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Abstract: In this study, we employ the heterogeneous autoregressive model framework on the 

(half) daily returns of the BIST 100 index between the years 2016 and 2019. This framework helps 

us understand the short, medium, and long-term patterns of the volatility dynamics for the return 

series. Notably, we analyze how leverage effect and jumps in the return series affect the realized 

volatility of the BIST 100 index. For the analysis, we employ sixteen models, and the results from 

these models show that there is a leverage effect, albeit small. The effect of jumps is significant 

and is present either in the short-term or long-term, depending on the type of model utilized for 

the analysis. We also detect a diurnal effect at the session level, implying that the realized volatility 

of the BIST 100 index is lower in the morning sessions. 

Keywords: Realized volatility, heterogenous autoregressive model, the BIST 100 index 

BIST 100 Endeksi Hisse Senedi Fiyat Volatilitesinin Heterojen Otoregresif 

Gerçekleşen Volatilite Modeliyle Yeniden İncelenmesi 

Öz: Bu çalışmada, BIST 100 Endeksi'nin 2016-2019 yılları arasındaki üç yıllık dönem için 

günlük getirilerinin volatilitesi, getirilerin volatilite dinamikleri üzerindeki kısa, orta ve uzun 

vadeli etkilerini anlamak için heterojen otoregregresive modelleme kullanılarak analiz 

edilmektedir. Özellikle, kaldıraç etkisinin ve getirideki sıçramaların BIST 100 Endeksi'nin 

volatilite dinamiklerini nasıl etkilediği araştırılmaktadır. Analiz için, on altı farklı modeli veri 

setine uygulunmaktadır ve bu modellerin sonuçları küçük de olsa bir kaldıraç etkisi olduğunu 

göstermektedir. Sonuçlara göre sıçrama etkisi, analiz için kullanılan model türüne bağlı olarak 

kısa veya uzun vadede istatistiki olarak anlamlı çıkmaktadır. Ayrıca, BIST 100 Endeksinin sabah 

seansında gerçekleşen oynaklığın daha düşük olduğunu işaret edilerek, seans seviyesinde 

mevsimsel bir etki olduğu da gösterilmektedir. 
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I. Introduction 

An essential aspect of financial time series is the serial autocorrelation of their 

squared returns, hence the predictability of their volatility (Engle, 1982; Bollerslev, 

1986). With the predictability comes the widespread application of the times series 

modeling in the critical fields of finance. Particular applications include the volatility 

modeling in the option pricing formula of Black and Scholes (1973), variance-covariance 

matrix modeling in the optimal portfolio selection specification of Merton (1970), and 

risk management (see, for example, Christoffersen and Diebold, 1998). In this paper, an 

application of volatility modeling is undertaken to the intra-day return series of the Borsa 

Istanbul 100 (BIST 100) index. The application involves the heterogeneous 

autoregressive model of realized volatility (HAR-RV) method of Corsi (2009). As 

described in the sequel, the method offers an alternative type of modeling to the seminal 

volatility modeling of Engle (1982) and Bollerslev (1986). 

Financial time series presents a series of well-known stylized facts such as volatility 

clustering (Engle, 1982; Bollerslev, 1986) and fat-tailed (asymmetric in cases) return 

distributions (Mandelbrot, 1963). As additional facts, we also observe asymmetric 

responses of volatility to shocks (Black, 1976) and long memory property (Baillie et al., 

1996). The former, also known as the “leverage effect,” is well captured in the offsprings 

of generalized autoregressive conditional heteroscedasticity (GARCH) models as shown 

in the exponential-GARCH (EGARCH) model of Nelson (1991) and threshold-GARCH 

(T-GARCH) model of Glosten et al. (1993). For the long memory property, Baillie et al. 

(1996) propose a fractionally integrated generalized autoregressive conditional 

heteroscedasticity (FIGARCH) model to account for the lack of long memory property 

in GARCH models.  

In time series models, autocorrelations may very well be statistically significant for 

large time lags. In effect, as mentioned in Karanasos et al. (2004) (see also the references 

therein), autocorrelations of squared returns of high-frequency data tend to decline very 

slowly. This type of autocorrelation behavior suggests the presence of long memory in 

the volatility. The primary outcome of long memory is that shocks to the volatility take 

a long time to die out. In other words, the market does not immediately react to 

information flow. Instead, it responds slowly over time. A second aspect is the leverage 

effect, as mentioned above. In his seminal work, Black (1976) showed that volatility 

tends to react more to a negative shock than a positive shock of the same size. One final 

aspect is the discontinuous (and discrete) paths of the high-frequency data as returns are 

found to display frequent jumps at the high-frequency level (see, for example; Andersen 

et al., 2007; Lee and Mykland, 2008; Bajgrowicz et al., 2015). 

With the availability of high-frequency data, the volatility modeling literature 

witnessed a significant step. Andersen and Bollerslev (1998) and Barndorff-Nielsen and 

Shephard (2002) propose a new approach called “realized” volatility that takes advantage 

of the information in high-frequency returns.  The squared of intraday returns sampled 

at very short intervals are accumulated to construct daily realized volatility. This 
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construction allows volatility to be treated as an “observed” instead of a latent variable. 

When the volatility is observable, we can employ much simpler econometric models than 

the models required when the volatility is latent. Under the theory of quadratic variation, 

the realized volatility is a consistent estimator and an error-free volatility measure for the 

actual volatility in many studies (see, for example, Andersen and Bollerslev, 1998; and 

Barndorff-Nielsen and Shephard, 2002). 

Later, using the realized volatility approach, Corsi (2009) proposes the heterogeneous 

autoregressive model of realized volatility (HAR-RV), which is a predictive regression. 

The model includes lagged daily, weekly, and monthly RV measures in explaining the 

future RV. The study suggests that simple HAR-RV can capture some ‘stylized facts’ in 

financial volatility such as long memory, fat tail distribution, and multiscaling. The 

results in Corsi (2009) also show that the HAR-RV model is better than the GARCH 

type models and the ARFIMA-RV model in forecasting performance. Afterward, to 

further improve forecasting performance, Corsi and Reno (2009, 2012) propose an 

extension by including the leverage effect. Moreover, the authors also consider the low-

frequency averages of such leverage effects (Corsi and Reno, 2009, 2012). 

In this study, the HAR-RV model of Corsi (2009) and Corsi and Reno (2009, 2012) 

is applied to analyze intraday returns of the BIST 100 index. As done in the studies 

mentioned above and as suggested by Lee and Mykland (2008) and Andersen et al. 

(2007), return series are separated into their jump and continuous components since they 

have different dynamics. Furthermore, high-frequency returns are considered at the 

trading session-level rather than the daily level because there are two trading sessions in 

Borsa Istanbul; one is the morning session, and the other is the afternoon session.  

As mentioned previously, the basic HAR model includes three partial components: 

short-term traders with daily or higher trading frequency, medium-term traders with 

weekly trading frequency, and long-term traders with monthly or lower trading 

frequency. We also add one more frequency into the frequency list, namely session-based 

or half-daily frequency. Thus, we consider four frequencies for the volatility measures 

in our model. We adopt an extension of the HAR-RV model, which also takes the 

leverage effects and jump dynamics into consideration when modeling the dynamics of 

realized volatility. 

We consider the intraday volatility analysis of the BIST 100 index because it is one 

of the major markets in the Middle East and North Africa (MENA) region (Lagoarde-

Segot and Lucey, 2007). Volatility is much higher in the emerging equity markets than 

it is in the developed markets (Bekaert and Harvey, 1997), and long-run economic 

growth is, in turn, impeded by the high volatility in emerging markets (Levine and 

Zervos, 1998). Thus, understanding the characteristics of volatility in emerging stock 

markets is vital for policymakers and investors. Analyzing the BIST 100 index volatility 

is also essential because a significant proportion of investors are non-domestic, and the 

index is significantly affected by international news and flows (Inci and Ozenbas, 2017).  
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The high-frequency analysis of the BIST 100 index in the finance literature is not 

exhaustive. To the best of our knowledge, Bildik (2001) is the first study that thoroughly 

analyzes the high-frequency return dynamics of the Istanbul Stock Exchange (ISE; 

earlier name for BIST). The study shows that the intra-day returns in ISE follow a W-

shaped pattern, while volatility follows an L-shaped pattern between 1996 and 1999. 

