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Abstract
We consider Bayesian multiple hypothesis problem with independent and identically dis-
tributed observations. The classical, Sanov’s theorem-based, analysis of the error proba-
bility allows one to characterize the best achievable error exponent. However, this analysis
does not generalize to the case where the true distributions of the hypothesis are not exact
or partially known via some nominal distributions. This problem has practical significance,
because the nominal distributions may be quantized versions of the true distributions in
a hardware implementation, or they may be estimates of the true distributions obtained
from labeled training sequences as in statistical classification. In this paper, we develop
a type-based analysis to investigate Bayesian multiple hypothesis testing problem. Our
analysis allows one to explicitly calculate the error exponent of a given type and extends
the classical analysis. As a generalization of the proposed method, we derive a robust
test and obtain its error exponent for the case where the hypothesis distributions are not
known but there exist nominal distribution that are close to true distributions in varia-
tional distance.
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1. Introduction
In the last decades, multiple hypothesis testing (MHT) framework found diverse us-

age in different fields of engineering. For example, in [22], authors use MHT to design
a machine fault detector where the unknown model parameters are estimated from the
available data, then MHT is used for detection. In a similar fashion, authors in [2] used
MHT for fault detection in power transformers. In [13], MHT is used to detect and re-
cover block-sparse signals with unknown block structures. In [18], authors applied MHT
to multiple-target tracking problem via a two-step MHT tracking algorithm where the
model state is estimated first, then the tracing is accomplished with the MHT. The au-
thors in [15] investigated the energy detection problem with mismatched distributions and
characterized its asymptotic performance via large deviations theory. In [3], MHT is used
to provide frame synchronization in multiple access communication channels.
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In this paper we consider Bayesian MHT where the average error probability is a
weighted sum of the error probabilities under each hypothesis and hypotheses are as-
sumed to have positive prior probabilities. This setup differs from Neyman-Pearson type
MHT where the aim is to minimize the error probability under a selected hypothesis by
limiting the remaining error probabilities to specified values [23].

The asymptotic performance analysis of Bayesian MHT is Based on Sanov’s theorem
and large deviations theory [5, Ch. 11.4]. This analysis reveals that the exponential
speed with which the error probability decays equals to the minimum pairwise Chernoff
information between the distinct hypothesis distributions. This achievability result is
originally formalized by [14]. Then, Westover provided a Sanov’s theorem-based proof for
the asymptotic geometry of Bayesian MHT [25]. The asymptotic analysis often ignores
the effect of the prior probabilities of hypothesis as they vanish as the length of the
test sequence gets large. Moulin [19] investigated asymptotic performance of Bayesian
and Neyman-Pearson MHT, by taking into account the effect of priors, and refined the
asymptotic bounds in [14, 23] for the case where the length of the test sequences takes
moderate values. The non-asymptotic performance analysis of Bayesian binary hypothesis
testing is investigated by Sason in [20], and a finite-length analysis of Neyman-Pearson
binary hypothesis testing can be found in [7].

The classical Sanov’s theorem-based analysis can not be used if the hypothesis distri-
butions are not exact or they are partially known via some nominal distributions. This
problem has practical significance, because the nominal distributions may be fixed point
counterparts of the true distributions in a hardware implementation, or they can be esti-
mates of the true distributions obtained from labeled training sequences as in statistical
classification [1,9,10]. In this paper we provide a type-based framework for analyzing the
asymptotic performance of Bayesian MHT. Our method generalizes Sanov’s theorem-based
method by allowing one to obtain upper bounds on the error probability of a specific in-
put type. Then, motivated by classical robust hypothesis testing [11,12,17], we generalize
our analysis to the case where the distributions of the hypothesis are not known exactly
but one has access to a set of nominal distributions that are close to true ones. For this
problem we propose a low-complexity, type-based robust test and obtain an upper bound
on its error probability. We show that the proposed test and the upper bound tend to
optimal as the uncertainties in distributions vanish. We compare its performance to a
well-known robust test, namely the DGL test due to Devroye et al. [6], and show that it
provides performance advantages when the uncertainties in hypothesis distributions are
arbitrarily small.

The outline of the paper is as follows: We provide some preliminary material in Section
2 and present the problem definition. We review the classical Sanov’s theorem-based
analysis of the Bayesian multiple hypothesis testing and present the proposed type-based
analysis in Section 3. In Section 4, we apply the proposed analysis to a robust hypothesis
testing problem and present our simulations. Finally, Section 5 concludes the paper and
provides directions for future research.

2. Preliminaries
2.1. Notation

We use upper case letters X, Y to denote random variables and lower cases x, y for
their realizations. We let X denote the alphabet of X and use |X| to denote the size of
this alphabet. We write P (x) to denote the probability of the event X = x, and similarly
Pi(x) is used to denote the probability of X = x when X is generated from distribution
Pi.
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2.2. Statistical distances
The following, are the definitions of the statistical distances that are used in this paper.

