
Maltepe Journal of Mathematics

ISSN:2667-7660, URL:https://dergipark.org.tr/tr/pub/mjm

Volume III Issue 1 (2021), Pages 1-5. Doi:https://doi.org/10.47087/mjm.826165

COMPACTIFICATIONS OF A FIXED SET

RAMKUMAR SOLAI* AND C. GANESA MOORTHY**

*DEPARTMENT OF BASIC ENGINEERING, GOVERNMENT POLYTECHNIC COLLEGE,
GANDHARVAKOTTAI, PUDUKKOTTAI DISTRICT - 613 301, TAMIL NADU, INDIA ,

PHONE:+91-9952159815, ORCID:HTTPS://ORCID.ORG/0000-0001-5011-774X

**DEPARTMENT OF MATHEMATICS, ALAGAPPA UNIVERSITY, KARAIKUDI,
SIVAGANGAI DISTRICT - 630 003, TAMIL NADU, INDIA, PHONE: +91-9840653866,

ORCID:HTTPS://ORCID.ORG/0000-0003-3119-7531

Abstract. If a Tychonoff space is fixed, then we may consider all possible

Hausdorff compactifications of the space. If an infinite set is fixed, then we

may vary Tychonoff topologies on the set and the compactifications may also
be varied.Magills construction for compactifications of a fixed Tychonoff space

through partitions is applied to derive compactifications of various Tychonoff

spaces (X, τ), with a fixed set X and with a variation in Tychonoff topologies
τ . The structure of required partitions is also analyzed. When topologies are

varied, some possible extensions of mappings are obtained in this regard.

1. Introduction

Compactification of a space X is a compact space containing X as a dense sub-
space. If a Tychonoff space is fixed, then we may consider all possible Hausdorff
compactifications of the space. If an infinite set is fixed, then we may vary Ty-
chonoff topologies on the set and the compactifications may also be varied. Mag-
ill’s [10] construction of compactifications through partitions is improved in the
second section of this article, when topologies are also varied. The structure of
required partitions is also analyzed in the second section. In a compact extension
of a topological group, the inverse operation should be extendable homeomorphi-
cally from the base topological group (See:[1]). The third section of this article is
to study such extensions of mappings, when topologies are also varied. The au-
thors have also contributed a classical work for compactifications including order
relations (See: [11], [13], [14], [15]). Recent works are also available in literature
regarding compactifications and lattice structure of a collection of compactifica-
tions (See: [2], [3], [7]). The major application of Hausdorff compactifications is
obtaining completeness under all uniformities inducing same topologies, apart from
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other applications (See: [4], [6], [8] and [9]). All definitions which are not defined
here are followed from [12].

2. Set Fixation

Let us fix an infinite set X. We consider the collection of all (Hausdorff)
Tychonoff topologies on X. If τ1 and τ2 are two Tychonoff topologies on X, then
we write τ1 ≤ τ2 if τ1 ⊆ τ2. The supremum of any collection of Tychonoff topologies
does exist and it is also a Tychonoff space. Let (Y1, τ

′
1) and (Y2, τ

′
2) be two Hausdorff

compactifications of (X, τ1) and (X, τ2) respectively, whenX is fixed. Then we write
(Y1, τ

′
1) ≥ (Y2, τ

′
2) if there is a continuous function f from (Y1, τ

′
1) onto (Y2, τ

′
2) such

that f(x) = x, for all x ∈ X. In this case, {f−1(y) : y ∈ Y2} form a partition for
Y1 by compact subsets of Y1. Moreover, each x ∈ X is in at most one partitioning
set f−1(y). That is, f−1(y)∩X is either an empty set or a singleton set, for every
y ∈ Y2.

On the other hand, let us consider a partition π for Y1 by compact subsets
of a compactification (Y1, τ

′
1) of (X, τ1) such that the following is true: To each

A ∈ π, A∩X is either an empty set or a singleton set. Define Y2 = Y1/π, and let
f : Y1 → Y1/π = Y2 be the natural quotient mapping. Endow Y2 with the quotient
topology τ ′2 corresponding to the quotient mapping f . Then (Y2, τ

′
2) is a compact

space, which may not be Hausdorff. However we have the following Result 2.1 on
Hausdorffness. A variation of the Theorem 2.1 may be found in [12, Problem 4Q].
Note that if A ∈ π is such that A∩X is a singleton set {x}, say, then x is identified
with f(A) as an element of Y2. In this way, X is considered as a dense subset of
(Y2, τ

′
2).