That is, volatility is higher in the morning session, and it is lower in the afternoon session. 

The same pattern for ISE’e intra-day returns is also confirmed by Temizel (2008) for the 

data that extend between 1998 and 2003. However, Temizel (2008) also shows that the 

volatility also follows a W-shape pattern rather than an L-shaped pattern shown in Bildik 

(2001).  

In any case, we may observe the intra-day variation in volatility. In effect, as Inci and 

Ozenbas (2017) show, by considering ISE’e high-frequency data set between 1998 and 

2014, there is a volatility smirk during the morning session is ISE and volatility smile in 

the afternoon session.  In essence, as Bildik (2001), there is a relation between the intra-

day patterns of volatility and volume. One can also see this relation from the results of 

Koksal (2012), showing that spreads in ISE follow an L-shape pattern, while the number 

of trades and volume follow a U-shape pattern for a short-term period in between May 

and July of the year 2008. 

While the findings of the studies mentioned above are generally in line with those of 

the finance literature, they usually do not take the asymmetric and long memory 

properties into account. The main contribution of this study is to consider both properties 

above while also checking the intra-day variation of the BIST 100 index volatility. 

Particularly, we conduct the analysis under the jump dynamic. The findings from the 

data that extends between 2016-04-01 and 2019-01-31 are as follows: (i) the jumps 

significantly affect the intra-day BIST 100 index volatility both in the short- and long-

term depending on the type model employed for the analysis; (ii) the BIST 100 index 

volatility is lower in the morning session and higher in the afternoon session; (iii) there 

is a certain level of asymmetry to shocks in the BIST 100 index volatility; (iv) the models 

that account for jumps and leverage effect along with diurnal patterns are better 

predictors of the BIST 100 index volatility. 

The rest of the paper is constructed as follows. The methodology and data are 

presented in Section 2. For the methodology, four HAR-RV type models are considered. 

The first model is the simplest model without leverage and jump effects. The second 

model is the one with the leverage effects with no jumps. In the third model, only the 

jump effect is considered. Finally, in the fourth model, all stylized facts of volatility 

modeling are considered. That is, the final model includes both the jump and leverage 

effects. Furthermore, considering the dummy variables to understand the trading session 

and the day of the week effect, the number of models considered for the study increases 

to sixteen. After presenting the data and the summary of statistics in Subsection 2.3, the 

results are presented in Section 3. In Section 4, a summary of the key findings is 

provided. 
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II. Methodology and Data 

This section introduces the methodology and the dataset utilized in the current study. 

We first describe the econometric tools, including the construction of different volatility 

measures and the estimation of the heterogeneous autoregressive realized volatility 

(HAR-RV) models; then, we present the dataset, which consists of the BIST 100 index 

price. 

The BIST 100 index is a market value-weighted index consisting of 100 national 

market firms. The index excludes investment trusts and is the most important index of 

the Borsa Istanbul. Therefore, its analysis offers an opportunity to understand the 

dynamics of the Turkish equity markets. Moreover, as Turkey is among the major 

emerging markets, our analysis also offers a benchmark for understanding the high-

frequency dynamics of the equity markets in emerging markets. We proceed with the 

description of the methodology employed for the analysis. 

A. Volatility Measures 

Following Corsi and Reno (2009), we denote the logarithm of the index price with 

𝑃𝑡 and consider for the log-price evolution a jump-diffusion model of the form: 

𝑑𝑃𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 + 𝑐𝑡𝑑𝑁𝑡 , (1) 

where 𝜇𝑡  is the predictable drift component, σ𝑡  is the instantaneous volatility of the 

continuous part, 𝑊𝑡 is the standard Brownian motion, 𝑁𝑡 is a counting process with time-

varying intensity 𝜆𝑡, and 𝑐𝑡 is i.i.d. process determining the jump magnitude. Corsi and 

Reno (2009) demonstrates that the quadratic variation of the price process within an 

interval (say, one day or one trading seance) can be represented as, 

𝜎̃𝑡 = ∫ 𝜎𝑠
2𝑑𝑠

𝑡+1

𝑡
+ ∑ 𝑐𝜏𝑗

2
𝑡≤𝜏𝑗≤𝑡+1 , (2) 

where, 𝜏𝑗 denotes the jump times within a time interval. Because we model the price 

evolution as a stochastic process by employing a jump-diffusion model, as shown above, 

we use the notion of the quadratic variation to model the “realized volatility” of the 

returns. To estimate this object, we provide additional notations that will be utilized in 

the sequel. 

Throughout the paper, we denote the trading session (time) index with t. We assume 

that there are two trading sessions in a day, namely the morning and afternoon sessions, 

as is the case with the Borsa Istanbul. We consider the price data in seconds. To this end, 

we assume that each trading session is separated into 𝑛 equal intervals, meaning a total 

of 𝑛 seconds. We consider such a split as we have a regular dataset, implying that there 

is one trade per second. In other words, there is always a trade and only one trade per 

each 𝑛=1, 2,… in a trading session. Then, we let {𝑃𝑡,𝑖}𝑖=1

𝑛
 for all 𝑡 = 1,2, … denote the 

high-frequency evolution of the price series in session 𝑡, where i = 1, …, n is for the 
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high-frequency price observations during a session. We define the index return measured 

in seconds as 𝑟𝑡,𝑖 = [𝑃𝑡,𝑖 − 𝑃𝑡,𝑖−1] × 100, since 𝑃𝑡,𝑖 denotes the logarithm of the index 

price. Our objective is to provide a measure of the “realized volatility” within a trading 

session.  This measure is an estimator for the quadratic variation per trading session and 

is formulated as  

𝑅𝑉𝑡 = ∑ 𝑟𝑡,𝑖
2𝑛

𝑖=1 .  (3) 

As shown by Andersen et al. (2003), the above is a consistent estimator of 𝜎̃𝑡 as 

𝑛 → ∞ . Since we consider high-frequency data, we have considerable value for 𝑛 

implying consistency in our estimation of volatility. 

Corsi (2009) shows that the two volatility measures mentioned above are linked 

with a simple relation. To construct the relation, we let 𝑔(⋅) be a monotonic function, 

such as 𝑔(𝑥) = 𝑥 and 𝑔(𝑥) = 𝑙𝑜𝑔(𝑥). We can write 𝑔(𝑅𝑉𝑡) = 𝑔(σ̃𝑡
2) + ϵ𝑡, where 𝜖𝑡 is 

a random and independent measurement error term. Using this relation, Corsi (2009) and 

Corsi and Reno (2009) construct the estimable volatility models; we refer to these 

seminal articles for understanding the construction of models that we use for the analysis 

of the high-frequency BIST 100 index returns.   

Before introducing the realized volatility models, we first define the low-

frequency aggregates of the volatility measure as, 

𝑔(𝑅𝑉𝑡)(𝑘) ≔
1

𝑘
(𝑔(𝑅𝑉𝑡) + 𝑔(𝑅𝑉𝑡−1) + ⋯ + 𝑔(𝑅𝑉𝑡−𝑘+1)). (4) 

Most often, we use letters instead of a number for 𝑘 in our notation. For instance, 

when 𝑘 = 2 , we write the daily aggregated volatility measure as 𝑔(𝑅𝑉𝑡)(𝑑) =
(1/2)(𝑔(𝑅𝑉𝑡) + 𝑔(𝑅𝑉𝑡−1)) , where 𝑑  stands for “daily.” In other words, when 𝑘 =

2, we compute the sample average of the last two trading sessions. Similarly, we denote 

the weekly (𝑘 = 10) and monthly (𝑘 = 44) volatility with letters w and m, respectively. 