Let P and Q be two distributions that are defined over a common and discrete alphabet
X. The variational distance (or the total variation) between P and Q is defined as

V (P, Q) = 1
2

∑
x∈X

|Q(x) − P (x)|. (2.1)

KL divergence from P to Q is calculated as

D(P ||Q) =
∑
x∈X

P (x) log P (x)
Q(x)

. (2.2)

where the base of the logarithm is 2 (this convention is adopted throughout the paper).
Chernoff information (distance) plays a crucial role for the analysis of Bayesian hypoth-

esis testing and is defined as

C(P, Q) = − min
λ∈[0,1]

log

∑
x∈X

P (x)λQ(x)1−λ

 . (2.3)

Following is an inequality between Chernoff information and variational distance [21]

C(P, Q) ≥ −1
2

ln(1 − V (P, Q)2), (2.4)

where ln denotes the natural logarithm.

2.3. Method of types
The analysis in this paper makes heavy use of the method of types [5, Chapter 11].

Below, we give some definitions and key findings that are crucial for the upcoming analysis.
• The type vector Px⃗: It is the empirical probability distribution of the vector x⃗,

x⃗ ∈ Xn.

Px⃗(a) ∆= 1
n

N(a|x⃗), ∀a ∈ X, (2.5)

where N(a|x⃗) denotes the number of occurrences of symbol a in vector x⃗. Notice
that Px⃗ is a proper distribution for the alphabet X.

• The type class T (P ): It is the set of all sequences x⃗, x⃗ ∈ Xn, that have type P ,
i.e. T (P ) = {x⃗ : Px⃗ = P}.

• The set of all type classes Pn: For fixed n, this set is defined as Pn = {T (P ) :
T (P ) ≠ ∅}.

Lemma 2.1. Size of the type class T (P ) satisfies

(n + 1)−|X|2nH(P ) ≤ |T (P )| ≤ 2nH(P ). (2.6)

Here, H(P ) denotes the entropy of the distribution P

H(P ) = −
∑
x∈X

P (x) log P (x). (2.7)

Lemma 2.2. The total number of type classes is upper bounded as

|Pn| ≤ (n + 1)|X|−1. (2.8)

Lemma 2.3. The vectors of the same type has the same probability. If the elements of x⃗
are generated independently from distribution P , then

P (x⃗) = 2−n(H(Px⃗)+D(Px⃗||P )). (2.9)
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2.4. Problem statement
Bayesian MHT addresses the following problem: For an observed vector

X⃗ = [X1, X2, . . . , Xn] ∈ Xn decide on one of M hypothesis H1,H2, . . . ,HM with dis-
tributions P1, P2, . . . , PM where Hi, i = 1, 2, . . . , M , states that the realization X⃗ = x⃗ is
independent and identically distributed according to Pi [16]. In this paper, we assume
that the distributions are defined over a common alphabet X which is discrete and count-
ably finite. In order to perform the test, one seeks a decision rule that partitions Xn into
M mutually exclusive and collectively exhaustive acceptance regions Ω1, Ω2, . . . , ΩM such
that Hi is accepted if x⃗ ∈ Ωi. Let P (e|Hi) denote the probability of error when Hi is
true but the test decides otherwise. In the Bayesian setting, one assumes strictly positive
priors P (H1), P (H2), . . . , P (HM ) for the M hypothesis and the resultant probability of
error equals to

P (e) =
M∑

i=1
P (e|Hi)P (Hi). (2.10)

The minimization of the above probability is accomplished with maximum a posteriori
(MAP) decision rule. When n is sufficiently large, the effect of the priors vanishes and
MAP decision rule simplifies to the nearest neighbor (NN) decision rule as

Choose Hi, i = argmin
j∈{1,2,...,M}

D(Px⃗|Pj). (2.11)

The test partitions the probability simplex into M disjoint regions where Pj , j = 1, 2, . . . , M,
are the centroids. The decision rule measures the KL divergence (distance) between Px⃗

and Pj and assigns x⃗ to the nearest region.

3. Error probability of Bayesian MHT
The classical analysis of the error probability of Bayesian MHT is based on Sanov’s

theorem [5, p. 362] which allows one to analyze the probability of having x⃗ ∈ Ωi,
i = 1, 2, . . . , M , under different hypothesis. The result of this analysis states that the
best achievable error exponent of binary Bayesian hypothesis testing equals to the mini-
mum Chernoff information of hypothesis distributions [5, Theroem 11.9.1]. However, this
analysis is not explicit in the sense that the average error probability of a specific type i.e.
T (Px⃗) can not be calculated. This flexibility may be important in Bayesian hypothesis
testing with a rejection option where the test is allowed to make a no-match decision as in
[9]. Because, by rejecting the type classes with smallest error exponents the performance
of the test can be improved.

In this section, we propose a type-based analysis that does not require Sanov’s theorem
and allows one to upper bound the error probability averaged over given type class T (Px⃗).
The proposed analysis also reveals that the worst case achievable error exponent over the
distinct types equals to the minimum Chernoff information, therefore this exponent is
always achievable.

