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Abstract
Adding new classes of integers to literature is both challenging and charming. Until a new
class is completely characterized, mathematics is never going to be worth it. While it’s
absurd to play with integers without intended consequences. In this work, we introduce
and investigate four new classes of integers namely, anti-totient numbers, half anti-totient
numbers, near Zumkeller numbers and half near Zumkeller numbers by using the notion
of non-coprime residues of n including n. We formulate and propose relations of these new
classes of numbers with previous well-known numbers such as perfect, totient, triangular,
pentagonal, and hexagonal numbers. These new classes of integers have been completely
characterized. Finally, as an application of these new classes of numbers, a new graph
labeling is also proposed on anti-totient numbers.
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1. Introduction
A positive integer n is termed as a perfect number if the sum of its positive proper

divisors is n. That is, σ(n) = n, where σ(n) represents the sum of all positive proper
divisors of n. The generalized perfect numbers are called Zumkeller numbers. Zumkeller
numbers generated a sequence of integers in which the positive divisors of every integer can
be partitioned into two sets whose sums are equal [4]. The notion of Zumkeller numbers
was formally investigated by Clark et al. in [4]. Later on, Peng and Bhaskara Rao proved
several postulates about Zumkeller numbers in [13]. The notion of totient, super totient
and hyper totient numbers was introduced by Khalid and Shahbaz in [15]. An integer n
greater than one is known as totient if the sum of its co-prime residues is 2kn, k ≥ 1. Fur-
ther, we refer it as super totient if the set of its co-prime residues can be partitioned into
two disjoint subsets of equal sums. Moreover, if the set its of co-prime residues including n
itself can also be divided into two disjoint subsets of equal sums, then it is known as hyper
∗Corresponding Author.
Email addresses: shahbaz.ali@kfueit.edu.pk (S. Ali), khalid.math@pu.edu.pk (M.K. Mahmood),

kpshum@ynu.edu.cn (K.P. Shum)
Received: 13.11.2020; Accepted: 24.02.2021

https://orcid.org/0000-0002-5998-0053
https://orcid.org/0000-0002-1071-2808
https://orcid.org/0000-0001-8410-5181


Novel classes of integers and their applications in graph labeling 1095

totient. In [15], it was shown that every Zumkeller number is either a super totient or
hyper totient number. Many postulates and relations on totient, super totient and hyper
totient numbers were developed in [15].

The above newly defined classes can also be used in graph labeling. Labeled graphs
have many applications in X-ray crystallography, coding theory, circuit design commu-
nication networks, etc. In [14], the concept of graph labeling was investigated by Rosa
in 1967 for the very first time. Eshghi, Kourosh and Parham presented applications of
mathematical programming using graph labeling in [6]. Babitha and Baskar proved some
results on prime cordial labeling in [1]. The mean graph labeling was introduced by So-
masundaram and Ponraj in [18]. Balamurugan, Thirusangu and Thomas introduced the
notion of Zumkeller labeling in [2]. Hussain and Tabraiz investigated Super d-antimagic
labeling of subdivided kC5 in [10]. In [16], some results and examples on different cordial
graphs were determined by Seoud and Salman. In [5], Dinh and Moshe investigated a new
labeling of C2n. More results on edge-odd graceful graphs was given by Seoud and Maher
in [17]. In [11, 12], Khalid and Shahbaz introduced the concept of super totient labeling
on various classes of graphs. In [9], Harrington, and Tony investigated restricted super
totient labeling and they found their indices as well. A detailed survey on graph labelings
has been explored by Gallian in [7].

This paper is arranged as follows: In Sections 2 and 3, we introduce the notion of anti-
totient and half anti-totient numbers respectively. Also, we give many results on their
relations with existing classes of integers. In Section 4, we define near Zumkeller and half
near Zumkeller numbers by means of two disjoint subsets of equal sum over non-coprime
residues of any positive integer n. In Section 5, we give an application of anti-totient
numbers in graph labeling and also propose an algorithm for anti-totient labeling of a full
K-ary tree. Some results are given below to use in the sequel.

Definition 1.1. [3] Let r be the residue of any postive integer n. We say that r and n are
co-prime to each other if (r, n) = 1 (where (r, n) represents the greatest common divisor
(GCD) of r and n). The Euler’s phi function of a positive integer n counts the number of
co-prime residues of n, it is denoted by φ(n).

Proposition 1.2. [15] An integer n > 0 is totient if and only if φ(n) = 2k+1, k ≥ 1.

Proposition 1.3. [13] If n is a Zumkeller number, then
(a) σ(n) is even.
(b) The prime factorization of n must include at least one odd prime to an odd power.

Note: Throughout the paper Z, N = Z+, E+, O+ represents the set of all integers, set of
all positive integers, set of all even and odd positive integers respectively.

2. Anti-totient numbers
In this section, we define the notion of anti-totient numbers and characterize them

completely. Also, we establish relations of anti-totient numbers with well-known classes
of integers.

Definition 2.1. A positive integer n is called an anti-totient number if the sum of its non
co-prime residues including n is

ξ(n) =
∑

(r,n) ̸=1,
r≤n

r =
{

nk, if n is odd and for some even k,
3n
2 k, if n is even and for some odd k.
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Example 2.2. Let n = 26 be an integer. The set of non co-prime residues of 26 including
26 is S = {2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24, 26}. The sum of the elements of S is
195 = 3·26

2 · 5. For n = 35, the set of non co-prime residues of 35 including itself is
T = {5, 7, 10, 14, 15, 20, 21, 25, 28, 30, 35}. The sum of elements of T is 210 = 35 · 6. If we
take n = 10, then the sum of its co-prime residues including itself is 35 which can not be
written in the form of 3·10

2 · k for any odd integer k. Therefore, 26 and 35 are even and
odd anti-totient numbers respectively, but 10 is not an anti-totient number.

To characterize the set of all anti-totient numbers, we give the following important lemma.

Lemma 2.3. An integer n is an anti-totient number if and only if

φ(n) ≡
{

n + 1(mod 4), if n is odd,
n − 2(mod 6), if n is even.