In sum, as evident from the above formulation, we consider a moving average of session-

based realized volatility values in accordance with the period considered for the analysis. 

B.Heterogeneous Autoregressive Realized Volatility Models 

After introducing the critical volatility measures, we present the novel approach of 

Corsi (2009) to uncover the long-memory properties of these measures. This model is 

called the Heterogeneous Autoregressive Realized Volatility (HAR-RV) model. In this 

modeling framework, Corsi (2009) examines the relationship between the high-

frequency (daily) realized volatility and the set of regressors that includes the past high 

frequency and aggregate low frequency (weekly and monthly) volatility measures.  

In this study, we follow Corsi’s (2009) construction with a minor modification. We 

add one more frequency into the frequency list, namely the session-based (or half-daily) 
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frequency. In this respect, we consider our modification under four models, which we 

now explain. The first one is constructed on a baseline scenario that directly follows 

Corsi (2009). We then improve the baseline scenario by considering the leverage effect 

explaining the abnormal, asymmetric movements of the volatility series. Besides, we 

employ two extra models that we employ to understand the effect of jumps first without 

the leverage effect.  

C.The Basic HAR-RV Model 

The basic HAR-RV model that we utilize in this study consists of the following 

regression model: 

𝑔(𝑅𝑉𝑡+1) = 𝛽0 + 𝛽1𝑔(𝑅𝑉𝑡) + 𝛽2𝑔(𝑅𝑉𝑡)(𝑑) + 𝛽3𝑔(𝑅𝑉𝑡)(𝑤) + 𝛽4𝑔(𝑅𝑉𝑡)(𝑚) + 𝜖𝑡 . 
 

(5) 

Thanks to its linear form, we can estimate the unknown population parameters in 

Equation (5) using the ordinary least squares (OLS) method. One can further employ the 

Newey and West (1987) covariance for the standard errors of the parameter estimates to 

remove any further problematic issues in the estimation. In the above, our modification 

consists of the treatment of the realized volatility per session, as captured by 𝑔(𝑅𝑉𝑡), as 

well as the daily, weekly, and monthly realized volatilities. As we also see, the first model 

does not capture the stylized facts of returns series, including the asymmetric movements 

of returns with respect to shocks and jumps in their high-frequency evolution. To account 

for these, we proceed to the second model, where we describe the HAR-RV Model with 

the leverage effect.  

D.The HAR-RV Model with Leverage Effects (LHAR-RV) 

The basic model introduced in the previous section lacks some crucial features of the 

volatility dynamics. To improve upon the basic model, Corsi and Reno (2009, 2012) 

propose an extension by including the so-called “leverage effect,” which indicates that 

volatility tends to react more to a negative shock than to a positive shock of the same 

size (see Black, 1976). Moreover, the authors also consider the low-frequency averages 

of such leverage effects (Corsi and Reno, 2009, 2012). 

Let 1{. } be an indicator function. We then define 𝑟𝑡
+ = 𝑟𝑡 × 1{𝑟𝑡 > 0}, 𝑟𝑡

− = 𝑟𝑡 ×
1{𝑟𝑡 ≤ 0} as the positive and negative parts of the return series at time t, respectively. 

Similarly, we can create the low-frequency aggregates of these objects as, 

𝑟𝑡
+(𝑘)

=
1

𝑘
(𝑟𝑡 + 𝑟𝑡−1 + ⋯ + 𝑟𝑡−𝑘+1) × 1{𝑟𝑡 + 𝑟𝑡−1 + ⋯ + 𝑟𝑡−𝑘+1 > 0}; 

𝑟𝑡
−(𝑘)

=
1

𝑘
(𝑟𝑡 + 𝑟𝑡−1 + ⋯ + 𝑟𝑡−𝑘+1) × 1{𝑟𝑡 + 𝑟𝑡−1 + ⋯ + 𝑟𝑡−𝑘+1 ≤ 0}, 

 

(6) 

respectively for the positive and negative returns. We utilize the above two objects to 

control the long-memory effects of the positive or negative part of the return series. 

Accordingly, we can analyze how daily, weekly, or monthly positive or negative parts 
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of the returns influence the volatility dynamics. Embedding these objects into the basic 

HAR-RV model, we obtain the following regression equation, 

 

𝑔(𝑅𝑉𝑡+1) = 𝛽0 + 𝛽1𝑔(𝑅𝑉𝑡) + 𝛽2𝑔(𝑅𝑉𝑡)(𝑑) + 𝛽3𝑔(𝑅𝑉𝑡)(𝑤) + 𝛽4𝑔(𝑅𝑉𝑡)(𝑚) 

+𝛽5𝑟𝑡
+ + 𝛽6𝑟𝑡

− + 𝛽7𝑟𝑡
+(𝑑)

+ 𝛽8𝑟𝑡
−(𝑑)

+ 𝛽9𝑟𝑡
+(𝑤)

+ 𝛽10𝑟𝑡
−(𝑤)

 

+𝛽11𝑟𝑡
+(𝑚)

+ 𝛽12𝑟𝑡
−(𝑚)

+ 𝜖𝑡 . 

(7) 

  

We can also estimate this regression equation using the OLS procedure with the Newey-

West (1987) serial correlation and Heteroscedasticity robust covariance estimates.  

E.HAR-RV model with Jumps (HAR-CJ) 

In Equations (5) and (7), we ignore the presence of the jump component in the data 

generation mechanism. However, in the recent literature, jump dynamics have a growing 

importance in the analysis of volatility and return series. To accommodate the jump 

patterns in the current framework, we apply the tools developed by Corsi and Reno 

(2009, 2012). In their setup, Corsi and Reno (2009, 2012) separate the jump and 

continuous part of the volatility. We will not give the full description of this procedure 

but provide a sketch of the underlying mechanism1.  

To this end, we first employ a jump detection mechanism on the intraday price series. 

In this regard, we can use the jump tests devised by Lee and Mykland (2008), Jiang and 

Oomen (2008), Corsi et al. (2010), and Barndorff-Nielsen and Shephard (2006). If we 

detect a jump at t, then we estimate the quadratic jump variation 𝐽𝑡 = ∑ 𝑐τ𝑗
2

𝑡≤τ𝑗≤𝑡+1  by 

employing the methods suggested by Corsi and Reno (2009, 2012). We denote the 

estimate of the quadratic jump variation as 𝐽𝑡 . Subtracting this component from the 

realized volatility, we obtain an estimate for the continuous part of the quadratic 

variation. That is, the continuous part of 𝐶𝑡 = ∫ σ𝑠
2𝑑𝑠

𝑡+1

𝑡
 is estimated by 𝐶𝑡̂ = 𝑅𝑉𝑡 − 𝐽𝑡̂. 

Now, using these two objects, we build a new regression equation as, 

𝑔(𝑅𝑉𝑡+1) = 𝛽0 + 𝛽1𝑔(𝐶𝑡) + 𝛽2𝑔(𝐶𝑡)(𝑑) + 𝛽3𝑔(𝐶𝑡)(𝑤) + 𝛽4𝑔(𝐶𝑡)(𝑚) 

+𝛽1𝑔̃(𝐽𝑡) + 𝛽2𝑔̃(𝐽𝑡)(𝑑) + 𝛽3𝑔̃(𝐽𝑡)(𝑤) + 𝛽4𝑔̃(𝐽𝑡)(𝑚) + ϵ𝑡 , 
(8) 

where in some cases, we need to modify the function 𝑔(⋅) slightly for the jump part, thus 

we denote the transformation as 𝑔̃(⋅). This model investigates the jump and continuous 

parts separately. In this regard, this separation may give more insights into the volatility 

dynamics.  