Theorem 2.1. (Y2, τ
′
2) is a Hausdorff compactification of (X, τ2) (for some τ2),

if and only if for a given τ ′1-open subset U containing a given A ∈ π, there is a
τ ′1-open set V , which is a union of members of π, such that A ⊆ V ⊆ U .

Proof. Suppose (Y2, τ
′
2) is Hausdorff. Let A ∈ π and U be a τ ′1-open set containing

A. Then f(Y1\U) is a τ ′2-compact subset of Y2, because f is continuous. It is a
τ ′2-closed set, because (Y2, τ

′
2) is Hausdorff. Then f(A) ∈ Y2\(f(Y1\U)) or A ⊆

f−1(Y2\(f(Y1\U))) ⊆ U , where V = f−1(Y2\(f(Y1\U))) is a τ ′1-open set, which is
a union of members of π.

To prove the converse part, consider two distinct members A,B ∈ π. Since
(Y1, τ

′
1) is normal, there are disjoint τ ′1-open sets U1 and V1 such that A ⊆ U1 and

B ⊆ V1. Then there are τ ′1-open sets U2 and V2, which are unions of members
of π such that A ⊆ U2 ⊆ U1 and B ⊆ V2 ⊆ V1. Then f(U2) and f(V2) are two
disjoint τ ′2-open sets of Y2 such that f(A) ∈ f(U2) and f(B) ∈ f(V2). This proves
the Hausdorffness of (Y2, τ

′
2). �

Let us now give a sufficient condition for a partition to obtain a Hausdorff com-
pactification.

Theorem 2.2. If the subfamily of all non singleton members of π is a locally finite
family in (Y1, τ

′
1), then (Y2, τ

′
2) is a Hausdorff compactification of (X, τ2), for some

Hausdorff topology τ2 in X .

Proof. To prove the Hausdorffness of (Y2, τ
′
2), consider two distinct elements y1, y2

in Y2. Then there are A,B ∈ π such that A = f−1(y1) and B = f−1(y2), re-
spectively. For any x ∈ A, there is a τ ′1-open set Ux of x, which intersects only a
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finite number of non singleton members C1, C2 · · ·Cn of π such that Ux ∩B = φ

and Ci 6= A, for every i. Define a τ ′1-open set Vx = Ux\(
n
∪
i=1

Ci) containing x.

Then {Vx : x ∈ A} is an open cover of A and this cover has a finite subcover

{Vx1 , Vx2 , · · ·Vxm}, say. Let U =
m
∪
i=1

Vxi . Then U is a τ ′1-open set such that A ⊆ U ;

U ∩B = φ, and such that U is a union of members of π. Similarly, we can find a
τ ′1-open set V such that B ⊆ V, U ∩V = φ, and such that V is a union of members
of π. Then f(U) and f(V ) are disjoint τ ′2-open sets in Y2 such that f(A) ∈ f(U)
and f(B) ∈ f(V ). This proves the Hausdorffness of (Y2, τ

′
2). �

This Theorem 2.2 generalizes Lemma 2.1 in [10].
If we fix an infinite set X, vary Tychonoff topologies τ on X and vary (Hausdorff)

compactifications (Y, τ ′) of (X, τ), then we obtain a complete upper semi-lattice
L(X) under the relation “ ≥ ” defined above, that relates two compactifications.
The largest element of this semi-lattice is the Stone-Čech compactification of X
endowed with the discrete topology.

If a Tychonoff topology τ is fixed in X, then the collection L(X, τ) of all com-
pactifications of (X, τ) is a complete upper semi sublattice of L(X).