Proof. Let
{
r1, r2, · · · , rn−1

}
and

{
r

′
1, r

′
2, · · · , r

′

φ(n)
}

be sets of all residues and co-prime
residues of n respectively. The sum of all residues including n and co-prime residues of n
are n(n + 1)/2 and nφ(n)/2 respectively. Thus the sum of all non co-prime residues of n
is

ξ(n) =
n−1∑
i=1

ri −
φ(n)∑
i=1

r
′
i = n(n + 1)

2
− nφ(n)

2
= n

2

(
n + 1 − φ(n)

)
.

If n is an odd, then n
2 (n + 1 − φ(n)) = nk, ⇒ 2k = (n + 1 − φ(n)). So, k is even if and

only if φ(n) ≡ n + 1(mod 4).
Now, if n is an even integer. Then,

ξ(n) = n(n + 1)
2

− nφ(n)
2

= n

2

(
n + 1 − φ(n)

)
= 3nk/2,

⇒ n+1−φ(n) = 3k. Therefore, an integer k is odd if and only if n−2 ≡ φ(n)
(
mod 6

)
. �

Theorem 2.4. Let p be an odd prime and α be any positive integer. The integer pα is an
anti-totient number if and only if α is even and p ≡ 3(mod 4).

Proof. The sum of non co-prime residues of pα including pα, is ξ(pα) = pα

2 (pα+1−φ(pα)).
Since pα is an odd prime, we have that

pα

2
(pα + 1 − φ(pα)) = 2pαk,

⇒ 1 + pα−1 = 4k. (2.1)
We need to show that k is even in Equation (2.1) if and only if p ≡ 3(mod 4) and
0 ̸= α ≡ 0(mod 2). There are four possibilities with respect to p and α. These are

(a)p ≡ 1(mod 4) and 0 ̸= α ≡ 0(mod 2),
(b)p ≡ 3(mod 4) and α ≡ 1(mod 2),
(c)p ≡ 1(mod 4) and α ≡ 1(mod 2),
(d)p ≡ 3(mod 4) and 0 ̸= α ≡ 0(mod 2).

(a) : Setting p = 1+4t for some positive integer t and α = 2m, m ∈ Z+ in Equation (2.1),
1 + (1 + 4t)2m−1 = 4k.

This is not possible because 1 + (1 + 4t)2m−1 is not divisible by 4. Similarly, possibilities
(b) and (c) do not hold. When p = 3+4t then by Lemma 2.3, pα is an anti-totient number
if and α is an even. �
Theorem 2.5. Let pi, qi be primes of the form pi = 1 + 4ti and qi = 3 + 4ti. The integer
n =

m∏
i=1

pαi
i qβi

i is an anti-totient number if and only if there is an odd number of βi
,s with

βi ≡ 1(mod 2) for each i.
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Proof. Let n =
m∏

i=1
pαi

i qβi
i be an odd integer with primes pi, qi of the form 1 + 4ti and

3 + 4ti respectively for some positive integers ti. Let’s assume an integer,

γ =
m∏

i=1
pαi

i qβi
i + 1 − φ

( m∏
i=1

pαi
i qβi

i

)
=

m∏
i=1

pαi
i qβi

i + 1 −
m∏

i=1

(
pαi−1

i (pi − 1)qβi−1
i (qi − 1)

)
. (2.2)

Since pi ≡ 1(mod 4) and qi ≡ 3(mod 4), we have that

γ ≡
m∏

i=1
qβi

i + 1(mod 4)

≡
m∏

i=1
3βi + 1(mod 4), (2.3)

from Congruence (2.3), it is clear that the integer γ is divisible by 4 if and only if βi are
odd in numbering (m ≡ 1(mod 2)) with βi ≡ 1(mod 2). �

Corollary 2.6. Let pi, qi be primes of the form pi = 1 + 4ti and qi = 3 + 4ti, then
n =

m∏
i=1

piqi is an anti-totient number if and only if m ≡ 1(mod 2).

Corollary 2.7. Let qi be primes of the form qi = 3+4ti, then n =
m∏

i=1
qβi

i is an anti-totient

number if and only if 1 ̸= m ≡ 1(mod 2) and βi ≡ 1(mod 2).

Corollary 2.8. The product of two odd primes p and q is anti-totient if and only if
p ≡ 1(mod 4) and q ≡ 3(mod 4).

Remark 2.9. Let pi be primes of the form 1 + 4ti for some positive integers ti then the
product

m∏
i=1

pαi
i is not an anti-totient number.

Proposition 2.10. An integer 2α is an anti-totient number if and only if 0 ̸= α ≡
0(mod 2).

Proof. Let n = 2α be an integer. Let us assume that an integer γ as

γ = 2α − 2 − φ(2α) = 2α − 2 − 2α−1

= 2(2α−1 − 1 − 2α−2). (2.4)

Since,

2α(mod 6) =
{

2, if α is odd,
4, if α is even. (I)

Therefore, the integer γ is divisible by 6 if and only if α ≡ 0(mod 2). �

Proposition 2.11. Let p be an odd prime of the form p = 1+4t or p = 3+4t. An integer
2αp is anti-totient if and only if t ∈ {3r, 3r + 5|r ∈ Z+ ∪ {0}}

∪
{(3z − 1)/2| z ∈ Z+}.

Proof. Let p be an odd prime of the form 1 + 4t, t ∈ Z+}. Take the integer

γ = 2αp − 2 − φ(2αp) = 2αp − 2 − 2α−1p + 2α−1

= 2α + 2α+2t − 2 − 2α+1t. (2.5)

If α is even then Equation (2.5) becomes

γ ≡ 2t + 2(mod 6).
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The integer γ is divisible by 6 if and only if t = 3r+5. If α is an odd integer then Equation
(2.5), becomes

γ ≡ 4t(mod 6).

The integer γ is divisible by 6 if and only if t = 3r. If the prime p is of the form p = 3 + 4t,
then we assume an integer

γ
′ = 2αp − 2 − φ(2αp) = 2αp − 2 − 2α−1p + 2α−1

= 2α+2t − 2α+1t + 3 · 2α − 3 · 2α−1 + 2α − 2. (2.6)

Taking α is an even in Equation (2.6) and using relation (I), we have

γ
′ ≡ 2t(mod 6).