 

                                                             
1 The details of the procedure can be found in Corsi and Reno (2009, 2012).  
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F.HAR-RV Model with Jumps and Leverage Effect (LHAR-CJ) 

Our final model is a combination of the previous two models. In this model, we 

consider both the leverage effects and jump dynamics. The following equation is the 

broadest model for the volatility dynamics: 

𝑔(𝑅𝑉𝑡+1) = 𝛽0 + 𝛽1𝑔(𝐶𝑡) + 𝛽2𝑔(𝐶𝑡)(𝑑) + 𝛽3𝑔(𝐶𝑡)(𝑤) + 𝛽4𝑔(𝐶𝑡)(𝑚) 

+𝛽5𝑔̃(𝐽𝑡) + 𝛽6𝑔̃(𝐽𝑡)(𝑑) + 𝛽7𝑔̃(𝐽𝑡)(𝑤) + 𝛽8𝑔̃(𝐽𝑡)(𝑚) 

+𝛽9𝑟𝑡
+ + 𝛽10𝑟𝑡

− + 𝛽11𝑟𝑡
+(𝑑)

+ 𝛽12𝑟𝑡
−(𝑑)

+ 𝛽13𝑟𝑡
+(𝑤)

+ 𝛽14𝑟𝑡
−(𝑤)

 

+𝛽15𝑟𝑡
+(𝑚)

+ 𝛽16𝑟𝑡
−(𝑚)

+ 𝜖𝑡 . 

(9) 

Finally, we also include some deterministic regressors, such as session and day 

dummies. These inclusions are essential for understanding the heterogeneity in volatility 

dynamics based on trading sessions or the day of the week.  For the sake of not 

complicating the notation, we omit the demonstration of the model that contains the 

inclusion of dummy variables. We note, however, that the addition of dummy variables 

is relatively straightforward.  

G. Data 

Our dataset consists of the high-frequency BIST 100 index price data between 2016-

04-01 and 2019-01-31. We retrieve the data from the BIST Datastore. As we discussed 

earlier, there are two trading sessions in the BIST. The first session is between 10:00-

13:00, and the second one is between 14:00-17:002. The separation of daily trading into 

two sessions also allows us to analyze the heterogeneity due to the session differences. 

In our sample, we only consider the business days, excluding national holidays and 

weekends. Accordingly, we have observations based on 𝑇 = 1420 trading sessions. We 

calculate the realized volatility 𝑅𝑉𝑡 by using 10800 secondly data within each trading 

session. So, in total, we have 1420 x 10800, implying close to 15.4 million observations. 

We provide the summary statistics of the data utilized for our analysis here below. Note 

that the data is provided based on the returns from the minutely data rather than the 

secondly data as we estimate the statistics related to jumps (i.e., number of jumps) from 

returns within a minute interval.  

Table 1. Return Statistics for Minutely BIST100 Returns (dlog(Price)*100) 

 Overall 2016 2017 2018 2019 

Mean -0.00012 -0.00013 0.00000 -0.00027 0.00043 

Std. Dev. 0.01941 0.01706 0.01537 0.02409 0.01999 

Median 0.00031 0.00020 0.00033 0.00033 0.00109 

                                                             
2 Even though the price data is available between 13:00-14:00, the index price exhibits almost 

stable pattern during this period. 
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Kurtosis 32.03097 16.32362 17.11742 32.17472 5.68634 

Skewness -0.81413 -0.12264 -0.44415 -1.03542 -0.31216 

Min -0.61333 -0.24140 -0.34890 -0.61333 -0.12153 

Max 0.40839 0.36062 0.36814 0.40839 0.11615 

Sample Size 256376 67093 91132 90209 7942 

JB-Stat 9031359.48 496429.19 759777.64 3215396.29 2517.02 

p-value(JB) 0.001 0.001 0.001 0.001 0.001 

Note: Std. Dev. is the standard deviation of the returns. JB-Stat is the Jarque-Bera normality test statistics. 

Below this statistic is the p-value(JB) denoting the p-value of the Jarque-Bera test statistic. 

From the above table, we see that the mean and median values of the minutely return 

series are quite close to zero (hence similar values for both statistics), suggesting that the 

distribution of the returns is somewhat symmetric. This situation can also be seen from 

the small negative skewness values. Nevertheless, from the large kurtosis values, we 

observe that the returns series possess fat-tails, implying the existence of the large 

outliers in the high-frequency data. In effect, we detect very high minutely return levels 

from the maximum and minimum values in the data. For example, from the overall 

values, we see that, on a minute basis, the prices may drop around 0.61% at worst, while 

they may increase around 0.40% at best. When annualized, we may see how large the 

effect of these values is. In essence, the Jarque-Bera statistics confirm the highly non-

normal distribution of the returns as well. In sum, from the summary statistics, we 

observe that the minutely distribution o BIST is highly non-normal with fat tails (see 

Mandelbrot, 1963).  

Given our short initial analysis above, understanding the variability of returns 

through the analysis of leverage and jump effects is quite natural, as evident from the 

distribution of data (i.e., high kurtosis and negative skewness). Moreover, we seek to 

understand whether there is a seasonal effect between the trading session and the days of 

the week. To account for the former, in some of our models, we use the session dummy 

{𝐷𝑡}𝑡=1
𝑇 , which takes value one during the morning trading session, and zero otherwise. 

To account for the latter, we utilize the weekday dummies. We simply have five dummy 

variables to check whether there is a difference between the days of the week. These 

dummy variables are denoted as {𝐷𝑗,𝑡}
𝑡=1

𝑇
 for 𝑗 ∈ {𝑚𝑜𝑛, 𝑡𝑢𝑒, 𝑤𝑒𝑑, 𝑡ℎ𝑢, 𝑓𝑟𝑖} . In our 

estimation exercises, we omit the Monday dummy to avoid the dummy variable trap 

(multicollinearity). 

III.Results 

In this section, we present the estimation results for the sixteen volatility models 

derived from Equations (5)-(9). These models consist of two types of specifications for 

𝑔(⋅), namely linear (identity) and logarithmic specifications. That is, we set 𝑔(𝑥) = 𝑥 or 

𝑔(𝑥) = 𝑙𝑜𝑔(𝑥) respectively based on the aforementioned specifications. Furthermore, 



Reexamination of the BIST 100 Stock Price Volatility with  
Heterogeneous Autoregressive Realized Volatility Models  

467 

 
as discussed in Section 2.2.3, for the jump component, when we use 𝑔(𝑥) = 𝑙𝑜𝑔(𝑥), we 

set 𝑔̃(𝑥) = 𝑙𝑜𝑔(𝑥 + 1) (see Corsi and Reno, 2009). As a result, we have eight models to 

estimate; four models with 𝑔(𝑥) = 𝑥 and another four models with 𝑔(𝑥) = 𝑙𝑜𝑔(𝑥). In 

addition to these models, we also consider models with and without dummy 

interventions. Therefore, with dummy specifications and our original eight models, we 

have another extra eight models leading to sixteen models. 

We first exhibit the full sample estimates for these models and discuss our findings. 

Next, we employ an out-of-sample forecast exercise to understand which model has the 

best forecasting performance. 

A. Full Sample Estimation Results 

We present the full sample OLS estimation results in Tables 2-5.  In these tables, we 

report the OLS coefficient estimates, their t-statistics, p-values of the t-statistics, R-

squared (𝑅2), adjusted R-squared (𝑅̅2) and the F-statistic for the overall significance of 

the model.  

Table 2 exhibits the estimation results for the models without jump dynamics and 

dummy variables. That is, the table includes the results from the variations of the models 

in Equations (5) and (7). These variations are done, as we discussed right above. In the 

HAR-RV and LHAR-RV models, the dependent variable is 𝑅𝑉𝑡+1, and in the logHAR-

RV and logLHAR-RV models, the dependent variable is 𝑙𝑜𝑔(𝑅𝑉𝑡+1). In all the cases, 

𝑅2  and 𝑅̅2  vary around 0.45 and 0.5. This result indicates that these models explain 

almost half of the variation in the realized volatility (log-realized volatility for log 

models). Moreover, all the models are overall significant, according to the F-test. Thus, 

the models explain the realized volatility (RV) measures. Besides, the intercept terms are 

all significant as there must be some level of base volatility. In effect, we note at the 

outset that the intercept terms are significant in all sixteen models we employ for the 

analysis.  

