get {i ∈ N : ‖∆xi− x∗‖ ≥ r+ ε} ∈I . It means that ∆x = (∆xi) is rough I−convergent to x∗.

Phu ([26]) observed that for a sequence x = (xi) of real numbers,

LIMr
x = [limsupx− r, liminfx+ r] .

Similarly we have,

I −LIMr
∆xi

= [I − limsup∆x− r, I − liminf∆x+ r] .

As seen in the example below, there exists an unbounded difference sequence which is not rough convergent but it can be rough I−convergent.

Example 2.3. Let I be an admissible ideal and A be an infinite set such that A ∈I . Define a difference sequence

∆xi =

{
(−1)i, i f i /∈ A
i, i f i ∈ A

.



212 Konuralp Journal of Mathematics

It is obvious that ∆x is unbounded and rough I−convergent. Because,

I −LIMr
∆xi

=

{
/0, i f r < 1
[1− r,r−1] , otherwise

.

Corollary 2.4. I −LIMr
∆xi
6= /0 does not imply LIMr

∆xi
6= /0. Because I is an admissible ideal, LIMr

∆xi
6= /0 implies I −LIMr

∆xi
6= /0.

Therefore,

LIMr
∆xi
⊆I −LIMr

∆xi

and

diam(LIMr
∆xi

)≤ diam(I −LIMr
∆xi

).

Theorem 2.5. Let I be an admissible ideal. For any difference sequence ∆x = (∆xi) , diameter of I −LIMr
∆xi

is not greater than 2r.
Generally, there is no smaller bound.

Proof. Suppose that diam
(
I−LIMr

∆xi

)
> 2r. Then, there exists y,z ∈I −LIMr

∆xi
such that

d := ‖y− z‖> 2r.

Take an arbitrary ε ∈
(

0, d
2 − r

)
. Define A1 and A2 sets such that

A1 := {i ∈ N : ‖∆xi− y‖ ≥ r+ ε}

and

A2 := {i ∈ N : ‖∆xi− z‖ ≥ r+ ε} .

Because y,z ∈I −LIMr
∆xi

we have A1 ∈I and A2 ∈I and hence B = N\(A1∪A2) ∈F (I ) and so B 6= /0. Now,

‖y− z‖ ≤ ‖∆xi− y‖+‖∆xi− z‖< 2(r+ ε)< 2r+2
(

d
2
− r
)
= d = ‖y− z‖

for all i ∈ B. As we can see this is a contradiction. Therefore, diam
(
I−LIMr

∆xi

)
≤ 2r.

Now, let’s show that there is generally no smaller bound. For this proof, we show that

I −LIMr
∆xi

= B̄r(x∗) := {y ∈ X : ‖x∗− y‖ ≤ r} .

We know that diam(B̄r(x∗)) = 2r.
Choose a difference sequence (∆xi) with I − lim∆x = x∗. For each ∀ε > 0 we have

K = {i ∈ N : ‖∆xi− x∗‖ ≥ ε} ∈I .

Then,

‖∆xi− y‖ ≤ ‖∆xi− x∗‖+‖x∗− y‖ ≤ ‖∆xi− x∗‖+ r

for each y ∈ B̄r(x∗). In this case,

‖∆xi− y‖< r+ ε

whenever i /∈ K. Therefore, y ∈I −LIMr
∆xi

and we get I −LIMr
∆xi

= B̄r(x∗).

Theorem 2.6. For a bounded sequence (∆xi), there is a nonnegative real number r such that I −LIMr
∆xi
6= /0.

The question of ”whether the converse of the above theorem is also valid” is a question that can immediately come to mind. The answer is
no. But if the difference sequence is I−bounded, the converse is valid. The theorem that gives this case is below.

Theorem 2.7. (∆xi) is I−bounded if and only if there exists a nonnegative real number r such that I −LIMr
∆xi
6= /0.

Proof. First, let’s show that I −LIMr
∆xi
6= /0 when ∆x is I−bounded. From the definition of the concept of I−boundedness, there exists a

positive real number M such that

A = {i ∈ N : ‖∆xi‖ ≥M} ∈I .