First, we are going to explain the classical Sanov’s theorem-based analysis in [25]. Then,
we are going the present the proposed analysis and make connections between them.

3.1. Classical analysis
Considering the NN decision rule in Equation (2.11), with acceptance regions Ω1, Ω2, . . . , ΩM ,

let Ωc
i denote the complement of Ωi. The application of Sanov’s theorem gives

P (e|Hi) ≤ 2(−nD(Pi∗|Pi)− (|X|−1) log(n+1)
n

), (3.1)

P ∗
i

∆= argmin
p∈Ωc

i

D(p|Pi). (3.2)
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Using the above result, one calculates the total error probability as

P (e) =
M∑

i=1
P (e|Hi)P (Hi)

≤
M∑

i=1
2(−nD(P ∗

i |Pi)− (|X|−1) log(n+1)
n

)

≤ M max
i

2(−nD(P ∗
i |Pi)− (|X|−1) log(n+1)

n
), i = 1, 2, ..., M

= 2−n
(

mini D(P ∗
i |Pi)− (|X|−1) log(n+1)

n
− log M

n

)
, i = 1, 2, ..., M

≤ 2
−n

(
min
i̸=j

C(Pi,Pj)− |X−1| log(n+1)
n

− log M
n

)
, i = 1, 2, . . . , M, j = 1, 2, . . . , M (3.3)

where the last step follows from the fact that the minimum value of mini D(P ∗
i |Pi) equals

to min i ̸=jC(Pi, Pj) when P ∗
i is of the form

P ∗
i = Pi(x)λPj(x)1−λ∑

x∈X Pi(x)λPj(x)1−λ
(3.4)

and λ is chosen such that D(P ∗
i |Pi) = D(P ∗

i |Pj) [25].

3.2. Proposed analysis
The general approach to performance analysis of communications systems is to inves-

tigate the error probability of the system for a given input. Then, the performance of
the system can be analyzed by averaging this error probability over all possible inputs.
Here, we follow a similar approach and first investigate the probability of error for a given
type Px⃗. In this regard, let us define P (e|Px⃗) to be the probability of error, averaged over
x⃗ ∈ T (Px⃗).

P (e|Px⃗) ∆=
∑

x⃗∈T (Px⃗)
P (e|x⃗)P (x⃗) (3.5)

Then, the probability of error averaged over x⃗ ∈ Xn can be calculated as

P (e) =
∑

x⃗∈Xn

P (e|x⃗)P (x⃗) (3.6)

=
∑

T (Px⃗)∈Pn

∑
x⃗∈T (Px⃗)

P (e|x⃗)P (x⃗) (3.7)

=
∑

T (Px⃗)∈Pn

P (e|Px⃗). (3.8)

If P (e|Px⃗) terms in Equation (3.8) are exponentially decaying with certain exponents that
depend on Px⃗, then the minimum of them must dominate the exponent of P (e). The
following propositions, whose proof are provided in the Appendix, show that this is infact
the case.

Proposition 3.1.

P (e|Px⃗) ≤ 2
−n

(
min
i̸=j

max{D(Px⃗||Pi),D(Px⃗||Pj)}− log M
n

)
, i = 1, 2, . . . , M, j = 1, 2, . . . , M.

(3.9)

Proposition 3.2.
min

T (Px⃗)∈Pn
max{D(Px⃗||Pi), D(Px⃗||Pj)} = C(Pi, Pj), (3.10)
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and the minimizing Px⃗ is of the form

P λ
x⃗ = Pi(x)λPj(x)1−λ∑

x∈X Pi(x)λPj(x)1−λ
, (3.11)

where λ is chosen such that D(P λ
x⃗ |Pi) = D(P λ

x⃗ |Pj).
Proposition 1 indicates that P (e|Px⃗) is decaying with an exponent min

i ̸=j
max{D(Px⃗||Pi),

D(Px⃗||Pj)}, and Proposition 2 implies that the minimum of this exponent over distinct
types equals to min

i ̸=j
C(Pi, Pj). This fact is demonstrated with a simple example in Figure 1

where we have plotted the ratio min
i ̸=j

max{D(Px⃗||Pi), D(Px⃗||Pj)}/min
i ̸=j

C(Pi, Pj) by sorting

it for all T (Px⃗) ∈ Pn. As can be seen, the minimum value of this ratio equals to 1 whereas
it can be significantly larger depending on T (Px⃗).

Finally, the probability of error averaged over x⃗ ∈ Xn can be upper bounded as follows.
From Equation (3.8) we obtain

P (e) ≤ |Pn| max
T (Px⃗)∈Pn

P (e|Px⃗) (3.12)

≤ |Pn|2
−n

(
min
i̸=j

min
T (Px⃗)∈Pn

max{D(Px⃗||Pi),D(Px⃗||Pj)}− log M
n

)
, (3.13)

= |Pn|2
−n

(
min
i̸=j

C(Pi,Pj)− log M
n

)
(3.14)

≤ 2
−n

(
min
i ̸=j

C(Pi,Pj)− (|X|−1) log(n+1)
n

− log M
n

)
, i = 1, 2, . . . , M, j = 1, 2, . . . , M (3.15)

where the last ineqaulity follows from Lemma 2.
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Figure 1. The sorted ratio of the achievable exponents of P (e|Px⃗) in Proposition
1 and the minimum Chernoff information. In this example, M = 5, |X| = 3,
P1 = [0.1, 0.8, 0.1], P2 = [0.3, 0.2, 0.5], P3 = [0.6, 0.1, 0.3], P4 = [0.4, 0.4, 0.2] and
P5 = [0.3, 0.6, 0.1].