The integer γ
′ is a multiple of 6 if and only if t = 3r. When α is an odd in Equation (2.6)

then by using relation (I), we have

γ
′ ≡ 4t + 2(mod 6).

The integer γ
′ is a multiple of 6 if and only if t = (3z − 1)/2 for some positive integer

z. �

Proposition 2.12. The integer n = 2α · 3β is an anti-totient number if and only if
β ∈ {0, 1} and 0 ̸= α ≡ 0(mod 2).

Proof. Let n = 2α · 3β be an integer. We assume an integer

k = 2α · 3β − 2 − φ(2α · 3β) = 2α · 3β − 2 − 2α · 3β−1.

If β = 0 then by Proposition 2.10, the result holds. If β = 1, then k is divisible by 4 if
and only if 0 ̸= α ≡ 0(mod 2). �

Theorem 2.13. Let p = 1 + 4t, q = 3 + 4t be primes for some integer t. Then the integer
n = 2αpq is anti-totient if an only if α is even and t = (3k − 1) or t = (3k + 1) for some
positive integer k.

Proof. Let n = 2αpq be any integer, assume an integer γ as

γ = 2αpq − 2 − φ(2αpq) = 2αpq − 2 − 2α−1(pq − p − q + 1)
= 2α−1(pq + p + q − 1) − 2
≡ 2α+1t2 − 2(mod 6), (2.7)

If γ is an even integer then Congruence (2.7) together with relation (I), we have,

γ ≡ 2(t2 − 1) ≡ 2(t + 1)(t − 1)(mod 6),

an integer γ is a multiple of 6 if and only if t + 1 or t − 1 are multiple of three. Thus, γ is
divisible by 6 if and only if t = 3k − 1 or t = 3k + 1. Furthermore, we show that when α
as an odd then n is not an anti-totient number. If α is odd then by using the relation (I)
in Congruence (2.7), we have

γ ≡ 4t2 − 2(mod 6). (2.8)

Therefore, γ is not divisible by 6 for any integer t. Hence, n is not anti-totient. �

Theorem 2.14. Let n = 2α ·
m∏

i=1
pαi

i be an integer with each αi ≥ 2. Then n is an

anti-totient if and only if each pi ≡ 1(mod 6) and α ≡ 1(mod 2).
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Proof. Let n = 2α ·
m∏

i=1
pαi

i be an integer with each αi ≥ 2. Note that every odd prime

p > 3 is either p ≡ 1(mod 6) or p ≡ 5(mod 6). We assume that,

γ = 2α ·
m∏

i=1
pαi

i − 2 − φ(2α ·
m∏

i=1
pαi

i )

= 2α ·
m∏

i=1
pαi

i − 2 − 2α−1 ·
m∏

i=1
pαi−1

i (pi − 1). (2.9)

Next, we claim that if 6 divides γ then there is no odd prime pi = 3 or pi ≡ 5(mod 6) in
(2.9). Suppose that there is an odd prime pi = 3 in (2.9). Without any loss, assume that
p1 = 3. Therefore, (2.9) becomes

γ = 2α · 3α1 ·
m∏

i=2
pαi

i − 2 − 2α · 3α1−1 ·
m∏

i=2
pαi−1

i (pi − 1). (2.10)

Since αi ≥ 2. Thus, (2.10) becomes γ ≡ 4(mod 6). Next, assume that there is a prime of
the form pi ≡ 5(mod 6) in (2.9). Suppose that p1 ≡ 5(mod 6), so (2.9) becomes,

γ =
(
2α · 5α1 ·

m∏
i=2

pαi
i − 2 − 2α+1 · 5α1−1 ·

m∏
i=2

pαi−1
i (pi − 1)

)
(mod 6).

For every choice of prime pi and α1, γ is not divisible by 6. Lastly, if pi ≡ 1(mod 6) in (2.9),
then we have γ = 2α − 2(mod 6). Thus, γ is multiple of 6 if and only if α ≡ 1(mod 2). �

Proposition 2.15. A totient number n is an anti-totient number if and only if

n ≡
{

3(mod 4), if n is odd,
2(mod 6) or 4(mod 6), if n is even.

Proof. Let n be a totient number then by Proposition 1.2, φ(n) = 2k+1, k ≥ 1. Since

2k+1 ≡


0(mod 4), for each positive ineger k,
4(mod 6), if k is odd,
2(mod 6), if k is even.

Thus, by using Lemma 2.3 we have Proposition (2.15). �

There are some integers which are deduced from binomial coefficients termed as triangular,
pentagonal, and hexagonal numbers. The nth term formulas for triangular, pentagonal,
and hexagonal numbers are Tn = Cn+1

2 = n(n+1)
2 , Pn = 3n2−n

2 , and Hn = 2n2 − n
respectively.

Theorem 2.16. Let T2m+1, T2n be triangular numbers with φ(T2m+1) = 2k, φ(T2n) =
2r, k, r > 1. We have the following characterizations,

(1) If m ∈ E+, then T2m+1 is an anti-totient number if and only if (m, k) ∈
{
(a, b)|a ≡

2(mod 4), b ∈ N \ {1}
} ∪ {

(c, d)|0 ̸= c ≡ 4(mod 4), 1 ̸= d ≡ ±1(mod 4)
}
.

(2) If m ∈ O+, then T2m+1 is an anti-totient number if and only if (m, k) ∈
{
(a, b)|a ≡

±1(mod 6), b ≡ 2(mod 6) or b ≡ 5(mod 6)
} ∪ {

(c, d)|c ≡ 3(mod 6), 1 ̸= d ≡
1(mod 6) or d ≡ 4(mod 6)

}
.

(3) If n ∈ O+, then T2n is an anti-totient number if and only if (n, r) ∈
{
(a, b)|a ≡

1(mod 4), b ∈ E+} ∪ {
(c, d)|c ≡ 3(mod 4), d ≡ ±1(mod 4)

}
.