Let’s define r′ := sup{‖∆xi‖ : i ∈ Ac} . Then, I −LIMr′
∆xi

contains the origin of Rn and I −LIMr′
∆xi
6= /0.

Now, assume that I −LIMr′
∆xi
6= /0 for some r ≥ 0. Then we have an x∗ such that x∗ ∈I −LIMr′

∆xi
. In that case,

{i ∈ N : ‖∆xi− x∗‖ ≥ r+ ε} ∈I

for each ε > 0. So, we can say that almost all ∆xi ’s are contained in some ball with any radius greater than r and ∆xi is I−bounded.

Theorem 2.8. The set I −LIMr
∆xi

is closed and convex.
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Proof. Let’s first prove that I −LIMr
∆xi

is closed. For this proof, we use one of the well-known theorems in Functional Analysis. According
to this theorem, ”Let y = (yi) be a convergent sequence and yi→ y∗.When y ∈ A at the same time y∗ ∈ A, then the set A is closed”.
If I−LIMr

∆xi
= /0 then, the proof is trivial.

Suppose that I−LIMr
∆xi
6= /0. Then, we have a sequence ∆yi ⊆ I−LIMr

∆xi
such that ∆yi → y∗. From the definition of the concept of

convergence, for each ε > 0 there exists an i ε

2
∈ N such that ‖∆yi− y∗‖ < ε

2 for all i > i ε

2
. Choose an i0 ∈ N such that i0 > i ε

2
. Then,

‖∆yi0 − y∗‖< ε

2 .
On the other hand, since (∆yi)⊆I−LIMr

∆xi
, we have yi0 ∈I−LIMr

∆xi
, i.e.,{

i ∈ N :
∥∥∥∆xi− yi0

∥∥∥≥ r+
ε

2

}
∈I .

Let k ∈
{

i ∈ N : ‖∆xi− yi0‖< r+ ε

2
}

and choose i0 > i ε

2
. Then, ‖∆xk− yi0‖< r+ ε

2 and hence,

‖∆xk− y∗‖ ≤
∥∥∥∆xk− yi0

∥∥∥+∥∥∥yi0 − y∗
∥∥∥< r+ ε

therefore,

{i ∈ N : ‖∆xi− y∗‖< r+ ε} ⊇
{

i ∈ N :
∥∥∥∆xi− yi0

∥∥∥< r+
ε

2

}
and so, {i ∈ N : ‖∆xi− y∗‖< r+ ε} ∈F (I ). Therefore, {i ∈ N : ‖∆xi− y∗‖ ≥ r+ ε} ∈I .
For the convexity of I−LIMr

∆xi
, let’s show that when y0,y1 ∈I−LIMr

∆xi
, [(1−λ )y0 +λy1] ∈I−LIMr

∆xi
for each λ ∈ [0,1]. Suppose

that y0,y1 ∈I−LIMr
∆xi

and let ε > 0 be given. Define the sets

K1 := {i ∈ N : ‖∆xi− y0‖ ≥ r+ ε}

and

K2 := {i ∈ N : ‖∆xi− y1‖ ≥ r+ ε} .

We know that K1,K2 ∈I which implies M = N\(K1∪K2) ∈F (I ) and so M is not empty. Then, we have

‖∆xi− [(1−λ )y0 +λy1]‖= ‖(1−λ )(∆xi− y0)+λ (∆xi− y1)‖< r+ ε

for each i ∈M and each λ ∈ [0,1]. We get

{i ∈ N : ‖∆xi− [(1−λ )y0 +λy1]‖ ≥ r+ ε} ∈I ,

this means [(1−λ )y0 +λy1] ∈I−LIMr
∆xi

and so, I−LIMr
∆xi

is convex.

Theorem 2.9. Let r > 0. The sequence (∆xi) is rough I−convergent to x∗ if and only if there exists a difference sequence ∆y = (∆yi) such
that I − lim∆y = x∗ and ‖∆xi−∆yi‖ ≤ r for each i ∈ N.