Continuing our analysis with the results in Table 2, we observe that the level models 

(i.e., the HAR-RV and LHAR-RV) possess long-memory properties since the 

coefficients of daily, weekly, and monthly volatility are significant at the 5% significance 

level except for the daily RV in the HAR-RV model (it is significant at 10%).  In both 

log models, the monthly volatility is not significant; thus, log RV exhibits shorter 

memory than the level counterpart. The other crucial finding is that the leverage effect is 

weak for the BIST 100 return volatility, because most of the leverage variables, as can 

be observed from the results of the LHAR-RV and logLHAR-RV models, are 

insignificant except in few cases. These include weekly positive leverage in the LHAR-

RV model at the 5% significance level and negative weekly leverage at the 10% 

significance level. The coefficient values suggest that average weekly positive shocks on 

average, in the LHAR-RV model, tend to increase the future volatility, while the average 

weekly adverse shocks, in the logLHAR-RV model, tends to decrease the future 

volatility. However, the latter relation is relatively weak. Thus, we may see that the 
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leverage effect is at best moderate and happens in the medium term (i.e., on a weekly 

basis). 

Table 2. The OLS Estimation Results for the Models without Jump Dynamics and 

Dummy Variable Interventions 
  HAR-RV logHAR-RV LHAR-RV logLHAR-RV 

  Coef. t-stat p-val Coef. t-stat p-val Coef. t-stat p-val Coef. t-stat p-val 

Intercept 0.05 2.62 0.01 -0.16 -6.10 0.00 0.05 2.18 0.03 -0.25 -6.28 0.00 

𝒍𝒐𝒈(𝑹𝑽𝒕) −−−− −−−− −−−− 0.15 3.20 0.00 −−−− −−−− −−−− 0.13 2.78 0.01 

𝒍𝒐𝒈(𝑹𝑽𝒕)(𝒅) −−−− −−−− −−−− 0.37 5.65 0.00 −−−− −−−− −−−− 0.37 5.52 0.00 

𝒍𝒐𝒈(𝑹𝑽𝒕)(𝒘) −−−− −−−− −−−− 0.28 5.72 0.00 −−−− −−−− −−−− 0.25 4.74 0.00 

𝒍𝒐𝒈(𝑹𝑽𝒕)(𝒎) −−−− −−−− −−−− 0.05 0.93 0.35 −−−− −−−− −−−− 0.06 1.06 0.29 

𝒓𝒕
+ −−−− −−−− −−−− −−−− −−−− −−−− 0.00 -0.17 0.86 0.00 0.11 0.91 

𝒓𝒕
+(𝒅)

 −−−− −−−− −−−− −−−− −−−− −−−− -0.02 -0.47 0.64 -0.01 -0.21 0.84 

𝒓𝒕
+(𝒘)

 −−−− −−−− −−−− −−−− −−−− −−−− 0.15 2.19 0.03 0.18 1.55 0.12 

𝒓𝒕
+(𝒎)

 −−−− −−−− −−−− −−−− −−−− −−−− -0.16 -1.19 0.23 -0.14 -0.54 0.59 

𝒓𝒕
− −−−− −−−− −−−− −−−− −−−− −−−− -0.03 -0.64 0.52 -0.03 -0.83 0.41 

𝒓𝒕
−(𝒅)

 −−−− −−−− −−−− −−−− −−−− −−−− -0.02 -0.58 0.57 -0.03 -0.72 0.47 

𝒓𝒕
−(𝒘)

 −−−− −−−− −−−− −−−− −−−− −−−− -0.09 -1.53 0.13 -0.11 -1.67 0.09 

𝒓𝒕
−(𝒎)

 −−−− −−−− −−−− −−−− −−−− −−−− 0.01 0.05 0.96 -0.23 -1.43 0.15 

𝑹𝑽𝒕 0.33 2.92 0.00 −−−− −−−− −−−− 0.29 3.21 0.00 −−−− −−−− −−−− 

𝑹𝑽𝒕
(𝒅)

 0.16 1.71 0.09 −−−− −−−− −−−− 0.17 1.94 0.05 −−−− −−−− −−−− 

𝑹𝑽𝒕
(𝒘)

 0.24 3.25 0.00 −−−− −−−− −−−− 0.18 2.50 0.01 −−−− −−−− −−−− 

𝑹𝑽𝒕
(𝒎)

 0.17 3.37 0.00 −−−− −−−− −−−− 0.21 4.09 0.00 −−−− −−−− −−−− 

  𝑹𝟐 𝑹̅𝟐 F 𝑹𝟐 𝑹̅𝟐 F 𝑹𝟐 𝑹̅𝟐 F 𝑹𝟐 𝑹̅𝟐 F 

  0.4448 0.44 283.4 0.496 0.494 348.3 0.453 0.448 96.9 0.501 0.496 117.7 

Note: Coeff. stands for the coefficient estimates, t-stat is the t-statistics with Newey-West standard errors, p-

val is the p-value of the t-statistic, 𝑹𝟐 is the R-squared (coefficient of determination) of the model, 𝑹̅𝟐 is the 

adjusted R-squared of the model, and F is the F-statistic fort he overall significance of the model. Bold font 

indicates significance at the 5% significance level,  and italic font indicates significance at 10%. 

In Table 3, we observe the results for the model with jump dynamics (see Equations 

(8) and (9)). Here as well, we omit the dummy variables. One consequential issue arises 

in the level models. While the continuous part of the volatility does not significantly 

affect the RV in any frequency, the jump component only influences the RV in the 

highest frequency. That is, the RV is affected by the nearest jump value. This result is 

not present in the log models. While the jump components significantly affect the RV at 

session and month levels, and this effect is weakened at day and week levels, the 

continuous part is significant at every frequency level. We observe that the leverage 

effect is somewhat significant again both in the level and log models. We see that the 

weakly average of positive returns is significant at a 5% level, and its coefficient is 

positive. Therefore, an increase in returns in the medium term (i.e., medium-term shock) 

positively affects the RV. The same is also valid under the log model; however, the 

significance level is weaker than 10%.  We again observe that the weakly average 

negative returns are significant at a 10% significance value in the level and log models. 

Moreover, the monthly average of negative returns is significant at a 10% level as well. 

The coefficients of all these values are negative. Because the coefficients are weakly 

significant, the economic effect of these variables on the realized volatility is minor. In 

other words, medium and long-term shocks have a weak effect on the dynamics of the 
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realized volatility under the log model. Finally, the 𝑅2 value of all models is similar to 

what we observed in the analysis of the previous model. 