(4) If n ∈ E+, then T2n is an anti-totient number if and only if (n, r) ∈
{
(a, b)|a ≡

2(mod 6), b ≡ 1(mod 6) or b ≡ 4(mod 6)
} ∪ {

(c, d)|c ≡ 4(mod 6), or 0 ̸= c ≡
6(mod 6), d ≡ 2(mod 6) or d ≡ 5(mod 6)

}
.



1100 S. Ali, M.K. Mahmood, K.P. Shum

Proof. Let T2m+1, T2n be triangular numbers with φ(T2m+1) = 2k, φ(T2n) = 2r, k, r > 1.
Taking m ∈ E+, then T2m+1 = (m + 1)(2m + 1) is odd. So, by Lemma 2.3,

2m2 + 3m + 2 ≡ 2k(mod 4). (2.11)

The Congruence (2.11) has a solution if and only if (m, k) belongs to the set
{
(a, b)|a ≡

2(mod 4), b ∈ N \ {1}
} ∪ {

(c, d)|0 ̸= c ≡ 4(mod 4), 1 ̸= d ≡ ±1(mod 4)
}
. This proves (1).

If m ∈ O+, then (m + 1)(2m + 1) is even then by Lemma 2.3,

2m2 + 3m − 1 ≡ 2k(mod 6). (2.12)

the Congruence (2.12) has a solution if and only if (m, k) belongs to the set
{
(a, b)|a ≡

±1(mod 6), b ≡ 2(mod 6) or b ≡ 5(mod 6)
} ∪ {

(c, d)|c ≡ 3(mod 6), 1 ̸= d ≡ 1(mod 6) or d ≡
4(mod 6)

}
.

If n ∈ O+, then T2n = (n)(2n + 1) is an odd number. So by Lemma 2.3,

2n2 + n + 1 ≡ 2k(mod 4). (2.13)

the Congruence (2.13) has a solution if and only if (n, r) belongs to the set
{
(a, b)|a ≡

1(mod 4), b ∈ E+} ∪ {
(c, d)|c ≡ 3(mod 4), d ≡ ±1(mod 4)

}
.

If n ∈ E+, then T2n = (n)(2n + 1) is an even number. So by Lemma 2.3,

2n2 + n − 2 ≡ 2k(mod 6). (2.14)

the Congruence (2.14) has a solution if and only if (n, r) belongs to the set
{
(a, b)|a ≡

2(mod 6), b ≡ 1(mod 6) or b ≡ 4(mod 6)
} ∪ {

(c, d)|c ≡ 4(mod 6), or 0 ̸= c ≡ 6(mod 6), d ≡
2(mod 6) or d ≡ 5(mod 6)

}
. �

Theorem 2.17. Let P2n, and P2m+1 be pentagonal numbers with φ(P2m+1) = 2k, φ(P2n) =
2r, k, r > 1. We have the following characterizations.

(1) If n ∈ E+, then P2n is an anti-totient number if and only if (n, r) ∈
{
(a, b)|a ≡

2(mod 6), b ≡ 1(mod 3)
} ∪ {

(c, d)|c ≡ 4(mod 6), 0 ̸= d ≡ 3(mod 3)
∪ {

(e, f)|0 ̸=
e ≡ 6(mod 6), f ≡ 2(mod 3)

}
.

(2) If n ∈ O+, then P2n is an anti-totient number if and only if (n, r) ∈
{
(a, b)|a ≡

1(mod 4), b ≡ 1(mod 2)
} ∪ {

(c, d)|c ≡ 3(mod 4), 0 ̸= d ≡ 0(mod 2)
}
.

(3) If m ∈ O+, then P2m+1 is an anti-totient number if and only if (m, k) ∈
{
(a, b)|a ≡

1(mod 6), b ≡ 2(mod 3)
} ∪ {

(c, d)|c ≡ 3(mod 6), d ≡ 1(mod 3)∪ {
(e, f)|e ≡ 5(mod 6), f ≡ 2(mod 3)

}
.

(4) If m ∈ E+, then P2m+1 is an anti-totient number if and only if (m, k) ∈
{
(a, b)|a ≡

2(mod 4), 0 ̸= b ≡ 0(mod 2)
} ∪ {

(c, d)|0 ̸= c ≡ 4(mod 4), d ≡ 1(mod 2)
}
.

The proof of Theorem 2.17 is similar to the proof of Theorem 2.16.

Theorem 2.18. Let Hn be a hexagonal number with φ(Hn) = 2k, k > 1. We have the
following characterizations,

(1) If n ∈ E+, then Hn is an anti-totient number if and only if (n, r) ∈
{
(a, b)|a ≡

2(mod 6), b ≡ 2(mod 3)
} ∪ {

(c, d)|c ≡ 4(mod 6), d ≡ 1(mod 3)∪ {
(e, f)|0 ̸= e ≡ 6(mod 6), f ≡ 2(mod 3)

}
.

(2) If n ∈ O+, then Hn is an anti-totient number if and only if (n, r) ∈
{
(a, b)|a ≡

1(mod 4), b ≡ 1(mod 2)
} ∪ {

(c, d)|c ≡ 3(mod 4), 0 ̸= d ≡ 0(mod 2)
}
.

Proof. Let Hn be a hexagonal number with φ(Hn) = 2k, k > 1. If n ∈ E+, then
Hn = n(2n − 1) is even, so by Lemma 2.3,

2n2 − n − 2 ≡ 2k(mod 6). (2.15)
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the Congruence (2.15) has a solution if and only if (n, r) belongs to the set
{
(a, b)|a ≡

2(mod 6), b ≡ 2(mod 3)
} ∪ {

(c, d)|c ≡ 4(mod 6), d ≡ 1(mod 3)
∪ {

(e, f)|0 ̸= e ≡ 6(mod 6), f ≡
2(mod 3)

}
. if n ∈ O+, then Hn = n(2n − 1) is odd, so by Lemma 2.3,

2n2 − n + 1 ≡ 2k(mod 6). (2.16)

The Congruence (2.16) has a solution if and only if (n, r) ∈
{
(a, b)|a ≡ 1(mod 4), b ≡

1(mod 2)
} ∪ {

(c, d)|c ≡ 3(mod 4), 0 ̸= d ≡ 0(mod 2)
}
. �

3. Half anti-totient numbers
In this section, we give the notion of half anti-totient numbers and characterize them

completely. Also, also establish their relations with existing well-known classes of integers.