By comparing the classical analysis and the proposed analysis one can easily observe
that the minimization of mini D(P ∗

i |Pi) terms in Equation (3.3) corresponds to finding the
type class that minimizes max{D(Px⃗||Pi), D(Px⃗||Pj)} in the proposed method. However,
this is not explicit in classical analysis due to the usage of Sanov’s theorem. Our analysis
exposes this fact with Propositions 3.1 and 3.2 and complements the classical analysis.
Moreover, Proposition 3.1 can be used to obtain an upper bound on the error probability
of a specific type Px⃗, and this bound will be tighter than Equation (3.3) if Px⃗ is different
than Equation (3.11).
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4. Application: a robust hypothesis testing problem
As an application of the proposed analysis, we consider a robust hypothesis testing

problem where the distributions of the hypothesis are not known exactly but one has
access to a set of nominal distributions {Q1, Q2, . . . , QM }. Here, the nominal distributions
are close to actual distributions in variational distance as

V (Pj , Qj) ≤ ϵj , j = 1, 2, ..., M (4.1)

where ϵj are known robustness parameters.
The above problem, in general, is studied within the context of classical robust hy-

pothesis testing where the alphabet X can be discrete or continuous i.e. |X| = ∞. In
this setting, the usual procedure is to follow a minimax approach and to minimize the
worst case probability of error under the distance constraint in Equation (4.1) [11,12,17].
However, this approach can not be extended to multiple hypothesis and is explicit only
when M = 2. For multiple hypothesis, the closest work to the one considered here is the
DGL test due to [6], but as reported in [4] this test can be strictly sub-optimal as the
uncertainties in the distributions vanish i.e. as Qj → Pj , j = 1, 2, . . . , M . Our approach
can be regarded as a generalization of the classical hypothesis testing problem for the case
V (Pj , Qj) ≤ ϵj , in the discrete setting and we show that the proposed test does not com-
promise from optimality in the sense that it coincides with the optimal test as Qj → Pj .
Furthermore, when |X| is finite the achievable exponent of the proposed test is larger than
that of DGL test in the regime ϵj |X| ≪ 1.

The proposed method is based on a rounding operation of the nominal distributions to
obtain representatives for actual distributions, then using them in the classical hypoth-
esis test. The representative distributions P̄1, P̄2, . . . , P̄M are obtained respectively from
Q1, Q2, . . . , QM via the following transformation

P̄j(x) = Qj(x) + ϵj

1 + |X|ϵj
, ∀x ∈ X. (4.2)

It is clear that P̄j is a proper distribution over the alphabet X since

∑
x∈X

P̄j(x) =
∑

x∈X(Qj(x) + ϵ1)
1 + |X|ϵ1

= 1 + |X|ϵ1
1 + |X|ϵ1

= 1

and Pj(x) ≤ 1 holds ∀x ∈ X. Let us define U as the uniform distribution for the alphabet
X

U(x) ,
{ 1

|X| , x ∈ X,

0, otherwise.
(4.3)

In the light of the above, one can view P̄j(x) as a rounded version of Qj(x) where the
rounding is towards U and it increases as ϵj increases. To see this, note that the condition
P̄j(x) > Qj(x) is equivalent to

Qj(x) + ϵj

1 + |X|ϵj
> Qj(x)

Qj(x) + ϵj > Qj(x) + Qj(x)|X|ϵj

1
|X|

> Qj(x).

Thus, if Qj(x) < 1
|X| then P̄j(x) > Qj(x) and similarly Qj(x) > 1

|X| indicates P̄j(x) <

Qj(x). Consequently, and from Equation (4.2), we observe that as ϵj increases P̄j(x) gets
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away from Qj and closer to U because

lim
ϵj→∞

P̄j(x) = lim
ϵj→∞

Qj(x) + ϵj

1 + |X|ϵj
= U(x). (4.4)

On the other hand, as ϵj decreases P̄j(x) gets closer to Qj(x) and the distance constraint
V (Pj , Qj) ≤ ϵj indicates that Qj(x) gets closer to Pj . This, in turn, implies that P̄j(x)
gets closer to Pj(x) and

lim
ϵj→0

P̄j(x) = lim
ϵj→0

Qj(x) + ϵj

1 + |X|ϵj
= Qj(x) = Pj(x). (4.5)

The main use of the distribution P̄j is to provide an upper bound on P (x⃗) when x⃗ is
generated according to Pj . This fact is provided in the following proposition whose proof
is provided in the Appendix.