If ((X, τi))i∈I is a collection of Tychonoff topologies on an infinite set X, τ∗ is
the supremum of (τi)i∈I , and (Yi, τ

′
i) is a compactification of (X, τi), for every i ∈ I,

then the supremum of (Yi, τ
′
i)i∈I is of the form (Y, τ∗

′
), where (X, τ∗) is a topological

dense subspace of (Y, τ∗
′
). Here (Y, τ∗

′
) is the closure of the natural embedding of

X into the Cartesian product
∏
i∈I

Yi, with the product topology. So, the mapping

f from L(X) onto the complete upper semi-lattice of Tychonoff topologies on X,
defined by f((Y, τ)) = the subspace topology of τ on X, is an order preserving
mapping and a join preserving mapping. This discussion leads to a convex structure
of L(X, τ) and a congruence relation through f (See: [5, p.17 and p.20]).

3. Self Extendable Mappings

Theorem 3.1. Let (X, τ) be a locally compact Hausdorff space and (Y, τ ′) be its
one point compactification, where Y = X ∪{∞}, say. Let h : (X, τ)→ (X, τ) be an
onto homeomorphism. Then h has a unique homeomorphic extension h′ : (Y, τ ′)→
(Y, τ ′), and in this case h′(∞) =∞.

Proof. Define h′(∞) = ∞ and h′(x) = h(x), for all x ∈ X. Fix a compact subset
K of X. Then h(K) and h−1(K) are compact subsets of X, and h(X\K) and
h−1(X\K) are open subsets of X. So h′ and h′−1 are continuous at ∞. The
continuity of h′ and h′−1 at any point of X follows from the fact that X is open in
(Y, τ ′). This completes the proof. �

Theorem 3.2. Let ((X, τi))i∈I be a collection of Tychonoff spaces and ((Yi, τ
′
i))i∈I

be a collection such that

(i) Each (Yi, τ
′
i) is a compactification of (X, τi).

(ii) For any continuous mapping hi : (X, τi) → (X, τi), there is a continuous
extension h′i : (Yi, τ

′
i)→ (Yi, τ

′
i).

Let h : X → X be a mapping such that h : (X, τi) → (X, τi) is continuous, for

every i ∈ I. Then there is a continuous mapping h′ : (Y, τ∗
′
)→ (Y, τ∗

′
), that is an
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extension of h, where τ∗ is the supremum of (τi)i∈I and (Y, τ∗
′
) is the supremum

of ((Yi, τ
′
i))i∈I .

Proof. Let h′i : (Yi, τ
′
i) → (Yi, τ

′
i) be the continuous extension of h : (X, τi) →

(X, τi). Define H :
∏
i∈I

(Yi, τ
′
i) →

∏
i∈I

(Yi, τ
′
i) by H((yi)i∈I) = (h′i(yi))i∈I . Then H

is continuous. Then the required h′ : (Y, τ∗
′
) → (Y, τ∗

′
) is the restriction of H to

(Y, τ∗
′
), where (Y, τ∗

′
) is considered as a subspace of

∏
i∈I

(Yi, τ
′
i) as in Section 2. �

Remark. Suppose (ii) in Proposition 3.2 is replaced by

(ii)’ For any surjective homeomorphism hi : (X, τi)→ (X, τi), there is a unique
homeomorphic (or continuous) extension h′i : (Yi, τ

′
i)→ (Yi, τ

′
i).

Assume that h : X → X is a one to one and onto mapping such that hi : (X, τi)→
(X, τi) is an onto homeomorphism, for every i ∈ I. Then there is a homeomorphic

(or continuous) mapping h′ : (Y, τ∗
′
) → (Y, τ∗

′
), that is an extension of h, for

(Y, τ∗
′
) given in Proposition 3.2.

Proof. If each h′i is a homeomorphism, then H defined in the proof of the Proposi-
tion 3.2 is a homeomorphism. �

4. Conclusion

For a fixed infinite set, we may vary Tychonoff topologies on the set and the com-
pactifications may also be varied. Magill’s [10] construction of compactifications
through partitions is improved and the structure of required partitions is also ana-
lyzed . In a compact extension of a topological group, the inverse operation should
be extendable homeomorphically from the base topological group (See:[1]). Finally
mappings are extended homeomorphically from topological space to its compact
extension, when topologies are also varied.
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