Definition 3.1. A positive integer n is called a half anti-totient number if the sum of non
co-prime residues of n is∑

r<n, (r,n) ̸=1
r =

{
nk, if n is odd and for some even k, (k ̸= 0),
3n
2 k, if n is even and for some odd k.

Example 3.2. The set of non coprime residues of 21 is S = {3, 6, 7, 9, 12, 14, 15, 18},
sum of elements of S is 84 = 21 · 4, and the set of non co-prime residues of 24 is T =
{2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22}, whose sum is 180 = 3 · 24

2 · 5. If we take
n = 15 then the sum of its co-prime residues is 45 which can not be written in the form of
15k for any even integer k. Therefore, 21 and 24 are odd even half anti-totient numbers
respectively, but 15 is not a half anti-totient number.

Lemma 3.3. An integer n is half anti-totient number if and only if

φ(n) ≡
{

n − 1(mod 4), if n is odd,
n + 2(mod 6), if n is odd.

The proof is similar to the proof of Lemma 2.3.

Proposition 3.4. Let p, q be primes of the form p = 1 + 4t, q = 3 + 4t for some positive
integer t. We have the following results.
(a) The integer pα is a half anti-totient number for each positive integer α > 1.
(b) The integer qβ is a half anti-totient number if and only if 1 ̸= β ≡ 1(mod 2).

Proof. (a) Let p = 1 + 4t be a prime number for some positive integer t. We assume an
integer

γ = pα − 1 − φ(pα) = pα−1 − 1
≡ (1)α−1 − 1(mod 4).

Clearly, γ is divisible by 4 for each positive integer α. Therefore, by Lemma 3.3, pα is half
anti-totient number.
(b) Let q = 3 + 4t be a prime integer for some positive integer t. We assume an integer γ

′

γ
′ = qβ − 1 − φ(qβ) = qβ−1 − 1

≡ (3)β−1 − 1(mod 4). (3.1)

Since,

3β(mod 4) =
{

3, if β is odd,
1, if β is even. (II)

Therefore, by using relation (II) in Congruence (3.1), γ
′ is divisible by 4 if and only if

1 ̸= β ≡ 1(mod 2). �



1102 S. Ali, M.K. Mahmood, K.P. Shum

Theorem 3.5. Let n =
m∏

i=1
pαi

i (m > 1) be an integer, where pi are all of them odd primes.

Then n is a half anti-totient number if and only if one of the following holds:
(a) If all primes are of the form pi ≡ 1(mod 4).
(b) If the number of primes of the form pi ≡ 3(mod 4) is even with each pi has exponent
either even or odd.
(c) If the number of primes of the form pi ≡ 3(mod 4) is odd and every exponent αi is
even.

Proof. Let n =
m∏

i=1
pαi

i (m > 1) be an integer, where pi are all of them odd primes. We
assume an integer γ as,

γ =
m∏

i=1
pαi

i − 1 − φ
( m∏

i=1
pαi

i

)
=

m∏
i=1

pαi
i − 1 −

m∏
i=1

pαi−1
i (pi − 1). (3.2)

(a) If all pi are of the form pi ≡ 1(mod 4), then γ is divisible by 4. Hence by Lemma 3.3,
n is a half anti-totient number.
(b) If there are even number of primes (say 2k) of the form pi ≡ 3(mod 4) with each αi

being even then by using relation (II) in Equation (3.2), then we have

γ ≡
m∏

i=2k+1
pαi

i − 1(mod 4),

since remaining primes are of the form pi ≡ 1(mod 4). Thus γ, must be divisible by 4.
Hence, by Lemma 3.3 n is a half anti-totient number.
If there are even number of primes of the form pi ≡ 3(mod 4) with odd exponent, then by
using relation (II) in Equation (3.2), we have

γ ≡ 32k ·
m∏

i=2k+1
pαi

i − 1(mod 4),

again by using relation (II) in above congruence, we have γ ≡ 0(mod 4). Hence by Lemma
3.3 n is a half anti-totient number.
(c) If there are odd number of primes of the form pi ≡ 3(mod 4) (say 2k+1) with each αi

being even. By using the relation (II) in Equation (3.2), we have

γ ≡
m∏

i=2k+2
pαi

i − 1(mod 4),

since remaining primes are of the form pi ≡ 1(mod 4). Thus, γ is divisible by 4.
Conversely, assume that n is a half anti-totient number. On contrary, assume that (a), (b)
and (c) do not hold. Since n is half anti-totient so γ in Equation (3.2) must be divisible
by 4. Since (a), (b) and (c) are not hold, so there are odd number of primes of the form
pi ≡ 3(mod 4) with each prime has an odd exponent. Using relation (II) in Equation (3.2),
we have

γ ≡ 32k+1 ·
m∏

i=2k+2
pαi

i − 1(mod 4),

remaining primes are pi ≡ 1(mod 4) with any exponent or pi ≡ 3(mod 4) with even
exponent. In both cases γ ≡ 2(mod 4), which leads to a contradiction against the fact
that n is a half anti-totient number. �
Proposition 3.6. An integer n = 2α · 3β is a half anti-totient number if and only if
(α, β) ∈ {(x, 0)|x ∈ O+ \ {1}} ∪ {(x, 1)|x ∈ O+}.
The proof is similar to the proof of Proposition 2.12.
In the following result we characterize the class of all even half anti-totient numbers which
are not divisible by 3.
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Theorem 3.7. Let n = 2α ·
m∏

i=1
pαi

i be an integer so that pi ̸= 3 are odd primes greater

than 3. Then n is a half anti-totient number if and only if one of the following statements
hold:
(a) If all primes are of the form pi ≡ 1(mod 6), with 0 ̸= α ≡ 0(mod 2).
(b) If there are even number of primes of the form pi ≡ 5(mod 6) with each pi has exponent
either even or odd and 0 ̸= α ≡ 0(mod 2).