Proposition 4.1. ∀x⃗ ∈ T (Px⃗), given V (Pj , Qj) ≤ ϵj, and independently of Pj

Pj(x⃗) ≤ 2−n(H(Px⃗)+D(Px⃗||P̄j)−log(1+|X|ϵj)). (4.6)

Proposition 4.1 can be regarded as a generalization of Lemma 2.3 when the true dis-
tribution Pj that generated x⃗ is not known exactly, but one has the knowledge that
V (Pj , Qj) ≤ ϵj . Notice that as ϵj → 0 the upper bound in Proposition 4.1 matches the
equality in Lemma 2.3.

The proposed test and the upper bound on its error probability is presented in the
following theorem.

Theorem 4.2. For the robust Bayesian MHT problem, the total error probability of the
decision rule

Choose Hj , j = argmin
i∈{1,2,...,M}

D(Px⃗|P̄i) (4.7)

is upper bounded as

P (e) ≤ 2
−n

(
min
i ̸=j

C(P̄i,P̄j)−log(1+|X|ϵ)− (|X|−1) log(n+1)
n

− log M
n

)
, i, j = 1, 2, . . . , M (4.8)

where

ϵ
∆= max

k
ϵk, k = 1, 2, . . . , M. (4.9)

Proof. In the proof of Proposition 1, using Proposition 4.1 instead of Lemma 2.3 results
in

P (e|Px⃗) ≤ 2
−n

(
min
j ̸=i

max{D(Px⃗||P̄i),D(Px⃗||P̄j)}−log(1+|X|ϵ)− log M
n

)
. (4.10)

Then, the proof follows from Proposition 2 and Equations (3.12)-(3.15) by using P̄j instead
of Pj , j = 1, 2, . . . , M . �

The implications of Theorem 4.2 are summarized below.
i) By comparing Equations (2.11) and (4.7), we observe that the proposed test is identi-

cal in form to the NN test. The only distinction is that in the proposed test P̄1, P̄2, . . . , P̄M

must be used instead of the true distributions. As ϵj → 0, from (4.5) we see that P̄j → Pj ,
j = 1, 2, . . . , M , and the proposed test becomes identical to the optimal test.

ii) By investigating the upper bound in Equation (4.8), we observe that the proposed
test achieves a positive error exponent provided that

min
i ̸=j

C(P̄i, P̄j) − log(1 + |X|ϵ) > 0, i = 1, 2, . . . , M, j = 1, 2, ..., M. (4.11)
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The above condition can be easily checked prior to performing the test and one can safely
use the proposed test if this condition is satisfied. In the next section, we show by sim-
ulations than even if the above condition is not met the proposed test may still provide
an acceptable performance. As ϵ → 0, we have P̄j → Pj and log(1 + |X|ϵ) → 0 thus the
exponent of the provided upper bound matches the optimal exponent in Equation (3.3).

iii) In the regime ϵ|X| ≪ 1, we have log(1+|X|ϵ) ≈ 0 and P̄j = (Qj(x)+ϵj)/(1+|X|ϵj) ≈
Qj(x). Therefore, the exponent in the upper bound in Equation (4.8) approximately equals
to

mini ̸=jC(Qi, Qj), i = 1, 2, . . . , M, j = 1, 2, . . . , M. (4.12)
This is the minimum pairwise Chernoff information between the distinct nominal dis-
tributions. Thus, in this regime, the nominal distributions act as if they are the true
distributions when the test is of the form Equation (4.7). We have

mini ̸=jC(Qi, Qj) ≥ mini ̸=j − 1
2

ln(1 − V (Qi, Qj)2) (4.13)

≥ mini ̸=j
1
2

V (Qi, Qj)2, (4.14)

where the first inequality results from Equation (2.4) and the second one is due to the
inequality ln(z) ≤ z − 1, z ≥ 0. The right hand side of Equation (4.14) is the exponent
of the upper bound of the DGL test in [6] when Pj = Qj , j = 1, 2, . . . , M , i.e. when
there is no uncertainty in the hypothesis distributions. Therefore, in the regime ϵ|X| ≪ 1,
the achievable exponent of the proposed method is larger than the exponent of the error
probability upper bound of DGL test∗. This observation is also validated via simulations
as we demonstrate in the next section.

4.1. Simulations
First, we have performed simulations to compare the performance of the DGL test

and the proposed method. We have considered the case M = 5 and |X| = 3 where the
distributions of the hypothesis are

P1 = [0.1, 0.8, 0.1], P2 = [0.3, 0.2, 0.5], P3 = [0.6, 0.1, 0.3],
P4 = [0.4, 0.4, 0.2], P5 = [0.3, 0.6, 0.1],

and the nominal distributions are listed in Table 1.

Table 1. The nominal distributions used for the simulations demonstrated in
Figure 2.