Proof. For the necessity part, suppose that (∆xi) is rough I−convergent to x∗. From the definition,

I − limsup‖∆xi− x∗‖ ≤ r (2.1)

Let’s define the sequence (∆yi) as follows:

∆yi :=

{
x∗, i f ‖∆xi− x∗‖ ≤ r
∆xi + r x∗−∆xi

‖∆xi−x∗‖ , otherwise . (2.2)

Then, it is easy to see that

‖∆yi− x∗‖=
{

0, i f ‖∆xi− x∗‖ ≤ r
‖∆xi− x∗‖− r, otherwise

thus, ‖∆xi−∆yi‖ ≤ r for each i ∈ N. At the same time, from (2.1) and (2.2),

I − limsup‖∆yi− x∗‖= 0

and we get I − lim∆y = x∗.
For the sufficiency, suppose that I − lim∆y = x∗ and ‖∆xi−∆yi‖ ≤ r for each i ∈N. From the definition of the concept of I−convergence,
for each ε > 0 we get

A = {i ∈ N : ‖∆yi− x∗‖ ≥ ε} ∈I .

We know that,

{i ∈ N : ‖∆yi− x∗‖ ≥ ε} ⊇ {i ∈ N : ‖∆xi− x∗‖ ≥ r+ ε}

if i ∈ N\A and we obtain

{i ∈ N : ‖∆xi− x∗‖ ≥ r+ ε} ∈I .
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In order to prove the next theorem, we will need the following lemma, which is related to I−cluster points.

Definition 2.10. Let X be a normed space with the norm ‖.‖. A point c ∈ X is called as an I−cluster point of a difference sequence x = (xi)
if for any ε > 0,

{i ∈ N : ‖xi− c‖< ε} /∈I .

Lemma 2.11. Let I (Γ∆x) be the set of all I−cluster points of ∆x and c be an arbitrary element of this set. For all x∗ ∈I−LIMr
∆xi

, we
have ‖x∗− c‖ ≤ r.

Proof. Let’s accept the contrary of the lemma and find the contradiction. Assume that there exist a point c ∈I (Γ∆x) and x∗ ∈I−LIMr
∆xi

such that ‖x∗− c‖> r. Define ε =
‖x∗−c‖−r

2 . From the fact that c ∈I (Γ∆x) , we have

A = {i ∈ N : ‖∆xi− c‖< ε} /∈I .

For i ∈ A,

‖x∗−∆xi‖ ≥ ‖x∗− c‖−‖∆xi− c‖> 2ε + r− ε = r+ ε

and so

{i ∈ N : ‖∆xi− c‖< ε} ⊆ {i ∈ N : ‖∆xi− x∗‖ ≥ r+ ε} .

Because A ∈F (I ), we obtain

{i ∈ N : ‖∆xi− x∗‖ ≥ r+ ε} ∈F (I )

which contradicts the fact x∗ ∈I−LIMr
∆xi

. Thus, ‖x∗− c‖ ≤ r for all x∗ ∈I−LIMr
∆xi

.

Theorem 2.12. For a difference sequence ∆x = (∆xi) , ∆xi
r−I→ x∗ if and only if I−LIMr

∆xi
= B̄r(x∗).

Proof. In Theorem 2.1, we proved the necessity part. So, we need to prove if I−LIMr
∆xi

= B̄r(x∗) then, ∆xi
r−I→ x∗. Let I−LIMr

∆xi
=

B̄r(x∗) 6= /0. Then, from the Theorem 2.3., we have that (∆xi) is I−bounded.
Let (∆xi) sequence has two different I−cluster points such as x∗ and x′∗. Then, the point

x̄∗ := x∗+
r

‖x∗− x′∗‖
(
x∗− x′∗

)
satisfies

‖x̄∗− x′∗‖ =
(

r
‖x∗−x′∗‖

+1
)
‖x∗− x′∗‖

= r+‖x∗− x′∗‖> r.

From the previous lemma, x̄∗ /∈I−LIMr
∆xi

but this contradicts with ‖x̄∗− x∗‖ = r and I−LIMr
∆xi

= B̄r(x∗). This means that x∗ is the
unique statistical cluster point of ∆x. So, ∆x is rough I−convergent to x∗.