Proof. Let n = 2α
m∏

i=1
pαi

i be an integer with pi ̸= 3 are odd primes. We assume that an
integer

γ = 2α ·
m∏

i=1
pαi

i + 2 − φ
(
2α ·

m∏
i=1

pαi
i

)
= 2α ·

m∏
i=1

pαi
i + 2 − 2α−1 ·

m∏
i=1

pαi−1
i (pi − 1). (3.3)

(a) If all primes are of the form pi ≡ 1(mod 6) then from Equation (3.3), we have

γ ≡ 2α + 2(mod 6),

by relation (I) an integer γ is divisible by 6 if and only if α ≡ 0(mod 2).
Since,

5β(mod 6) =
{

5, if β is odd,
1, if β is even. (III)

(b) If there are even number of primes (say 2k) of the form pi ≡ 5(mod 6) with each αi

being even then Equation (3.3), becomes by using relation (III)

γ ≡ 2α ·
m∏

i=2k+1
pαi

i + 2 − 24k+α−1 · 52k ·
m∏

i=2k+1
pαi−1

i (pi − 1)(mod 6). (3.4)

Since remaining all primes are of the form pi ≡ 1(mod 6). Hence, Congruence (3.4) leads
to

γ ≡ 2α + 2(mod 6),

by using relation (I), an integer γ is a multiple of 6 if and only if 0 ̸= α ≡ 0(mod 2).
If there are even number of primes of the form pi ≡ 5(mod 6) with each pi has odd
exponent then Equation (3.3), becomes

γ ≡ 2α · 52k ·
m∏

i=2k+1
pαi

i + 2 − 24k+α−1 ·
m∏

i=2k+1
pαi−1

i (pi − 1)(mod 6),

since remaining primes are of the form pi ≡ 1(mod 6). Thus, by using relation (III), γ is
divisible by 6 if and only if 0 ̸= α ≡ 0(mod 2).
Conversely, assume that n is a half anti totient number. On contrary assume that condi-
tions (a) and (b) do not hold. That is, there are odd number of primes pi (say 2k + 1)
of the form pi ≡ 5(mod 6) with each has exponent either even or odd. We assume that
there are two integers γ and γ

′ corresponding to each prime having exponent even or odd
respectively. These integers are

γ ≡ 2α ·
m∏

i=2k+2
pαi

i + 2 − 24k+α+1 · 52k+1 ·
m∏

i=2k+2
pαi−1

i (pi − 1)(mod 6)
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and

γ
′ ≡ 2α · 52k+1 ·

m∏
i=2k+2

pαi
i + 2 − 24k+α+1 ·

m∏
i=2k+2

pαi−1
i (pi − 1)(mod 6),

clearly for any choice of α the integers γ and γ
′ are not divisible by 6, which is a contra-

diction against the fact that n is a half anti-totient number. �
Corollary 3.8. An integer 2α is a half anti-totient number if and only if 1 ̸= α ≡
1(mod 2).

The proof is similar to the proof of Proposition 2.10.

Remark 3.9. An even integer n having a factor of 9 is neither an anti-totient nor a half
anti-totient number.

Proposition 3.10. A totient number n is a half anti-totient number if and only if

n ≡
{

1(mod 4), if n is odd,
0(mod 6) or 2(mod 6), if n is even.

The proof is similar to the proof of Proposition 2.15.

Theorem 3.11. An even Zumkeller number n = 2αpα1
1 pα2

2 · · · pαm
m which does not have a

factor of 9 is either an anti-totient or a half anti-totient number if any of the following
conditions are satisfied.
(a) If n is not divisible by 9.
(b) If all primes of the form pi ≡ 1(mod 6) and 0 ̸= α ≡ 0(mod 2).
(c) If there are even number of primes of the form pi ≡ 5(mod 6), with each pi has either
even or odd exponent, and 0 ̸= α ≡ 0(mod 2).

Proof. Let n = 2αpα1
1 pα2

2 · · · pαm
m be an even Zumkeller number which has no factor of 9.

By Proposition 1.3, n must has an odd prime with odd exponent. Since all odd primes
can be divided into two classes namely, p ≡ 1(mod 4) or p ≡ 3(mod 4), also in modulo
6 these primes except 3 leave remainder 1 or 5. That is, every odd prime except 3 in
modulo 6 can be classified in the form p ≡ 1(mod 5) or p ≡ 5(mod 6). If n has only odd
prime 3 then n = 2α · 3, so by Proposition 2.12 and Proposition 3.6, n is anti-totient and
half anti-totient respectively. If all pi are of the form pi ≡ 1(mod 6), then we assume an
integer γ = n + 2 − φ(n) ⇒ γ ≡ 2α + 2(mod 6). Thus, γ is divisible by 6 if and only if
0 ̸= α ≡ 0(mod 2). Finally, if last condition meet then n is a half anti-totient number by
Theorem 3.7. �
In Table 1, we give the comparison of anti-totient and half anti-totient numbers from first
100 positive integers.

Anti-Totient Numbers Half Anti-Totient Numbers
4, 9, 12, 14, 15, 16, 6, 8, 21, 24, 25, 27,

26, 34, 35, 39, 48, 49, 28, 30, 32, 33, 45, 52,
51, 52, 55, 62, 64, 74, 57, 65, 66, 69, 70, 76,
75, 81, 86, 87, 91, 95, 77, 89, 93, 95, 96.

98, 99, 100.
Table 1: Comparison of anti-totient and half anti-totient numbers from first 100 positive integers.

4. Near Zumkeller numbers and half near Zumkeller numbers
In this section, we introduce near Zumkeller numbers and half near Zumkeller numbers

to extend the idea of Zumkeller and half Zumkeller numbers which were proposed in [13].
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Definition 4.1. Let S = {ri|(ri, n) ̸= 1, 0 ≤ i ≤ n − 1} ∪ {n} be the set of non co-prime
residues of n including itself. A positive integer n is said to be a near Zumkeller number
if the set S can be divided into two disjoint subsets with equal sums. Also, if the set
T = {ri|(ri, n) ̸= 1, 0 ≤ i ≤ n−1} can be partitioned into two disjoint subsets with equal
sums then n is called a half near Zumkeller number.