Q1 Q2 Q3 Q4 Q5
ϵ = 0.1 [0.04, 0.76, 0.2] [0.24, 0.3, 0.46]; [0.7, 0.05, 0.25] [0.37, 0.5, 0.13] [0.34, 0.5, 0.16]
ϵ = 0.03 [0.11, 0.82, 0.07] [0.29, 0.23, 0.48] [0.63, 0.09, 0.28] [0.38, 0.43, 0.19] [0.32, 0.57, 0.11]
ϵ = 0.005 [0.102, 0.803, 0.095] [0.305, 0.198, 0.497] [0.599, 0.096, 0.305] [0.398, 0.397, 0.205] [0.305, 0.599, 0.096]

The simulated error probabilities are demonstrated in Figure 2 where P (e) and P (eDGL)
denote the error probability of the proposed method and the DGL test, respectively. We
observe that when ϵ = 0.1 consistent detection is not possible with both methods. This
results from the fact that the minimum separation between the source distributions is not
sufficient for both tests. As ϵ decreases both tests start to perform consistently, and when
ϵ = 0.03 the DGL test performs better than the proposed method. However, as ϵ further
decreases the performance of the proposed methods catches up with that of DGL test and
∗The proposed method is only applicable when |X| is finite, however the DGL test can also be applied
when the underlying alphabet is continuous i.e. |X| = ∞.
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when ϵ = 0.005 it performs better. The same trend holds as ϵ → 0, as well. Therefore, the
proposed method seems to provide a performance advantage for arbitrarily small values
of ϵ as suggested by implication iii) of Theorem 4.2. A detailed performance comparison
of the proposed method and the DGL test can be found in [26].

Figure 2. Performance comparison of the DGL test and the proposed method.

Next, we have considered the case where the hypothesis distributions are not represented
exactly due to hardware limitations. This may happen if the system where the test is being
performed has limited memory or computational resources [24]. If this is the case, one has
to quantize the hypothesis distributions with a precision that is allowed by the system and
perform the test with the resulting nominal distributions. Here, we give consider such an
application where the hypothesis distribution vectors are quantized into q, q = 1, 2, . . . ,
bits. Let p, p ∈ [0, 1], be a real number representing an element of the distribution vector
and z be an unsigned integer represented with q bits. In the assumed quantization model
(Matlab’s fixed point design model with slope and bias representation) p is represented by
p̂, p̂ ∈ [0, 1], as

p̂ = integer value of z × 2−q + bias (4.15)
and z is selected such that the difference between p and p̂ is smallest. We have applied the
above quantization model to hypothesis distributions by setting the bias to 0. In order to
ensure that the quantized versions are actual distributions i.e. their elements add up to 1,
we have applied quantization to first |X| − 1 elements of distribution vectors, then the last
element is obtained by subtracting the sum of quantized versions from 1. The resulting
nominal distributions, Q1, Q2, . . . , QM , and the parameters are listed in Table 2.

The simulated error probabilities, P (e), along with the proposed upper bound Equation
(4.8) are presented in Figure 3, where we have also plotted the performance of the optimal
test Equation (2.11) and the optimal upper bound in Equation (3.3) for comparison. We
have gradually increased the number of bits, q, used in quantization and observed the
performance of the proposed method. In the simulations, the exponents are the negative
slopes of the P (e) curves and the upper bounds, and as evident from Figure 3 these are in
agreement with the proposed analysis. For the considered setup mini ̸=jC(Pi, Pj) = 0.0329
and the proposed test provides an acceptable performance for q ≥ 4. When q = 2, 4, 6 we
observe that C(P̄i, P̄j) < log(1+ |X|ϵ) thus the exponent term in Equation (4.8) is negative
and the provided upper bound does not guarantee an achievable exponent. However,
P (e) curves have negative slopes which implies an acceptable performance. For the case
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q = 8, 10, C(P̄i, P̄j) > log(1 + |X|ϵ) thus the proposed upper bound is active and the
performance of the proposed test closely matches the optimal test.

Table 2. The nominal distributions for the simulations demonstrated in Figure
3.

Q1 Q2 Q3 Q4
q = 2 [0, 0.7500, 0.2500] [0.2500, 0.2500, 0.5000] [0.5000, 0, 0.5000] [0.5000, 0.5000, 0]
q = 4 [0.1250, 0.8125, 0.0625] [0.3125, 0.1875, 0.5000] [0.6250, 0.1250, 0.2500] [0.3750, 0.3750, 0.2500]
q = 6 [0.0938, 0.7969, 0.1094] [0.2969, 0.2031, 0.5000] [0.5938, 0.0938, 0.3125] [0.4062, 0.4062, 0.1875]
q = 8 [0.1016, 0.8008, 0.0977] [0.3008, 0.1992, 0.5000] [0.6016, 0.1016, 0.2969] [0.3984, 0.3984, 0.2031]
q = 10 [0.0996, 0.7998, 0.1006] [0.2998, 0.2002, 0.5000] [0.5996, 0.0996, 0.3008] [0.4004, 0.4004, 0.1992]

Q5 min
i ̸=j

C(P̄i, P̄j) log(1 + |X|ϵ)

q = 2 [0.2500, 0.5000, 0.2500] 0.0351 0.6781
q = 4 [0.3125, 0.6250, 0.0625] 0.0310 0.2016
q = 6 [0.2969, 0.5938, 0.1094] 0.0186 0.0531
q = 8 0.3008, 0.6016, 0.09777] 0.0318 0.00135
q = 10 [0.2998, 0.5996, 0.1006] 0.0315 0.0034

Figure 3. Simulated P (e) values and theoretical upper bounds, where q denotes
the number of bits used for representing the nominal distributions.