Table 3. The OLS Estimation Results for the Models with Jump Dynamics and without 

Dummy Interventions 
  HAR-CJ logHAR-CJ LHAR-CJ logLHAR-CJ 

  Coef. t-stat p-val Coef. t-stat p-val Coef. t-stat p-val Coef. t-stat p-val 

Intercept 0.07 4.19 0.00 -0.74 -3.65 0.00 0.06 3.42 0.00 -1.01 -4.79 0.00 

𝒍𝒐𝒈(𝑪𝒕) −−−− −−−− −−−− -0.12 -2.30 0.02 −−−− −−−− −−−− -0.13 -2.54 0.01 

𝒍𝒐𝒈(𝑪𝒕)(𝒅) −−−− −−−− −−−− 0.17 2.83 0.00 −−−− −−−− −−−− 0.17 2.77 0.01 

𝒍𝒐𝒈(𝑪𝒕)(𝒘) −−−− −−−− −−−− 0.25 3.17 0.00 −−−− −−−− −−−− 0.25 3.29 0.00 

𝒍𝒐𝒈(𝑪𝒕)(𝒎) −−−− −−−− −−−− -0.18 -2.35 0.02 −−−− −−−− −−−− -0.22 -2.98 0.00 

𝒍𝒐𝒈(𝟏 + 𝑱𝒕) −−−− −−−− −−−− 0.32 5.05 0.00 −−−− −−−− −−−− 0.31 5.05 0.00 

𝒍𝒐𝒈(𝟏 + 𝑱𝒕)(𝒅) −−−− −−−− −−−− 0.41 1.69 0.09 −−−− −−−− −−−− 0.40 1.68 0.09 

𝒍𝒐𝒈(𝟏 + 𝑱𝒕)(𝒘) −−−− −−−− −−−− -0.03 -0.09 0.92 −−−− −−−− −−−− -0.19 -0.71 0.48 

𝒍𝒐𝒈(𝟏 + 𝑱𝒕)(𝒎) −−−− −−−− −−−− 1.24 3.70 0.00 −−−− −−−− −−−− 1.52 4.53 0.00 

𝒓𝒕
+ −−−− −−−− −−−− −−−− −−−− −−−− -0.01 -0.27 0.79 0.01 0.42 0.67 

𝒓𝒕
+(𝒅)

 −−−− −−−− −−−− −−−− −−−− −−−− -0.02 -0.59 0.56 0.00 0.00 1.00 

𝒓𝒕
+(𝒘)

 −−−− −−−− −−−− −−−− −−−− −−−− 0.14 2.12 0.03 0.21 1.83 0.07 

𝒓𝒕
+(𝒎)

 −−−− −−−− −−−− −−−− −−−− −−−− -0.15 -1.18 0.24 -0.22 -0.78 0.44 

𝒓𝒕
− −−−− −−−− −−−− −−−− −−−− −−−− -0.03 -0.80 0.42 -0.04 -0.92 0.36 

𝒓𝒕
−(𝒅)

 −−−− −−−− −−−− −−−− −−−− −−−− -0.02 -0.38 0.70 -0.03 -0.61 0.54 

𝒓𝒕
−(𝒘)

 −−−− −−−− −−−− −−−− −−−− −−−− -0.09 -1.67 0.09 -0.12 -1.67 0.10 

𝒓𝒕
−(𝒎)

 −−−− −−−− −−−− −−−− −−−− −−−− 0.04 0.27 0.78 -0.34 -1.89 0.06 

𝑪𝒕 0.28 0.35 0.73 −−−− −−−− −−−− 0.13 0.18 0.85 −−−− −−−− −−−− 

𝑪𝒕
(𝒅)

 0.57 0.88 0.38 −−−− −−−− −−−− 0.58 0.87 0.38 −−−− −−−− −−−− 

𝑪𝒕
(𝒘)

 0.39 0.35 0.73 −−−− −−−− −−−− 0.01 0.00 1.00 −−−− −−−− −−−− 

𝑪𝒕
(𝒎)

 0.24 0.28 0.78 −−−− −−−− −−−− 0.58 0.53 0.59 −−−− −−−− −−−− 

𝑱𝒕 0.34 2.70 0.01 −−−− −−−− −−−− 0.33 2.59 0.01 −−−− −−−− −−−− 

𝑱𝒕
(𝒅)

 0.08 0.55 0.58 −−−− −−−− −−−− 0.09 0.66 0.51 −−−− −−−− −−−− 

𝑱𝒕
(𝒘)

 0.20 1.00 0.32 −−−− −−−− −−−− 0.21 0.98 0.33 −−−− −−−− −−−− 

𝑱𝒕
(𝒎)

 0.13 0.66 0.51 −−−− −−−− −−−− 0.12 0.52 0.61 −−−− −−−− −−−− 

  𝑹𝟐 𝑹̅𝟐 F 𝑹𝟐 𝑹̅𝟐 F 𝑹𝟐 𝑹̅𝟐 F 𝑹𝟐 𝑹̅𝟐 F 

  0.447 0.444 142.6 0.500 0.498 176.6 0.454 0.448 72.8 0.506 0.501 89.9 

To increase the predictability of the volatility models and examine the effect of 

trading days and trading sessions, we include the dummy variables in the regression 

equations. The results associated with this construction are given in Tables 4 and 5. In 

Table 4, we consider the dynamics without jump components, and in Table 5, we modify 

the regression equation with jump dynamics.  

The inclusion of the dummy variables does not alter the previous significant results 

drastically. That is, the non-dummy variables that were found to be significant in the 

analysis of the results in Table 2 are again significant here as well. Insignificant variables 

remain the same. From the analysis of the dummy variables, we observe that only the 

session dummy is significant with a negative sign in all models. This issue indicates that 

the realized volatility is lower in the morning session. This finding is in contrast to that 

in Bildik (2001), asserting that volatility (of Istanbul Stock Exchange) follows an L-

shaped path. According to Bildik (2001), the volatility of the intra-daily returns is higher 

in the morning session and diminishes towards the closing between the years1996 and 
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1999. From our findings, it seems the dynamics of RV in between the sessions changed 

through the years. 

Table 4. The OLS Estimation Results for the Models without Jump Dynamics and with 

Dummy Variable Interventions  
  HAR-RV logHAR-RV LHAR-RV logLHAR-RV 

  Coef. t-stat p-val Coef. t-stat p-val Coef. t-stat p-val Coef. t-stat p-val 

Intercept 0.08 3.71 0.00 -0.08 -2.50 0.01 0.07 2.97 0.00 -0.17 -3.73 0.00 

𝒍𝒐𝒈(𝑹𝑽𝒕) −−−− −−−− −−−− 0.23 5.21 0.00 −−−− −−−− −−−− 0.22 4.72 0.00 

𝒍𝒐𝒈(𝑹𝑽𝒕)(𝒅) −−−− −−−− −−−− 0.29 4.60 0.00 −−−− −−−− −−−− 0.29 4.52 0.00 

𝒍𝒐𝒈(𝑹𝑽𝒕)(𝒘) −−−− −−−− −−−− 0.28 5.64 0.00 −−−− −−−− −−−− 0.24 4.69 0.00 

𝒍𝒐𝒈(𝑹𝑽𝒕)(𝒎) −−−− −−−− −−−− 0.05 0.93 0.35 −−−− −−−− −−−− 0.06 1.10 0.27 

𝒓𝒕
+ −−−− −−−− −−−− −−−− −−−− −−−− 0.00 -0.03 0.97 0.01 0.28 0.78 

𝒓𝒕
+(𝒅)

 −−−− −−−− −−−− −−−− −−−− −−−− -0.02 -0.52 0.61 -0.02 -0.43 0.67 

𝒓𝒕
+(𝒘)

 −−−− −−−− −−−− −−−− −−−− −−−− 0.15 2.32 0.02 0.19 1.78 0.08 

𝒓𝒕
+(𝒎)

 −−−− −−−− −−−− −−−− −−−− −−−− -0.16 -1.20 0.23 -0.14 -0.54 0.59 

𝒓𝒕
− −−−− −−−− −−−− −−−− −−−− −−−− -0.03 -0.63 0.53 -0.03 -0.71 0.48 

𝒓𝒕
−(𝒅)

 −−−− −−−− −−−− −−−− −−−− −−−− -0.02 -0.45 0.65 -0.02 -0.57 0.57 

𝒓𝒕
−(𝒘)

 −−−− −−−− −−−− −−−− −−−− −−−− -0.10 -1.61 0.11 -0.13 -1.76 0.08 

𝒓𝒕
−(𝒎)

 −−−− −−−− −−−− −−−− −−−− −−−− 0.01 0.07 0.94 -0.23 -1.45 0.15 

𝑹𝑽𝒕 0.37 3.31 0.00 −−−− −−−− −−−− 0.34 3.84 0.00 −−−− −−−− −−−− 

𝑹𝑽𝒕
(𝒅)