Example 4.2. The set non co-prime residues of 8 with itself is S = {2, 4, 6, 8}. The
subsets A = {2, 8} and B = {4, 6} of S whose sums are equal. Therefore, 8 is a near
Zumkeller number. Similarly the set of non co-prime residues of 25 is T = {5, 10, 15, 20}.
The set T can be partitioned into two subsets as A = {5, 20} and B = {10, 15}. Note
that, the integer 8 is both near and half near Zumkeller. While the integer 25 is a half
near Zumkeller but not near Zumkeller.

Lemma 4.3. Let n be any odd integer. Then,

φ(n) ≡
{

n + 1(mod 4) if and only if n is a near Zumkeller number,
n − 1(mod 4) if and only if n is a half near Zumkeller number.

Proof. The set of non co-prime residues of n including itself is S = {ai|(ai, n) ̸= 1, 0 ≤
i ≤ n − 1} ∪ {n}, and R = {bi|(bi, n) = 1, 1 ≤ i ≤ φ(n)} is the set of co-prime residues of
n. The sum of non-coprime residues of n including itself by means of the sum of residues
(say ri) and co-prime residues (say r

′
i) of n we have,

n+1−φ(n)∑
i=1

ai =
n+1∑
i=1

ri −
φ(n)∑
i=1

r
′
i = n(n + 1)

2
− nφ(n)

2
,

(4.1)
Since, if (ai, n) ̸= 1 then (n − ai, n) ≠ 1, so

2 ·
(n+1−φ(n))/2∑

i=1
ai = n

2
(n + 1 − φ(n)),

by hypothesis 4|(n + 1 − φ(n)), we have

⇒
(n+1−φ(n))/2∑

i=1
ai = n

4
(n + 1 − φ(n)). (4.2)

Conversely, assume that n is near Zumkeller, but 4 - (n + 1 − φ(n)). Since n is a near
Zumkeller so (n + 1 − φ(n))/4 must be an integer. Thus converse is done by using the
contrapositive method of proof. Similarly, for the half near Zumkeller numbers. �
The following result is a simple consequence of Lemma 4.3.

Proposition 4.4. Let p, q, be primes. Then,
(a) The integer qα is a near Zumkeller number if and only if q ≡ 3(mod 4) with 0 ̸= α ≡
0(mod 2).
(b) Every integer pβ, with p ≡ 1(mod 4) is a half near Zumkeller number for each positive
integer β.
(c) The integer qα, α ̸= 0 with q ≡ 3(mod 4) is a half near Zumkeller number if and only
if 1 ̸= α ≡ 1(mod 2).
(d) Every odd anti-totient number is a near Zumkeller number.
(e) Every odd half anti-totient number is a half near Zumkeller number.

The following result characterizes the set of even near Zumkeller and half near Zumkeller
numbers.

Theorem 4.5. Let n > 4 be an even integer. Then n is both near Zumkeller and half
near Zumkeller number if and only if 4|n.
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Proof. The proof is obvious from the Equation (4.2). �
It is well-known that every even perfect number is of Euclid type. That is, it can be
expressed in the form 2k−1(2k − 1), k > 1. Therefore we have the following result.
Proposition 4.6. Every even perfect number greater than 6 is near Zumkeller and half
near Zumkeller number.
There are some even numbers which are anti-totient or half anti totient numbers but
not near Zumkeller or half near Zumkeller numbers respectively. Note that 8 is both
near Zumkeller and half near Zumkeller, but not anti-totient. Similarly, 16 is both near
Zumkeller and half near Zumkeller, but not half anti-totient number. Therefore, we have
the following results which are the simple consequences of Theorem 4.5.
Proposition 4.7. Let n = 4k, k > 1 with φ(n) = 2m, m > 1 be a near Zumkeller
number. Then n is an anti-totient number if and only if (k, m) ∈ {(1+2t, 1+ t)|t ∈ Z+}.
Proof. Let n = 4k, k > 1 and φ(n) = 2m, m > 1. Since, n is a multiple of 4, so n is a
near Zumkeller number. We assume an integer

γ ≡ 4k − 2 − 2m(mod 6),
an integer n = 4k is anti-totient if and only if 6|γ. Thus, k + m ≡ 2(mod 3). By the
solution linear diophantine equation, the positive solution set of k + m ≡ 2(mod 3) is
{(1 + 2t, 1 + t)|t ∈ Z+}. �
Proposition 4.8. Let n = 4k, k > 1 with φ(n) = 2m, m > 1 be a half near Zumkeller
number. Then n is a half anti-totient number if and only if (k, m) ∈ {(2t + 2, t + 2)|t ∈
Z+}.
The proof is similar to the proof of Proposition 4.7.

5. Application of anti-totient numbers in graph labeling
In previous sections, we have introduced the new classes of integers by using the notion

of non co-prime residues of a positive integer n. It would be more interesting and of great
worth if these numbers could be employed in some well known mathematics. In our pre-
vious work, the labeling of some well known classes of graphs by means of super totient
numbers have been introduced in [11,12].
In this section, we propose the labeling of graphs using the notion of anti-totient numbers.
The rest of the newly defined labeling over other classes can be validated in a similar
technique.

Definition 5.1. [8] A full K-ary tree (sometimes k-tree) is a tree in which every vertex
other than leaves has k children. A full K-ary tree is a tree where each internal vertex has
degree k + 1, each leaf has degree 1 and the root vertex has degree k. If k is an odd then
every full K-ary tree has even number of vertices and if k is even, then every full K-ary
tree has odd number of vertices. If a full K-ary tree has m leaves then it has

m∑
i=0

ki vertices

and
m∑

i=0
ki − 1 edges.

Definition 5.2. Let G = (V, E) be a graph. A mapping ξ : V → N admits an anti-totient
labeling if there exists an induced function ξ∗ : E → N defined by ξ∗(xy) = ξ(x)ξ(y) and
assigns an anti-totient number to each edge of G.
Definition 5.3. A graph G is said to be an anti-totient graph if G admits an anti-totient
labeling.
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Example 5.4. An anti-totient graph for vertex set {2, 4, 5, 6, 7, 8} is shown in Fig.1.