5. Concluding remarks
In this paper, we have investigated Bayesian MHT by providing a type-based analysis

on its error probability. We have shown that the worst case achievable error exponent,
over the distinct types, equals to the minimum Chernoff information between the distinct
pairs of hypothesis distributions. The proposed analysis extends Sanov’s theorem-based
methods by providing insight on the error probabilities of specific input types.

As a generalization of the proposed analysis, we have considered the case where the true
distributions of the hypothesis are not known exactly, but a set of nominal distributions
that are close to the true distributions is available. We have proposed a simple type-
based test, obtained an upper bound on its error probability and showed that it coincides
with the optimal NN decision rule as the uncertainties in distributions vanish. We have
compared its performance with the robust DGL test and show that the achievable error
exponent of the proposed method is larger when the nominal distributions are arbitrarily
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close to true ones. This observation is also validated with simulations. Being identical
in form to the NN test, the proposed method has complexity O(Mn) which is linear in
the number of hypothesis and in the length of the test sequence. Thus, it also provides a
complexity advantage over DGL test whose complexity is O(M2n + M2 log M) [6]. This
advantage is particularly important when the number of hypothesis, M , is large. One
drawback of the proposed method is that, being a type-based method, it is applicable
only when hypothesis distributions are discrete, whereas the DGL test can be used with
continuous distributions, as well.

In this work, we have assumed that the nominal distributions are close to true distri-
butions in variational distance, but our method is also applicable if these distances are
bounded in terms of ℓ1, separation, Hellinger, Wasserstein, χ2 or KL distance. Because
any of these upper bounds implies another upper bound on the variational distance [8].
In this regard, KL divergence plays an important role if the nominal distributions are es-
timated from labeled training sequences. Let t⃗j = [tj1, tj2, . . . , tjm] be a training sequence
that is generated from distribution Pj , and let Pt⃗j

denote the type of t⃗j . The law of large
numbers states that [5, p. 356]

Pr
(
D(Pt⃗j

||Pj

)
> β) ≤ 2−m

(
β− |X| log(m+1)

m

)
. (5.1)

Thus, Pt⃗j
can be used as a nominal distributions for Pj . Then, by changing β one can

adjust the estimation accuracy, and by changing m one can adjust the resulting error
probability of the estimation. In turn, one can analyze the performance of multiple clas-
sification with labeled training sequences. Recently, we have followed this approach and
investigated the classification performance of the DGL test and obtained simple upper
bounds on its error probability [1]. Investigating the classification performance of the
proposed method in this paper is the topic of our upcoming work.
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Appendix

Appendix A. Proof of Proposition 3.1
For fixed i and j, i ̸= j, let P (ej |Hi, Px⃗) denote the probability of error, averaged over

x⃗ ∈ T(Px⃗), when Hi is true but the test decides on Hj . This corresponds to the event
that D(Px⃗||Pj) < min

k ̸=j
D(Px⃗||Pk), k = 1, 2, . . . , M , when x⃗ is generated from distribution

Pi. Thus,

P (ej |Hi, Px⃗) =
∑

x⃗∈T (Px⃗)
D(Px⃗||Pj)<min

k ̸=j
D(Px⃗||Pk)

Pi(x⃗), k = 1, 2, . . . , M

=
∑

x⃗∈T (Px⃗))
D(Px⃗||Pj)<min

k ̸=j
D(Px⃗||Pk)

2−n(D(Px⃗||Pi)+H(Px⃗)), k = 1, 2, . . . , M

≤
∑

x⃗∈T (Px⃗)
D(Px⃗||Pj)<D(Px⃗||Pi)

2−n(D(Px⃗||Pi)+H(Px⃗)), (A.1)
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where the inequality follows since the event D(Px⃗||Pj) < min
k ̸=j

D(Px⃗||Pk) is a subset of

D(Px⃗||Pj) < D(Px⃗||Pi). Interchanging the roles of i and j we obtain

P (ei|Hj , Px⃗) ≤
∑

x⃗∈T (Px⃗)
D(Px⃗||Pi)<D(Px⃗||Pj)

2−n(D(Px⃗||Pj)+H(Px⃗)). (A.2)

We combine Equation (A.1) to Equation (A.2) to upper bound P (ej |Hi, T (Px⃗)) as
P (ej |Hi, Px⃗) ≤ P (ej |Hi, Px⃗) + P (ei|Hj , Px⃗)

≤
∑

x⃗∈T(Px⃗)
D(Px⃗||Pj)<D(Px⃗||Pi)