 0.11 1.22 0.22 −−−− −−−− −−−− 0.13 1.45 0.15 −−−− −−−− −−−− 

𝑹𝑽𝒕
(𝒘)

 0.24 2.90 0.00 −−−− −−−− −−−− 0.18 2.38 0.02 −−−− −−−− −−−− 

𝑹𝑽𝒕
(𝒎)

 0.17 3.22 0.00 −−−− −−−− −−−− 0.21 3.14 0.00 −−−− −−−− −−−− 

𝑫𝒕,𝒔 -0.07 -5.48 0.00 -0.15 -7.12 0.00 -0.07 -5.73 0.00 -0.15 -7.26 0.00 

𝑫𝒕,𝒕𝒖𝒆 0.01 0.70 0.48 0.02 0.60 0.55 0.01 0.66 0.51 0.02 0.65 0.52 

𝑫𝒕,𝒘𝒆𝒅 0.02 1.12 0.26 0.02 0.77 0.44 0.02 0.96 0.34 0.02 0.77 0.44 

𝑫𝒕,𝒕𝒉𝒖. -0.01 -0.44 0.66 -0.03 -1.09 0.27 -0.01 -0.64 0.52 -0.03 -1.16 0.25 

𝑫𝒕,𝒇𝒓𝒊 0.02 0.91 0.36 0.00 -0.15 0.88 0.01 0.71 0.48 -0.01 -0.30 0.77 

  𝑹𝟐 𝑹̅𝟐 F 𝑹𝟐 𝑹̅𝟐 F 𝑹𝟐 𝑹̅𝟐 F 𝑹𝟐 𝑹̅𝟐 F 

  0.459 0.456 133.1 0.516 0.513 166.9 0.467 0.460 72.1 0.521 0.515 89.6 

In Table 5, we consider the jump component of the volatility measure. The findings 

show similar patterns as in Table 3; there are minor changes in the log models, and the 

level models do not exhibit changes in significance properties and sign of the 

coefficients. In both log models, the session-based effect of the continuous part of the 

realized volatility becomes insignificant. The daily effect of the same variables becomes 

significant only at the 10% significance level. Furthermore, as in Table 4, we see that 

only the session dummy is significant among all other dummy variables. Given that the 

sign of its coefficient is negative, the interpretation remains the same.  

Table 5. The OLS Estimation Results for the Models with Jump Dynamics and Dummy 

Interventions 
  HAR-CJ logHAR-CJ LHAR-CJ logLHAR-CJ 

  Coef. t-stat p-val Coef. t-stat p-val Coef. t-stat p-val Coef. t-stat p-val 

Intercept 0.10 5.23 0.00 -0.66 -3.21 0.00 0.09 4.37 0.00 -0.93 -4.11 0.00 

𝒍𝒐𝒈(𝑪𝒕) −−−− −−−− −−−− -0.06 -1.26 0.21 −−−− −−−− −−−− -0.07 -1.47 0.14 

𝒍𝒐𝒈(𝑪𝒕)(𝒅) −−−− −−−− −−−− 0.11 1.87 0.06 −−−− −−−− −−−− 0.11 1.79 0.07 

𝒍𝒐𝒈(𝑪𝒕)(𝒘) −−−− −−−− −−−− 0.25 3.13 0.00 −−−− −−−− −−−− 0.25 3.31 0.00 

𝒍𝒐𝒈(𝑪𝒕)(𝒎) −−−− −−−− −−−− -0.17 -2.15 0.03 −−−− −−−− −−−− -0.22 -2.64 0.01 

𝒍𝒐𝒈(𝟏 + 𝑱𝒕) −−−− −−−− −−−− 0.33 5.39 0.00 −−−− −−−− −−−− 0.32 5.29 0.00 

𝒍𝒐𝒈(𝟏 + 𝑱𝒕)(𝒅) −−−− −−−− −−−− 0.38 1.64 0.10 −−−− −−−− −−−− 0.37 1.62 0.11 
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𝒍𝒐𝒈(𝟏 + 𝑱𝒕)(𝒘) −−−− −−−− −−−− -0.01 -0.04 0.97 −−−− −−−− −−−− -0.19 -0.72 0.47 

𝒍𝒐𝒈(𝟏 + 𝑱𝒕)(𝒎) −−−− −−−− −−−− 1.23 3.87 0.00 −−−− −−−− −−−− 1.51 4.65 0.00 

𝒓𝒕
+ −−−− −−−− −−−− −−−− −−−− −−−− 0.00 -0.18 0.86 0.02 0.52 0.60 

𝒓𝒕
+(𝒅)

 −−−− −−−− −−−− −−−− −−−− −−−− -0.02 -0.60 0.55 -0.01 -0.20 0.84 

𝒓𝒕
+(𝒘)

 −−−− −−−− −−−− −−−− −−−− −−−− 0.14 2.29 0.02 0.22 1.93 0.05 

𝒓𝒕
+(𝒎)

 −−−− −−−− −−−− −−−− −−−− −−−− -0.15 -1.20 0.23 -0.22 -0.76 0.44 

𝒓𝒕
− −−−− −−−− −−−− −−−− −−−− −−−− -0.03 -0.69 0.49 -0.03 -0.81 0.42 

𝒓𝒕
−(𝒅)

 −−−− −−−− −−−− −−−− −−−− −−−− -0.01 -0.30 0.76 -0.02 -0.55 0.58 

𝒓𝒕
−(𝒘)

 −−−− −−−− −−−− −−−− −−−− −−−− -0.10 -1.67 0.09 -0.13 -1.85 0.06 

𝒓𝒕
−(𝒎)

 −−−− −−−− −−−− −−−− −−−− −−−− 0.04 0.28 0.78 -0.34 -1.85 0.06 

𝑪𝒕 0.52 0.63 0.53 −−−− −−−− −−−− 0.38 0.49 0.62 −−−− −−−− −−−− 

𝑪𝒕
(𝒅)

 0.32 0.48 0.63 −−−− −−−− −−−− 0.36 0.51 0.61 −−−− −−−− −−−− 

𝑪𝒕
(𝒘)

 0.41 0.35 0.72 −−−− −−−− −−−− 0.01 0.01 1.00 −−−− −−−− −−−− 

𝑪𝒕
(𝒎)

 0.21 0.24 0.81 −−−− −−−− −−−− 0.56 0.53 0.60 −−−− −−−− −−−− 

𝑱𝒕 0.35 2.74 0.01 −−−− −−−− −−−− 0.34 2.74 0.01 −−−− −−−− −−−− 

𝑱𝒕
(𝒅)

 0.06 0.41 0.68 −−−− −−−− −−−− 0.08 0.50 0.61 −−−− −−−− −−−− 

𝑱𝒕
(𝒘)

 0.20 1.01 0.31 −−−− −−−− −−−− 0.21 1.00 0.32 −−−− −−−− −−−− 

𝑱𝒕
(𝒎)

 0.13 0.67 0.50 −−−− −−−− −−−− 0.12 0.54 0.59 −−−− −−−− −−−− 

𝑫𝒕,𝒔 -0.07 -4.80 0.00 -0.15 -7.05 0.00 -0.07 -5.27 0.00 -0.15 -7.04 0.00 

𝑫𝒕,𝒕𝒖𝒆 0.01 0.63 0.53 0.03 0.96 0.33 0.01 0.61 0.54 0.03 1.11 0.27 

𝑫𝒕,𝒘𝒆𝒅 0.02 1.01 0.31 0.03 1.32 0.19 0.01 0.91 0.36 0.04 1.48 0.14 

𝑫𝒕,𝒕𝒉𝒖. -0.01 -0.53 0.60 -0.02 -0.60 0.55 -0.01 -0.71 0.48 -0.02 -0.56 0.57 

𝑫𝒕,𝒇𝒓𝒊 0.02 0.91 0.36 0.00 -0.01 0.99 0.01 0.71 0.48 0.00 -0.11 0.92 

  𝑹𝟐 𝑹̅𝟐 F 𝑹𝟐 𝑹̅𝟐 F 𝑹𝟐 𝑹̅𝟐 F 𝑹𝟐 𝑹̅𝟐 F 

  0.462 0.457 92.7 0.520 0.515 117.1 0.468 0.460 58.5 0.526 0.518 73.7 

Finally, in Table 6, we compare the in-sample fit of the alternative models by using 

the Modified Akaike Information Criteria (AICc) and Adjusted R-squared adapted to the 

log transformation. One immediate property for the AICc is that the log models have 

positive, and the level models have negative AICc values. This difference can be natural 

since these two types of models cannot be directly comparable. However, we can use 

AICc to compare the models with the same dependent variables. In this regard, the best 

level model is the LHAR-RV with dummy variables, and the best log model is the 

LHAR-CJ model with dummy variables. Furthermore, when we check the adjusted R-

squared values, the overall best models are the LHAR-CJ and LHAR-RV models with 

dummy variables. However, it is worth noting that other level models are also performing 

well. 