2

7

6

3

5

4

8

Fig.1: Anti-Totient Graph

Theorem 5.5. A full K-ary tree is an anti-totient graph.

Proof. Let V = {a00, aij |1 ≤ i ≤ m, 1 ≤ j ≤ km} and E = {a00a1j |1 ≤ j ≤ k} ∪
{arjar+1,j | 1 ≤ r ≤ m − 1, 1 ≤ i ≤ kr, ki − 1 ≤ j ≤ ki} be the edge set of full binary
tree T. The injective function ξ : V → N is defined as follows:

ξ(aij) =



1, if i, j = 0,
22i, if i = 1, 1 ≤ j ≤ k,
7i, if i = 2, 1 ≤ j ≤ k2,

2
2j+2k

( i−3
2∑

l=0
k2l

)
, if i ≥ 3 and, i ≡ 1(mod 2), 1 ≤ j ≤ ki,

7
j+k2

( i−4
2∑

l=0
k2l

)
, if i ≥ 4 and, i ≡ 0(mod 2), 1 ≤ j ≤ ki.

The induced mapping ξ∗ is defined by

ξ∗(a00a1i) = ξ(a00)ξ(a1j), 1 ≤ j ≤ k,

ξ∗(ariar+1j) = ξ(ari)ξ(ar+1j) where, 1 ≤ r ≤ m − 1, and 1 ≤ i ≤ kr, ki − 1 ≤ j ≤ ki.

By using the definition of ξ(aij), we have

ξ∗(a00a1i) = ξ(a00)ξ(a1i) = 22i, 1 ≤ i ≤ k, (5.1)
ξ∗(a1ia2j) = ξ(a1i)ξ(a2j) = 22i · 7j , 1 ≤ i ≤ k, 1 ≤ j ≤ k2, (5.2)
ξ∗(a2ia3j) = ξ(a2i)ξ(a3j)

= 7i · 2
2j+2k

( i−3
2∑

l=0
k2l

)
, 1 ≤ i ≤ k2, 1 ≤ j ≤ k3. (5.3)

If r ≡ 1(mod 2), 3 ≤ r ≤ m − 1 and 1 ≤ i ≤ kr, ki − 1 ≤ j ≤ ki. Then,
ξ∗(ariar+1j) = ξ(ari)ξ(ar+1j)

= 2
2i+2k

( r−3
2∑

l=0
k2l

)
· 7

i+k2
( r−4

2∑
l=0

k2l

)
. (5.4)

If r ≡ 0(mod 2), 4 ≤ r ≤ m − 1 and 1 ≤ i ≤ kr, ki − 1 ≤ j ≤ ki . Then,
ξ∗(amiam+1j) = ξ(ami)ξ(am+1j)

= 7
i+k2

( r−4
2∑

l=0
k2l

)
· 2

2i+2k

( r−3
2∑

l=0
k2l

)
. (5.5)

From Lemma 2.3, equations (5.1)-(5.5) admit an anti-totient number. �
Corollary 5.6. Every full binary tree admits an anti-totient labeling.
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Example 5.7. The 3-ary tree with 3 level anti-totient graph as shown in Fig.2.
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2
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2
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2
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2
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2
28

2
30

2
32

2
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36

2
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2
40

2
42

2
44

2
46

2
48

2
50

2
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2
52

2
54

2
56

2
58 2

60

Fig.2: Anti-Totient 3-ary Tree with 3 Level.
Algorithm For Anti-Totient Labeling of Full K-ary Tree
This algorithm computes the integers to the vertices of the full K-ary tree to label the
edges with anti-totient numbers.
1: A full K-ary tree T with m levels having

m∑
i=0

ki vertices and
m∑

i=0
ki − 1 edges. V =

{a00, aij |1 ≤ i ≤ m, 1 ≤ j ≤ km} vertex set of T and E = {a00a1j |1 ≤ j ≤ k} ∪
{arjar+1,j | 1 ≤ r ≤ m − 1, 1 ≤ i ≤ kr, ki − 1 ≤ j ≤ ki}
ξ(a00) = 1//ξ is a function defined on the vertex set of T.
2: for i := 1 to k do
ξ(a1i) = 22i, ξ∗(a00a1j) = ξ(a00)ξ(a1j)//ξ∗ is an induced function.
for j := 1 to k2 do

ξ(a2j) = 7j

for i := 1 to k do ,
for j := ki − 1 to ki do

ξ∗(a1ia2j) = ξ(a1i)ξ(a2j),
for r := 3 to m do ,
for i := 1 to kr do

if r ≡ 1(mod 2) then , ξ(ari) = 2
2i+2k

( r−3
2∑

l=0
k2l

)
.

else

ξ(ari) = 7
i+k2

( r−4
2∑

l=0
k2l

)
,

for r := 2 to m − 1 do ,
for i := 1 to kr do ,
for j := ki − 1 to ki do

ξ∗(ariar+1j) = ξ(ari)ξ(ar+1j),
return(T);
3: Anti-totient k-ary tree.
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6. Conclusion
In this paper, we investigated four new classes of integers depending on non-relatively

prime residue and their sums, named as anti-totient, half anti-totient, near Zumkeller,
and half near Zumkeller. We characterized these classes completely and investigated their
relationship with existing well-known classes of integers such as perfect, totient, triangu-
lar, pentagonal, and hexagonal numbers. The applications of defined classes have been
proposed and validated via graph labeling. An algorithm for anti-totient labeling over K-
ary tree has also been proposed to establish more algorithms for other classes. In future,
one can work on restricted anti-totient graphs by restricting the vertex set of a graph G
to {1, 2, 3, · · · , n}. The edge set could be defined as, there will be an edge between two
integers m and n if their product is an anti-totient number. Furthermore, one can also
define some well-known terms of graph theory on restricted anti-totient graphs such as
index, metric dimension, and spectral etc.

Acknowledgment. The authors want to express their gratitude to the anonymous
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suggestions, which helped improve the manuscript.
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