Definition 2.13. Let X be a normed space with the norm ‖.‖ . For the elements z0,z1 ∈ X which satisfy ‖z0‖= ‖z1‖= 1(z0 6= z1) and for
the scalar 0 < λ < 1, if ‖(1−λ )z0 +λ z1‖< 1 then X is called by strictly convex space.

According to previous theorems and results, we can say that if I−LIMr
∆xi

= x∗ then there exist y1,y2 ∈I−LIMr
∆xi

such that ‖y1− y2‖= 2r.
Next theorem proves that if the space is strictly convex, the inverse is also valid.

Theorem 2.14. Let (Rn,‖.‖) be a strictly convex space and ∆x = (∆xi) be a difference sequence in this space. If there exists y1,y2 ∈
I−LIMr

∆xi
such that ‖y1− y2‖= 2r then, this sequence is I−convergent to y1+y2

2 .

Proof. Choose a point c ∈I (Γ∆x) and y1,y2 ∈I−LIMr
∆xi

. From the Lemma 2.1, we have

‖y1− c‖ ≤ r and ‖y2− c‖ ≤ r. (2.3)

From the assumption we know that

2r = ‖y1− y2‖= ‖y1− c+ c− y2‖ ≤ ‖y1− c‖+‖y2− c‖ . (2.4)

From (2.3) and (2.4) we have

‖y1− c‖= ‖y2− c‖= r.

Therefore,

1
2
(y2− y1) = c− y1 = y2− c

and so,

c =
1
2
(y1 + y2) .

It means that, c is the unique I−cluster point of ∆x = (∆xi).
On the other hand, since y1,y2 ∈I−LIMr

∆xi
, I−LIMr

∆xi
is not empty and so, ∆x is bounded from Theorem 2.3. Consequently, we have

I−LIM ∆x = 1
2 (y1 + y2) .
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Theorem 2.15. i) If c ∈I (Γ∆x) then, I−LIMr
∆xi
⊆ B̄r(c).

ii) I−LIMr
∆xi

=
⋂

c∈I (Γ∆x)
B̄r(c) = {x∗ ∈ Rn : I (Γ∆x)⊆ B̄r(x∗)} .

Proof. i) Suppose that c ∈I (Γ∆x). From Lemma 2.1, for all x∗ ∈I−LIMr
∆xi

we have ‖x∗− c‖ ≤ r. Otherwise we have

{i ∈ N : ‖∆xi− x∗‖ ≥ r+ ε} /∈I

for ε := ‖x∗−c‖−r
3 . We know that c is an I−cluster point of (∆xi) , this contradicts with the fact that x∗ ∈I−LIMr

∆xi
.

ii) Because of the first part of the theorem, we have I−LIMr
∆xi
⊆

⋂
c∈I (Γ∆x)

B̄r(c). Now let’s show that
⋂

c∈I (Γ∆x)
B̄r(c)⊆I−LIMr

∆xi
. Let

y ∈
⋂

c∈I (Γ∆x)
B̄r(c). Then we have ‖y− c‖ ≤ r for all c ∈I (Γ∆x), which is equivalent to I (Γ∆x)⊆ B̄r(y), i.e.,

⋂
c∈I (Γ∆x)

B̄r(c)⊆ {x∗ ∈ Rn : I (Γ∆x)⊆ B̄r(x∗)} .

Now, let y /∈I−LIMr
∆xi

. Then, there exists an ε > 0 such that

{i ∈ N : ‖∆xi− y‖ ≥ r+ ε} /∈I ,

which implies the existence of an I−cluster point c of the sequence ∆x with ‖y− c‖ ≥ r+ ε, i.e.,

I (Γ∆x)* B̄r(y)

and y /∈ {x∗ ∈ Rn : I (Γ∆x)⊆ B̄r(x∗)} . Hence, I−LIMr
∆xi

follows from

y ∈ {x∗ ∈ Rn : I (Γ∆x)⊆ B̄r(x∗)}

i.e.,

{x∗ ∈ Rn : I (Γ∆x)⊆ B̄r(x∗)} ⊆I −LIMr
∆xi

.

Therefore,

I −LIMr
∆xi

=
⋂

c∈I (Γ∆x)

B̄r(c).

Now, let’s give an example about this theorem.