Table 6. Modified AIC of the Estimated models 

 AICc Adjusted R2 

  w/o Dummy w Dummy w/o Dummy w Dummy 

HAR-RV -92.231 -119.235 0.443 0.456 

logHAR-RV 1312.543 1265.810 0.340 0.354 

LHAR-RV -96.358 -122.525 0.448 0.460 

logLHAR-RV 1314.521 1267.954 0.359 0.370 

HAR-CJ -90.103 -117.302 0.444 0.457 

logHAR-CJ 1308.545 1262.452 0.380 0.389 

LHAR-CJ -90.930 -117.007 0.448 0.460 

logLHAR-CJ 1308.110 1261.963 0.396 0.402 
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B. Out-of-sample Forcast Comparison 

In this section, we compare the forecasting performance of the realized volatility 

models. For comparison, we split the data set into training (in-sample) and testing (out-

of-sample) periods. In the testing period, we generate static forecasts of the realized 

volatility. We choose one financial year as the testing period (252 days). The remaining 

data is used for the estimation. After obtaining the forecasts, we compute the root mean 

squared error (RMSE), mean absolute error (MAE), mean percentage error (MPE) and 

mean absolute percentage error (MAPE). These statistics are suggested by Hyndman and 

Koehlercan (2006), and they can be represented as, 

𝑅𝑀𝑆𝐸 = √
1

𝑇𝑓

∑ (𝑅𝑉𝑡+1|𝑡 − 𝑅𝑉𝑡+1)
2

𝑇

𝑡=𝑇−𝑇𝑓+1

;   

   𝑀𝐴𝐸 =
1

𝑇𝑓

∑ |𝑅𝑉𝑡+1|𝑡 − 𝑅𝑉𝑡+1| 

𝑇

𝑡=𝑇−𝑇𝑓+1

; 

𝑀𝑃𝐸 =
1

𝑇𝑓

∑ [100 × (𝑅𝑉𝑡+1|𝑡 − 𝑅𝑉𝑡+1)/𝑅𝑉𝑡+1]

𝑇

𝑡=𝑇−𝑇𝑓+1

 ; 

𝑀𝑃𝐸 =
1

𝑇𝑓

∑ |100 × (𝑅𝑉𝑡+1|𝑡 − 𝑅𝑉𝑡+1)/𝑅𝑉𝑡+1|

𝑇

𝑡=𝑇−𝑇𝑓+1

,   

 

(10) 

 

where 𝑇𝑓 = 252 is the sample size of the out-of-sample period, 𝑅𝑉𝑡+1|𝑡  is the one step 

ahead forecast of 𝑅𝑉𝑡+1.  

According to RMSE, the best forecast model is the LHAR-RV with dummy 

variables. On the one hand, the MPE criterion selects the best model as the logLHAR-

CJ without dummy variables. On the other hand, both MAE and MAPE, which are based 

on absolute deviations, point the LHAR-CJ with dummy variables. Overall, we see that 

the results with dummy variables exhibit lower errors, hence better forecasts. Even 

though there is no absolute winner of the forecast comparison, we see that the LHAR-CJ 

with dummy variables is selected twice as the winning model. Therefore, we can 

conclude that in modeling the realized volatility of the BIST 100 index, taking the 

leverage, jump, and structural change (through dummy variables) effects into account 

provides better performance. 
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Table 2. Forecasting Performance of Different Realized Volatility Measure 

  RMSE MAE MPE MAPE 

w
/o

 d
u

m
m

y
 

HAR-RV 0.3339 0.2069 -7.9471 28.9014 

logHAR-RV 0.3461 0.2044 -8.1164 28.3019 

LHAR-RV 0.3320 0.2049 -7.4983 28.5678 

logLHAR-RV 0.3386 0.2011 -7.8248 27.9219 

HAR-CJ 0.3400 0.2040 -5.3950 27.8016 

logHAR-CJ 0.3448 0.2142 -11.0335 30.4127 

LHAR-CJ 0.3482 0.2009 0.8377 25.9602 

logLHAR-CJ 0.3438 0.2102 -6.5078 28.8005 

w
 d

u
m

m
y
 

HAR-RV 0.3302 0.2030 -7.7598 28.2545 

logHAR-RV 0.3420 0.2002 -7.6177 27.4715 

LHAR-RV 0.3283 0.2012 -7.3299 27.9404 

logLHAR-RV 0.3351 0.1964 -7.3265 27.0111 

HAR-CJ 0.3359 0.2000 -5.2305 27.1505 

logHAR-CJ 0.3417 0.2095 -10.4933 29.5216 

LHAR-CJ 0.3440 0.1963 0.9527 25.2573 

logLHAR-CJ 0.3417 0.2045 -5.9114 27.7687 

IV.Conclusion 

In this paper, we consider the modeling of the realized volatility of the BIST 100 

index. For the analysis, we consider four models that take the leverage and jump effects 

of returns into account. The models we consider are a slightly modified version of those 

employed in Corsi (2009) and Corsi and Reno (2009, 2012). The first one we utilize is a 

simple model without the consideration of leverage effect and jumps. Then, we construct 

a second model by embedding the leverage effect to capture the asymmetry in the 

dynamics of volatility. In the third model, we consider jumps only, and in the final model, 

we consider both leverage and jumps.  

After the construction of the models, we augment the number of models to be used 

for the analysis based on the specification of the function 𝑔(⋅) and the consideration of 

the dummy variables. In this respect, we consider sixteen model specifications. Our 

results show that the models explain the variation in the dynamics of the realized 

volatility quite well; based on R-squared values, almost half of the variation is explained. 

We also see that the level models (i.e., when 𝑔(x) = 𝑥) have long-memory property, 

while the log models (i.e., when 𝑔(x) = log (𝑥)) have shorter memory property relative 

to its level counterpart. Besides, the leverage effect in the BIST 100 volatility, although 

present, is not very strong. Thus, the response to shocks is not entirely asymmetric. We 

also observe that jumps significantly affect the BIST 100 realized volatility both at the 

short-term and long-term levels depending on the specification of the model. Finally, we 

see that only the session-level dummy variable is significant. The result shows that the 

volatility of the BIST 100 is lower in the morning session. This finding contrasts with 

the L-shape assertion of Bildik (2001). 
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For the model selection exercise based on the AICc values, the LHAR-CJ and LHAR-

RV models with dummy variables are overall the best models. In effect, from the out-of-

sample forecast exercise, we see that the models with dummy variables usually perform 

better than those without the dummy variables. Particularly, the forecast exercise shows 

that the LHAR-CJ model is selected the most based on the forecast evaluation measures 

employed in the study. Thus, we conclude that the level based HAR models with leverage 

and jump effects perform the best in predicting the realized volatility of the BIST 100 

index. 
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