2−n(D(Px⃗||Pi)+H(Px⃗)) +
∑

x⃗∈T(Px⃗)
D(Px⃗||Pi)<D(Px⃗||Pj)

2−n(D(Px⃗||Pj)+H(Px⃗))

=
∑

x⃗∈T(Px⃗)
2−n(max{D(Px⃗||Pi),D(Px⃗||Pj)}+H(Px⃗))

= |T (Px⃗)|2−n(max{D(Px⃗||Pi),D(Px⃗||Pj)}+H(Px⃗))

≤ 2−n(max{D(Px⃗||Pi),D(Px⃗||Pj)}), (A.3)
where the last inequality follows from Lemma 2.1. The error probability when Hi is true
is

P (e|Hi, Px⃗) =
∑
j ̸=i,

P (ej |Hi, Px⃗), j = 1, 2, ..., M

≤ Mmax
j ̸=i

P (ej |Hi, Px⃗), j = 1, 2, ..., M

≤ M max
j ̸=i

2−n(max{D(Px⃗||Pi),D(Px⃗||Pj)}), j = 1, 2, ..., M

= 2
−n

(
min
j ̸=i

max{D(Px⃗||Pi),D(Px⃗||Pj)}− log M
n

)
, j = 1, 2, ..., M. (A.4)

Finally, P (e|Px⃗) can be upper bounded as

P (e|Px⃗) =
M∑

i=1
P (e|Hi, Px⃗)P (Hi)

≤ max
i

P (e|Hi, Px⃗), i = 1, 2, ...., M

≤ max
i

2
−n

(
min
j ̸=i

max{D(Px⃗||Pi),D(Px⃗||Pj)}− log M
n

)
, i, j = 1, 2, ..., M

= 2
−n

(
min
i̸=j

max{D(Px⃗||Pi),D(Px⃗||Pj)}− log M
n

)
, i, j = 1, 2, ..., M (A.5)

which completes the proof.

Appendix B. Proof of Proposition 3.2
We are interested in finding the type class T (Px⃗) ∈ Pn that minimizes max{D(Px⃗||Pi), D(Px⃗||Pj)}.

This search can be transformed into a constrained optimization problem as
minimize
T (Px⃗)∈Pn

D(Px⃗||Pi),

subject to D(Px⃗||Pi) − D(Px⃗||Pj) ≥ 0. (B.1)
Using the method of Lagrange multipliers we obtain

J(Px⃗) =
∑

x∈Px⃗

Px⃗(x) log Px⃗(x)
P̄i(x)

+ λ
∑

x∈Px⃗

Px⃗(x) log Pi(x)
Pj(x)

+ v
∑

x∈Px⃗

Px⃗(x),
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where λ and v are constants. Differentiating with respect to Px⃗ yields

log Px⃗(x)
P̄i(x)

+ 1 + λ log Pi(x)
Pj(x)

+ v = 0.

Solving the above equation reveals that the minimizer Px⃗ must be of the form

P λ
x⃗ = Pi(x)λPj(x)1−λ∑

x∈X Pi(x)λPj(x)1−λ
(B.2)

and λ is chosen such that D(P λ
x⃗ |P̄i) = D(P λ

x⃗ |P̄j). When Px⃗ has the form in Equation (B.2),
the condition D(P λ

x⃗ |Pi) = D(P λ
x⃗ |Pj) is equivalent to the definition of the Chernoff distance

and D(P λ
x⃗ |Pi) = D(P λ

x⃗ |Pj) = C(P̄i, P̄j) holds (see [5, p. 385]). Besides, interchanging the
roles of D(Px⃗||P̄i) and D(Px⃗||P̄j) in the constraint optimization problem Equation (B.1)
ends up with the same result. Therefore, we conclude that

min
T (Px⃗)∈Pn

max{D(Px⃗||Pi), D(Px⃗||Pj)} = C(Pi, Pj). (B.3)

Appendix C. Proof of Proposition 4.1

Pj(x⃗) =
n∏

i=1
Pj(xi)

=
∏
a∈X

Pj(a)nPx⃗(a)

≤
∏
a∈X

(Qj(a) + ϵj)nPx⃗(a)

=
∏
a∈X

2nPx⃗(a) log(Qj(a)+ϵj)

=
∏
a∈X

2nPx⃗(a) log
(Qj (a)+ϵj )(1+|X|ϵj )Px⃗(a)

(1+|X|ϵj )Px⃗(a)

= 2
−n

∑
a∈X

Px⃗(a)

log Px⃗(a)
Qj (a)+ϵj
1+|X|ϵj

+log 1
Px⃗(a) +log 1

1+|X|ϵj


= 2

−n
∑

a∈X
Px⃗(a)

(
log Px⃗(a)

P̄j (a) +log 1
Px⃗(a) +log 1

1+|X|ϵj

)
= 2−n(D(Px⃗||P̄j)+H(Px⃗)−log(1+|X|ϵj)),

where the inequality follows from the variational distance constraint i.e. 1
2

∑
x∈X |Pj(a) −

Qj(a)| ≤ ϵj and
∑

x∈X Qj(x) = 1.