Example 2.16. Let I = I d and consider the sequence ∆x = (∆xi) in R1 defined as follows:

∆xi =

{
cos iπ, i f i 6= k2 (k ∈ N)

i, otherwise

Then, we have I (Γ∆x) = {−1,1} and

I −LIMr
∆xi

= B̄r(−1)∩ B̄r(1).

Theorem 2.17. Let ∆x = (∆xi) is I−bounded difference sequence. If r ≥ diam(I (Γ∆x)) then, we have I (Γ∆x)⊆I −LIMr
∆xi

.

Proof. Assume that r ≥ diam(I (Γ∆x)), c ∈I (Γ∆x) but c /∈I −LIMr
∆xi

. Then, there exists an ε > 0 such that

{i ∈ N : ‖∆xi− c‖ ≥ r+ ε} /∈I .

Since (∆xi) is I−bounded, we have an I−cluster point c1 such that ‖c− c1‖> r+ ε1 where ε1 := ε

2 . So, we get

diam(I (Γ∆x))> r+ ε1.

It means, our acceptance is not true and this proves the theorem.
The converse of the theorem is also true, i.e., if I (Γ∆x)⊆I −LIMr

∆xi
then, r ≥ diam(I (Γ∆x)) .

Now recall the definitions of I−limsup∆x, I−liminf∆x and I−core{∆x} and give some results. Let ∆x = (∆xi) is a real difference
sequence, t ∈ R, Mt = {i : ∆xi > t} , Mt = {i : ∆xi < t} .

a) I− limsup∆x =
{

sup{t ∈ R : Mt /∈I } , if there is a t ∈ R such that Mt /∈I
−∞ if Mt ∈I for each t ∈ R

b) I− liminf∆x =
{

inf{t ∈ R : Mt /∈I } , if there is a t ∈ R such that Mt /∈I
+∞ if Mt ∈I for each t ∈ R .

Definition 2.18. For a real difference sequence ∆x = (∆xi), I−core{∆x} is defined to be closed interval as follows:

I−core{∆x}= [I− liminf∆x, I− limsup∆x] .
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Theorem 2.19. If I −LIMr
∆xi
6= /0, then, I− limsup∆x and I− liminf∆x belong to the set I −LIM2r

∆xi
.

Proof. Since I −LIMr
∆xi
6= /0, ∆x = (∆xi) difference sequence is I−bounded. The number I− liminf∆x is an I−cluster point of ∆x and

consequently we have ‖x∗− (I− liminf∆x)‖ ≤ r for all x∗ ∈I −LIMr
∆xi

. Put

A = {i ∈ N : ‖x∗−∆xi‖ ≥ r+ ε} .

If i /∈ A, then

‖xi− (I− liminf∆x)‖ ≤ ‖xi− x∗‖+‖x∗− (I− liminf∆x)‖
< 2r+ ε.

Thus, I− liminf∆x ∈I −LIM2r
∆xi

. Similarly it can be shown that I− limsup∆x ∈I −LIM2r
∆xi

.

Corollary 2.20. If I −LIMr
∆xi
6= /0 then, I−core{∆x} ⊆I −LIM2r

∆xi
.

Proposition 2.21. diam(I−core{∆x}) = r if and only if I−core{∆x}= I −LIMr
∆xi

.

Proof. Assume that diam(I−core{∆x}) = r. Then, we can easily write that,

diam(I−core{∆x}) = r ⇐⇒ (I− limsup∆x)− (I− liminf∆x) = r. (2.5)

From the definition of I−core{∆x} and (2.5),

I−core{∆x} = [I− liminf∆x, I− limsup∆x]
= [I− limsup∆x− r, I− liminf∆x+ r]
= I −LIMr

∆xi

At the same time, it is also possible to say the following relations:

r > diam(I−core{∆x}) ⇐⇒ I−core{∆x} ⊂I −LIMr
∆xi

and

r < diam(I−core{∆x}) ⇐⇒ I−core{∆x} ⊃I −LIMr
∆xi

.
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[21] Ö. Kişi and H. K. Ünal, Rough Statistical Convergence of Double Sequences in Normed Linear Spaces, Honam Math. J., in press.
[22] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981), 169-176.
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